
algorithms

Article

Query Rewriting for Incremental Continuous Query Evaluation
in HIFUN

Petros Zervoudakis 1, Haridimos Kondylakis 1,* , Nicolas Spyratos 2 and Dimitris Plexousakis 1

����������
�������

Citation: Zervoudakis, P.;

Kondylakis, H.; Spyratos, N.;

Plexousakis, D. Query Rewriting for

Incremental Continuous Query

Evaluation in HIFUN. Algorithms

2021, 14, 149. https://doi.org/

10.3390/a14050149

Academic Editor: Frank Werner

Received: 24 March 2021

Accepted: 5 May 2021

Published: 8 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Computer Science, FORTH-ICS, 70013 Heraklion, Greece; zervoudak@ics.forth.gr (P.Z.);
dp@ics.forth.gr (D.P.)

2 Laboratoire de Recherche en Informatique, Université de Paris-Sud, 91400 Orsay, France;
Nicolas.Spyratos@lri.fr

* Correspondence: kondylak@ics.forth.gr

Abstract: HIFUN is a high-level query language for expressing analytic queries of big datasets, offer-
ing a clear separation between the conceptual layer, where analytic queries are defined independently
of the nature and location of data, and the physical layer, where queries are evaluated. In this paper,
we present a methodology based on the HIFUN language, and the corresponding algorithms for the
incremental evaluation of continuous queries. In essence, our approach is able to process the most
recent data batch by exploiting already computed information, without requiring the evaluation of
the query over the complete dataset. We present the generic algorithm which we translated to both
SQL and MapReduce using SPARK; it implements various query rewriting methods. We demonstrate
the effectiveness of our approach in temrs of query answering efficiency. Finally, we show that by
exploiting the formal query rewriting methods of HIFUN, we can further reduce the computational
cost, adding another layer of query optimization to our implementation.

Keywords: big data; query language; incremental processing

1. Introduction

Data emanating from high-speed streams are prevalent everywhere in today’s data
eco-system. Examples of data streams include IoT data [1], data series [2], network traffic
data [3], financial tickers [4], health care transactions [5,6], the Linked Open Cloud [7,8]
and so on. In order to extract knowledge and find useful patterns [9,10], these data need
to be rapidly analyzed and processed. However, this is a challenge, as new data batches
arrive continuously at high speed, and efficient data processing algorithms are needed.

The research community has already provided open-source and commercial dis-
tributed batch processing systems such as Hadoop [11], MapReduce [12] and Oracle Cloud
Infrastructure [13], that allow query processing over static and historical datasets, enabling
scalable parallel analytics. However, even with those technologies, processing and ana-
lyzing large volumes of data is not efficient enough. This is true especially in scenarios
that need rapid responses to change over continuous (big) data streams [14]. Consequently,
stream processing has gained significant attention. Several streaming engines, including
Spark Streaming [15], Spark Structured Streaming [16], Storm [17], Flink [18] and Google
Data Flow [19], have been developed to that purpose.

Current research mainly focuses data stream management systems processing continu-
ous queries over traditional data streams [20], or massive amounts of spatio-temporal data
that are increasingly being collected and stored. Most of the existing methodologies have
been devised to store all the incoming data on distributed storage [21], and others [22,23]
use complex indexing techniques to increase the performance from the data access point of
view. However, such approaches are untenable in real world problems, and continuous
query processing techniques have been developed to overcome this limitation by utilizing

Algorithms 2021, 14, 149. https://doi.org/10.3390/a14050149 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-9917-4486
https://orcid.org/0000-0002-0863-8266
https://doi.org/10.3390/a14050149
https://doi.org/10.3390/a14050149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14050149
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14050149?type=check_update&version=3

Algorithms 2021, 14, 149 2 of 19

the storage space to produce results in an incremental fashion rather than aiming to process
all the available data [24,25].

Continuous query processing is a major challenge in a streaming context. A contin-
uous query is a query which is evaluated automatically and periodically over a dataset
that changes over time [26], and allows the user to retrieve new results from a dataset
without the need to issue the same query repeatedly. The results of continuous queries are
usually fed to dashboards, in large enterprises, to provide support in the decision-making
process [27]. In addition, besides their ever increasing volume, datasets change frequently,
and as such, results to continuous queries have to be updated at short intervals.

Motivation and Contributions

As new data are constantly arriving at a high rate, datasets are growing rapidly, and
the re-evaluations of queries are incurring delays. The problem on which we focus in
this work is incremental query evaluation; that is, given the answer to a given query at
time t, on dataset D, how can one find the answer to the same query at time t′ on dataset
D′, assuming that the answer at time t has been saved andthe results become stale and
stagnant over time. Incremental processing is an auspicious approach for refreshing mining
results, as it uses previously saved results to avoid the cost of re-computation from scratch.
There is an obvious relationship between continuous queries and materialized views [28],
since a materialized view is a derived database relation whose contents are periodically
updated by either a complete or an incremental refresh based on a query. Incremental
view maintenance methods [29] exploit differential algorithms to re-evaluate the view
expression in order to enable the incremental updating of materialized views. However, in
our case, although the target was the same, the methods used were different: we devised
an algorithm for incremental processing of continuous queries that processes only the
most recent data partition and exploits already computed information, without requiring
evaluating the query over the entire dataset.

In this paper, we study this problem in the context of HIFUN, a recently proposed
high-level functional language of analytic queries [30,31]. Two distinctive features of
HIFUN are that (a) analytic queries and their answers are defined and studied in the
abstract, independently of the structure and location of the data, and (b) each HIFUN
query can be mapped either to an SQL group-by query or to a MapReduce job. HIFUN
separates the conceptual and the physical levels so that one can express analysis tasks as
queries at the conceptual level independently of how their evaluations are done at the
physical level using existing mechanisms (e.g., SQL engines, Graph engines or MapReduce)
which perform the actual evaluation of queries. In [32], the authors investigated how
HIFUN can be used for easing the formulation of analytic queries over RDF data. In this
works we focus on relational and unstructured data. For example, if the data reside in a
relational database, then the mapping mechanism can use SQL in order to evaluate the
conceptual query, whereas if the data are unstructured, then mapping mechanisms need
to be algorithms specialized to the evaluation based on MapReduce programming model.
Our approach exploits the Spark Streaming and the Spark Structured Streaming in the
physical layer to implement an incremental evaluation algorithm using HIFUN semantics.

An initial approach in this direction has already been presented in a workshop [33],
focusing on incrementally updating continuous query results, preventing the costly re-
computation from scratch. Based on those ideas, in this paper, we exploit complex rewrit-
ings at the physical layer in order to further minimize the evaluation cost.

More specifically, the contributions of this paper are as follows:

• We use the HIFUN language to define the continuous query problem and give a
high-level generic algorithm for its solution.

• Then we map the generic algorithm to the physical level, implementing the evaluation
mechanism both as SQL queries and MapReduce tasks.

• Further, we show how HIFUN query rewriting can be implemented in the physi-
cal layer.

Algorithms 2021, 14, 149 3 of 19

• Finally, we experimentally show that our implementation provides considerable
benefits in terms of efficiency.

Although an incremental evaluation of queries based on the HIFUN language was
already published [33], and although similar rewritings have been used extensively on
relational databases [34], this is the first time that similar rewritings have been proposed for
the HIFUN functional language. In addition, they are not trivially implemented either. In
this paper, besides the functional layer, we also show how to implement it in two completely
different physical setups. The remainder of the paper is organized as follows. In Section 2,
we present related work, and in Section 3 the theoretical framework and the query language
model used. Then in Section 4, we describe our algorithms for incremental evaluations of
continuous queries at the HIFUN level, and in Section 5, the corresponding implementation
at the physical level. In Section 6, we present an evaluation of our system, and finally, in
Section 6, we conclude the paper and discuss possible directions for future work.

2. Related Work

To respond to the intensive computational requirements of massive dataset analysis,
a number of frameworks are already available in the literature that deal with continuous
queries such as Spark Streaming and Flink [35]. Continuous queries were introduced
for the first time in the TQL language in Tapestry [36], for content-based filtering of an
append-only email and message posting database. Conceptually, a restricted subset of
the SQL was used, and it was converted into an incremental query that was defined to
retrieve all answers obtained in an interval of t seconds. The incremental query was
issued continuously, every t seconds, and the union of answers returned constituted the
answer to the continuous query. An incremental evaluation approach was used, to avoid
the repetitive computations and to return only the new results to the users. Besides this,
other architectures have been proposed as well to process continuous queries, such as
the NiagaraCQ [37] and the OpenCQ [38]. Both systems use continuous queries over
changing data, similarly to Tapestry, periodically executing individual queries. However,
all aforementioned approaches focus on relational databases and thus do not deal with
issues that appear when moving to semi- and unstructured data.

STREAM [26] is an all-purpose framework that focuses on addressing the demands
imposed by data streams on data management. The authors pay attention to memory
management in order to enable approximate query answering. In particular, one of the
project’s goals is to understand how to efficiently run queries given a bounded amount of
memory. The system can process streaming data, but it is designed as a centralized system.

Our approach is a coherent integration of Apache Spark, as a computational engine,
with semantics of HIFUN that can be used to rewrite continuous queries for optimization.
Spark can tackle different paradigms (e.g., structured and unstructured processing) based
on a common set of abstractions. The data itself can be stored in a centralized or distributed
manner with different data models (e.g., relational and unstructured sources). In other
words, HIFUN queries are agnostic to the evaluation layer and the nature and location of
the data.

3. Preliminaries—The HIFUN Query Language

In this section, we describe briefly the conceptual model of the HIFUN language. For
further details on the HIFUN language, the interested reader is referred to some relevant
papers [30,31].

The basic notion used in defining HIFUN is that of an attribute of a dataset. In HIFUN,
each attribute is seen as a function of the dataset for some domain of values. For example,
if the dataset D is a set of tweets, then the attribute “character count” (denoted as cc) is seen
as a function cc : D → Count, such that, for each tweet t, cc(t) is the number of characters
in t.

Next we provide an example that we will use throughout the paper. Consider a
distribution center (e.g., Walmart) which delivers products of various types in a number

Algorithms 2021, 14, 149 4 of 19

of branches, and suppose that D is the set of all delivery invoices collected over a year.
Each delivery invoice has an identifier (e.g., an integer) and shows the date of delivery, the
branch in which the delivery took place, the type of product delivered (e.g., CocaLight)
and the quantity (i.e., the number of units delivered of that type of product). There is a
separate invoice for each type of product delivered; and the data on all invoices during the
year are stored in a data warehouse for analysis purposes. The information provided by
each invoice would most likely be represented as a record with the following fields: invoice
number, date, branch, product and quantity. In the HIFUN approach, this information is
seen as a set of four functions, namely, d, b, p and q, as shown in Figure 1, where D stands
for the set of all invoice numbers and the arrows represent attributes of D. Following this
view, given an invoice number, the function d returns a date, the function b a branch, the
function p a product type and the function q a quantity (i.e., the number of units of that
product type).

Figure 1. Running example.

Assume now that we want to know the total quantity delivered to each branch (during
the year); call this query Q. Its evaluation needs the extensions of only two among the four
functions, namely, b and q. Figure 2a shows a toy example, where the dataset D consists
of seven invoices, numbered 1 to 7. It also shows the values of the functions b and q, for
example, b(1) = Br1, b(2) = Br1, b(3) = Br2 and so on; and q(1) = 200, q(2) = 100,
q(3) = 200 and so on.

In order to find the answer to query Q, for each branch Bri, we proceed in three steps
as follows:

1. Grouping. Group together all invoices j of D such that b(j) = Bri.
2. Measuring. Apply q to each invoice j of the Bri-group to find the corresponding

quantity q(j).
3. Aggregation. Sum up the q(j)′s thus obtained to get a single value ui.

This process creates a function ansQ associating each branch Bri with a value ui, as
shown in Figure 2b. We view the ordered triple Q = (b, q, sum) as a query, the function
ansQ as the answer to Q and the computations described above as the query evaluation
process. The function b that appears first in the triple (b, q, sum) and is used in the grouping
step is called the grouping function; the function q that appears second in the triple is called
the measuring function; and the function sum that appears third in the triple is called the
reduction operation (or the aggregate operation).

3.1. Analysis Context

Now, the attributes d, b, p and q of our running example are “factual” or “direct”
attributes of D in the sense that their values appear on the delivery invoices. However,
apart from these attributes, analysts might be interested in attributes that are not direct
but can be “derived” from the direct attributes. Figure 1 shows the direct attributes
together with several derived attributes: attribute r can be derived from attribute b based
on geographical information on the location of each branch; and attributes s and c can be
derived from a product’s master table. The set of all attributes (direct and derived) that are
of interest to a group of analysts is called an analysis context (or simply a context).

Actually, as we shall see shortly, the context is the interface between the analyst and
the dataset, in the sense that the analyst uses attributes of the context in order to formulate

Algorithms 2021, 14, 149 5 of 19

queries (in the form of triples, as seen earlier). The users of a context can combine attributes
to form complex grouping functions.

In HIFUN one can form complex grouping or measuring functions using the following
three operations on functions: composition, pairing and Cartesian product projection. An
example is shown in Figure 2. As shown, in order to ask for the total quantities by region,
we need to use the composition r ◦ b as a grouping function in order to express the query:
(r ◦ b, q, sum). The attribute r is derived, as the value can be computed from this of attribute
b (e.g., from a specific branch name one can derive the region in which the branch exists).
For pairing, in order to ask for a total quantities delivered by a branch and product, we
need to use the pairing ∧ operator as a grouping function in order to express the query:
(b∧ p, q, sum) (e.g., its answer associates every pair (branch, product) with a total quantity).
We assume now that the query Q = (b∧ p, q, sum) has been evaluated and its results stored
in a cache. Then we can compute the totals by branch and the totals by product from the
result of Q, using the following rewritings:

Q = (b, q, sum) = (projGBranch , (b ∧ p, q, sum), op) (1)

Q = (p, q, sum) = (projGProduct , (b ∧ p, q, sum), op) (2)

Figure 2. An analytic query (a) and its answer (b).

3.2. Query Rewriting

Independently of how a given query is evaluated, the formal model of HIFUN sup-
ports query rewriting. An incoming query or a set of queries can be rewritten at the
conceptual level, in terms of other queries to reduce the evaluation cost.

Common Grouping and Measuring Rewriting Rule (CGMRR): Let Q = {(g, m, op1), . . . ,
(g, m, opn)} be a set of n queries with the same grouping function and the same measuring
function, but possible different reduction operations. In this case the rewriting of Q is the
following: Q′ = (g, m, {op1, . . . , opn}), meaning that the grouping and the measuring steps
are done only once and the n reduction operations are applied to the measuring results.

Common Grouping Rewriting Rule (CGRR): Let Q = {(g, m1, op1), . . . , (g, mn, opn)}
be a set of n queries with the same grouping function but possibly different measur-
ing and reduction operations. In this case the rewriting of Q is the following: Q′ =
{g, (m1, op1), . . . , (mn, opn)}, meaning that the grouping is done only once and the n mea-
suring and reduction steps are applied to the results of grouping.

Common Measuring and Operation Rewriting Rule (CMORR): Let Q = {(g1, m, op), . . . ,
(gn, m, op)} be a set of n queries with the same measuring function and the same reduction
operation, but possibly different grouping functions. In this case the rewriting of Q is the

Algorithms 2021, 14, 149 6 of 19

following: Q = {(g1 ∧ . . . ∧ gn, m, op), (projG1 , (g1 ∧ . . . ∧ gn, m, op), op), . . . , (projGN , (g1 ∧
. . . ∧ gn, m, op), op)}, where Gi denotes the domain of definition of gi. This rewriting rule
is derived from the following basic rewriting rule of the HIUN Language [30,31]:

Basic Rewriting Rule (BRR): Let Q = (g2 ◦ g1, m, op) and Q′ = (g1, m, op). Then Q can
be rewritten as follows: Q = (g2, ansQ′ , op) under the assumption that the operation op
is distributive.

A more concise expression of this rule is the following: (g2 ◦ g1, m, op) = (g2, (g1, m,
op), op), which can be read as: evaluate first the “inner” query Q′ = (g1, m, op); then use
its answer as the measuring function to evaluate the “outer” query Q = (g2, ansQ′ , op).

4. Methods
4.1. Incremental Computation in HIFUN

In this section, we show how we can use HIFUN language to incrementally evaluate
continuous queries. An important common feature of real-life applications is that the input
data continuously grow and old data remain intact. As such, for the rest of this paper we
assume that the dataset being processed can only increase in size between t and t′. In such
a scenario, the idea of incrementally evaluating a continuous query is to use the results of
an already performed computation on the old data, and evaluate the query only on the
data appended between t and t′; eventually new and previous results should be merged.

As we saw earlier, in an HIFUN query Q = (g, m, op), the domain of the definition of
an answer coincides with the range of the grouping function. Consider, for instance, the
query Q = (b, q, sum) of our running example, asking for the totals by branch. The domain
of the answer is the set of all branches and this set is also the range of b. We call this set the
key of the query. Now, in a continuous query, the key might change over time. Indeed, in
the case of totals by branch, new branches might start operation between t and t′, whereas
branches operating at time t might cease to operate between t and t′.

Figure 3 illustrates our incremental approach for continuous queries—the same query
asked two times. We perceive the problem of incremental evaluation as follows: let ans be
the answer of continuous query Q at time t, on dataset D; let ans′ be the answer of Q at
time t′ on dataset D′, where D′ = D + ∆D; and let incr be the answer of Q at time t′ on
dataset ∆D. Moreover, let K be the key of Q at time t and let K′ be the key of Q at time t′.

Our algorithm for computing ans′ supports both distributive and non-distributive
operations. Without loss of generality, we present in the sequel four cases of distributive
operations and a non-distributive one:

• op= sum: ans′(i) = ans(i) + incr(i) if i is in K ∩ K′;
ans(i) if i is in K \ K′; incr(i) if i is in K′ \ K;

• op= min: ans′(i) = min(ans(i), incr(i)) if i is in K ∩ K′; ans(i) if i is in K \ K′; incr(i)
if i is in K′ \ K;

• op= max: ans′(i) = max(ans(i), incr(i)) if i is in K ∩ K′; ans(i) if i is in K \ K′; incr(i)
if i is in K′ \ K;

• op= count: ans′(i) = ans(i) + incr(i) if i is in K ∩ K′; ans(i) if i is in K \ K′; incr(i) if i
is in K′ \ K;

The non-distributive aggregate operation of the average can be computed by applying
a combination of distributive aggregate operations. More specifically, the answer ans′ of
query Q at time t′ is computed as follows:

• op= avg:

– ans′(i) = ans(i) if i is in K \ K′;
– ans′(i) = incr(i) if i is in K′ \ K;

– ans′(i) =
ansop=sum(i)+incrop=sum(i)

ansop=count(i)+incrop=count(i)
if i is in K ∩ K′;

Algorithms 2021, 14, 149 7 of 19

Figure 3. Incremental computing over an append-only dataset.

Distributive aggregate operations are those whose computation can be distributed
and be recombined using the distributed aggregates. All operations min, max, sum and
count are distributive. This means that if the data are distributed into n sets, and we
apply the aforementioned distributive operation to each one of them (resulting in n ag-
gregate values), the total aggregate operation can be computed for all data by applying
the aggregate operation for each subset and then combining the results. For example:
sum(1, 2, 3, 4, 5) = sum(sum(1, 2), sum(3, 4, 5)). We also support the non-distributive avg
aggregate operation: avg(1, 2, 3, 4, 5) 6= avg(avg(1, 2), avg(3, 4, 5)). Non-distributive aggre-
gate operations can be computed by algebraic functions that are obtained by applying a
combination of distributive aggregate functions. For example, the average can be computed
by summing a group of numbers and then dividing by the count of those numbers. Both
sum and count are distributive operations.

4.2. System Implementation

As already mentioned, HIFUN queries can be defined at the conceptual level indepen-
dent of the nature and the location of the data. These queries can be evaluated by encoding
them either as MapReduce jobs or SQL group-by queries, depending on the nature of the
available data. Two different physical-level mechanisms are used to physically evaluate
HIFUN queries over live data streams: (1) Spark Streaming [15] and (2) Spark Structured
Streaming [16]. Both mechanisms support the micro-batching concept—fragmentation of
the stream as a sequence of small batch chunks of data. On small intervals, the incoming
stream is packed to a chunk of data and is delivered to the system to be further processed.
This system is based on definitions and features as formally proposed by HIFUN, and
performs optimizations through incremental approach and query rewritings to reduce the
computational costs.

4.2.1. Continuous HIFUN Queries over Micro-Batches

In the micro-batching approach, as a dataset continuously grows and as new data
become available, we process the tuples in discrete batches. The batches are processed
according to a particular sequence. As a high volume of tuples can be processed per micro-
batch, the aforementioned mechanism uses parallelization to speed up data processing. An
initial dataset Di is followed by a continuous stream of incremental batches ∆Di that arrive
at consecutive time intervals ∆t. As we already explained, incremental evaluation would
produce the query results at time t + ∆t by simply combining the query results at time t
with the results from processing the incremental batches ∆Di. Two key observations should
be made here. The first is that computations needed are solely performed within the specific
batch, following the evaluation scheme described in the previous section. Therefore, for

Algorithms 2021, 14, 149 8 of 19

every batch interval we calculate a result based on delta subset ∆Di, e.g., incri ←− e(∆Di).
The second observation is that the state should be kept across all batches to perform in-
memory computations by wrapping the accessed data as distributive data collections. After
the evaluation of each query is completed for each micro-batch, we need to keep the states
across all batches. The previous state value and the current delta result are merged together,
and the system produces a new state incrementally, e.g., state←− u(incri, state). Figure 4
illustrates this incremental approach.

Figure 4. State maintenance.

4.2.2. Continuous HIFUN Queries Using MapReduce

The abstract definition of a query evaluation is implemented on the physical level
using the MapReduce programming model exploiting Spark Streaming. Spark Streaming
is a stream processing framework based on the concept of discretized streams and provides
the DStream API, which accepts sequences of data which arrive over time. The API
implements the micro-batch stream processing approach with periodic checking of internal
state at each batch interval. Internally, each DStream is represented as a sequence of data
structure called resilient distributed datasets (RDDs) which keeps the data in memory as
they arrive in each batch interval.

Generic Evaluation Schema to MapReduce. In this section, we elaborate on the generic
query evaluation schema, described in Section 3, by presenting details of its implementation
in the physical layer when Spark Streaming and the MapReduce programming model
are sed:

(a) Query Input Preparation. A set of attributes which are included in grouping and
measuring part of Q is used to extract the information from the initial unstructured
dataset. A map function is used that applies the given attributes to each record
of the initial DStream and returns a new DStream which contains the information
useful for the next evaluation steps.

(b) Grouping Partition Construction. In this step, a map function constructs the grouping
partition as follows. The mapper receives the tuples created from the previous step
and extracts the key–value pairs. The result is a new PairDStream in which the
key K is the value of the grouping attribute of each data item or the value of the
grouping attributes if the domain of ansQ is the Cartesian product of two or more
grouping attributes. The value V is the value of the measuring attribute of each
data item.

(c) Grouping Partition Reduction. In this step a reduce function is used to merge the
values of each key using a query operation op, and a new DStream is created as the
query answer of the current micro-batch.

Rewritings to MapReduce As already described, a set Q can be rewritten according to
certain rewriting rules. In this subsection, we give a detailed description how the evaluation
mechanism leverages these rules.

Common Grouping and Measuring Rewriting Rule. In this case of rewriting, n different
operations are applied to the common grouping and measuring attributes. In the Query
Input Preparation step the information is extracted from the initial unstructured dataset

Algorithms 2021, 14, 149 9 of 19

using the common grouping and measuring attributes, which appear in the query set Q.
A map function is used to apply the given common attributes to each record of the initial
DStream and returns a new DStream containing the values of the common grouping and
measuring attributes for each record. This is useful for the following evaluation steps.
As a next evaluation step, a map function constructs the grouping partition as follows.
The mapper receives the tuples created from the previous step and emits key–value pairs
< K, V >, where K is the value of the common grouping attribute for each tuple and value
V is synthetic and carries a list of measuring attribute values. The measuring value of each
tuple is used and repeated n times to create a list of n values assigned to the key K. The
length n of the list depends on the number of the operations which appear in the query set
Q. As a final evaluation step, the reduction of the grouping partition is needed. A reduce
function merges the n values for each key, using the n operations included in the rewritten
set, and produces the query answer in the form of key–value pairs < Kq, Vk >, where Kq
is the key of the query, and Vk its synthetic value containing the reduced value for each
operation applicable to the measuring attribute. The answer of the Common Grouping and
Measuring Rewriting Rule is completed when a set of < Kq, Vk > is created.

Common Grouping Rewriting Rule. The evaluation of this rewriting rule is slightly
different to the evaluation of the Common Grouping and Measuring Rewriting Rule. In
this case n different measuring attributes are reduced to the common grouping attribute,
applying n possible different operations. In the Query Input Preparation step, the information
is extracted from the initial unstructured dataset using the common grouping and the n
different measuring attributes which appear in the query set Q. A mapping function is
used to apply the given common grouping attribute and the n measuring attributes to each
record of the initial DStream. It then returns a new DStream, containing the values of the
common grouping and measuring attributes for each record, useful for the next evaluation
steps. As a next evaluation step, a map function constructs the grouping partition as
follows: The mapper receives the tuples created from the previous step and emits the
key–value pairs < K, V >, where K is the value of the common grouping attribute for each
tuple and the value V is synthetic, and carries a list of n measuring attribute values. The
length n of the list depends on the number of the measuring attributes which appear in the
query set Q. As the final evaluation step, the Grouping Partition Reduction is performed as
follows: The reduce function applies for each key K, the n operations on the list of n values
and produces the query answer in the form of key–value pairs < Kq, Vk >, where Kq is
the query key and Vk its synthetic value containing the reduced value for each operation
applicable to the measuring attributes. The answer of the Common Grouping Rewriting Rule
is completed when a set of < Kq, Vk > is created.

Common Measuring and Operation Rewriting Rule. In this rule, the same measuring
attribute and the same operation are associated with the n grouping attributes. The
evaluation of the base query is first required as described in the generic evaluation schema,
and produces an intermediate result required to the evaluation of the projection queries.
The intermediate result is produced in the form of key–value pairs < Kbq , Vbqk >, where
Kbq is the key of the base query and Vbqk its reduced value. For each projection query, a
map function receives the pair tuples of the intermediate result and a MapReduce job
constructs the answer as follows: In the Grouping Partition Construction step a mapper emits
key–value pairs < K′, V′ >, where the key K′ is emitted as the value of the subset of the
key Kbq , which is specified by the projection operation, and the value Vbqk is emitted as a
new V′ value assigned to K′. Finally, to perform the Grouping Partition Reduction step, the
reduce function is applied and produces the answer for each projection query in the form
of key–value pairs < Kq, Vk >, where Kq is the query key and Vk its value. The final answer
of this rule is completed when n sets of < Kq, Vk > are created.

Basic Rewriting Rule. The evaluation of the base query is required first as described in
the generic evaluation schema, and produces an intermediate result of the “inner” query
required for the evaluation of the “outer” query. The intermediate result is produced in
the form of key–value pairs < Kbq , Vbqk >, where Kbq is the key of the base query and

Algorithms 2021, 14, 149 10 of 19

Vbqk its value. A set of key–value pairs is available for the evaluation of the “outer” query
as follows. A map function receives the key–value pair of the intermediate result and
constructs a new set of the key–value pairs < K′, V′ > as follows. For each key Kbq a new
key K′ is emitted, specified by the association between Kbq and K′ as defined in the context.
The value Vbk

is emitted as a new V′ > value for the key K′ >. Finally, a reducing function
is applied and produces the answer of the “outer” query in the form of key–value pairs
< Kq, Vk >, where Kq is the query key and Vk its value.

Incremental Evaluation

We have to note that we maintain the state across the micro-batches (using the map-
WithState method), using the key–value pairs produced for each micro-batch. Stateful
transformation is a particular property used in this case, and it enables us to maintain the
state between the various micro-batches across a period of time. That operation is able
to execute partial updates for only the newly arrived keys in the current micro-batch. As
such, computations are initiated only for the records that need to be updated. The state
information is stored as a mapWithStateRDD, thereby benefiting from the distribution’s
effectiveness of Spark.

Next we focus on how the incremental update mechanism leverages the rewriting
rules and allows updating the state(s) between the micro-batches using the MapReduce pro-
gramming model. We distinguish the incrementalization of the rewritings into two cases.

Case 1. The first case includes the Common Grouping and Measuring Rewriting Rule,
Common Grouping Rewriting Rule and Basic Rewriting Rule. In these rules when a rewritten
query is executed over a micro-batch, a DStream is created in a form of DStream[(Kq, Vk)].
The Kq is the key of the query and Vk is the synthetic value of its Kq in the current micro-
batch. The mapWithState method is used to update the current state, which is also in
the form of DStream[(Ks, Vks)], where Ks is the key of the aggregated query and Vks is the
synthetic value of its Ks. In each micro-batch, this method is executed only for the keys of
the state that need to be updated, which is a great performance optimization.

Case 2. The second case includes the Common Measuring and Operation Rewriting Rule.
In this rule when a rewritten query is executed over a micro-batch, n DStreams are created
in a form of DStream[(Kq, Vk)]. Here, the Kq denotes the key of the projection query and
Vk denotes the value of its Kq in the current micro-batch. The n DStreams depend on
the number of different grouping attributes appearing in the rewritten set Q. A chain of
mapWithState methods is used to update the n current states, which are also in the form
of DStream[(Ks, Vks)]. The Ks denotes the key of the aggregated projection query and Vks
denotes the value of its Ks.

4.2.3. Translating Continuous HIFUN Queries to SQL

The abstract definition of a query evaluation can be realized when the involved
dataset D is stored in an unbounded append-only relation table; and also, mapping this
abstract definition to the existing physical-level mechanism using the semantics of the
SQL exploiting group-by SQL queries of Spark Structured Streaming. The basic idea
in Structured Streaming is treating continuously arriving data as a table that is being
continuously appended. Structured Streaming runs in a micro-batch execution model as
well. Spark waits for a time interval and combines into batches all events that were received
during that interval. The mapping mechanism defines a query on the input table, as if it
were a static table, computing a result table that will be updated through the data stream.
Spark automatically converts this batch-like query to a streaming execution plan. This is
called incrementalization: Spark figures out what needs to be maintained to update the
result each time a new batch arrives. At each time interval, Spark checks for new rows in
the input table and incrementally updates the result. As soon as a micro-batch execution is
complete, the next batch is collected and the process is reapplied.

Algorithms 2021, 14, 149 11 of 19

Generic Evaluation Schema to SQL

In [30,31] it was already proven that HIFUN queries can be mapped to SQL group-by
queries. In general, for the query Q = (gA, mB, op), two cases are distinguished.

Case 1. The attributes A and B appear in the same table (e.g., T). In this case we can
obtain the answer of Q using the following group-by statement of SQL.

Select A, op(B) as ansQ(A) From T GroupBy A (3)

Case 2. The attributes A and B appear in two different tables (e.g., S and T). In this
case we can obtain the answer of Q using the following group-by statement of SQL.

Select A, op(B) as ansQ(A) From join(T, S) GroupBy A (4)

To this end, next we present examples of mapping analytic queries directly to SQL. We
shall use the context of the Figure 5 and we assume that the dataset is stored in the form of
a relation using the star schema shown in that figure. In general, a star schema includes one
or more fact tables, indexing a number of associated dimension tables. In our example, this
star schema consists of the fact table FT and two-dimensional tables: the dimensional table
DTBranch of the branch and the dimensional table DTProduct of the product. The edges of the
context are embedded in these three tables as functional dependencies that the tables must
satisfy, and the underlying attribute in each of these three tables in the key of the table.

Our implementation handles the above relation schema as follows: The fact table is
represented as an unbounded table containing the primary incoming streaming data, and
the dimensional tables DTBranch and DTProduct are represented as static tables which are
connected to the fact table. By using static dimensional tables, we avoid the stream-stream
joins. The problem of generating inner join results between the two data streams is that,
at any time, the view of the dataset is incomplete for both sides of the joining, making it
inefficient to find the matching values between two inputs data streams. Any row received
from the input stream can match with any future not yet received row from the other input
stream. Thus, the solution for this is to buffer the past input as a streaming state to match
every future input with past input and accordingly to generate join results. As such, our
implementation supports joins between a streaming and static relational table.

Figure 5. A context and its underlying data stored in the form of a relation schema.

In this setting, consider the query Q = (b, q, sum) in the context of Figure 5, asking for
totals by branch. In this query, the grouping and measuring attributes appear in the same
fact table. This query will be mapped to the following SQL query:

S el ec t Branch , sum(Quantity) As ansQ(Branch)
From FT
Group by Branch

Next we present another example. Consider again the context in Figure 5 and assume
we need to evaluate the following query Q = ((s ◦ p)× (c ◦ p), q, sum) asking for the totals
by supplier and category. In this query, the grouping attributes supplier and category

Algorithms 2021, 14, 149 12 of 19

appear different in the table from the measuring attribute quantity. We map Q to the
following SQL query over a star schema:

S el ec t Supplier , Category , sum(Quantity)
As ansQ(Supplier, Category)
From join (FT , DTProduct)
Group by Supplier , Category

In the Input Preparation step, the grouping attributes are selected, which are the
grouping attributes supplier and category and the measuring attribute quantity. The
attributes supplier and category appear in the dimensional table DTProduct so the fact table
FT and the dimensional table DTProduct are joined accordingly. The Grouping Partition
Construction is performed by the “group by” clause to group rows that have the same
attributes supplier and category. In Grouping Partition Reduction, the query operation sum
is applied to the measuring attribute quantity. The ‘ansQ(Supplier, Category)’ is a user
defined attribute and the query returns the answer of Q in the form of a table with two
attributes, Supplier× Category and ansQ(Supplier, Category).

Rewritings to SQL

In this section, we present a detailed description of how the evaluation mechanism
leverages these rules and an HIFUN rewritten set Q mapped to a physical-level mechanism
of Spark Structured Streaming, and the semantics of SQL when the evolving datasets are
stored in an unbounded append-only relation table.

Common Grouping and Measuring Rewriting Rule. In this rewriting rule, the SQL query is
created by customizing the reduction step of SQL group-by query by adding the aggregate
functions related to the n operations on the common measuring attribute, which appears
in the rewritten HIFUN Q set.

Common Grouping Rewriting Rule. In this rewriting, the SQL query is created similarly
to the previous rewriting rule. In the reduction step of the SQL group-by query, the
aggregate functions are added to the n operations for the n corresponding measuring
attributes—which appear in the rewritten HIFUN Q set.

Common Measuring and Operation Rewriting Rule and Basic Rewriting Rule. These
rewriting rules are not supported when Spark Structured Streaming is used as the physical-
level evaluation engine. Firstly, the evaluation of the the base query produces the base
table used to evaluate the next queries. Each one of the outer queries uses the base table to
produce the final answer. The above computations are achievable under the SQL semantics
by mapping the base HIFUN query to a SQL group-by query, and each one of the outer
queries also to SQL group-by queries. In the current version of Spark Structured Streaming,
multiple streaming aggregations (i.e., chain of aggregation on a streaming DataFrame) are
not supported yet.

5. Results

In this section, we describe the experiments that we conducted to verify the effec-
tiveness of the query rewriting rules implemented. The purpose is to verify the extent
to which the proposed incremental query mechanism with and without the rewriting
rules will result in a significant performance gain to the overall query evaluation. More
specifically, in our experiments, first we compared our incremental approach with the
batch processing approach to show the benefits that we can get for continuous queries
when evaluated incrementally to avoiding unnecessary query evaluations. We also present
further performance gains achieved through our proposed rewritings.

5.1. Setup and Datasets

For our experiments we used a cluster that consisted of four nodes, each equipped
with 38 cores at 2.2 GHz, 250 GB RAM and 1 TB storage. A synthetic dataset, 50 GB,
was split into 10 files of 5 GB each (80 million records). Our contribution in this paper
lies mainly in the definition of the query rewriting rules for the HIFUN language and

Algorithms 2021, 14, 149 13 of 19

their implementations in two versatile low-level configurations that demonstrate the
generality of the approach. As such, the experiments presented in this section only verify
the applicability of the whole approach. The source code, the dataset and the queries can
be found online (https://github.com/petrosze/ContHIFUN accessed on 8 May 2021).

Each dataset is represented as an RDD and each RDD was pushed into a queue and
treated as a batch of data in the DStream, and processed like a stream. To distribute the
data uniformly among all the cluster workers, the data follow a uniform distribution.
The following experiments were conducted in synthetic datasets stored in distributed
file system (HDFS). In the case of the MapReduce execution model, the source dataset
was provided in a single text file, and the analysis context of this dataset is depicted in
Figure 6, whereas in the case of the SQL execution model, the source dataset was structured
according to relational table, and the analysis context of this dataset is depicted in Figure 7.
The attribute values were produced following uniform distribution, achieving a workload
balance between all cluster nodes used.

Figure 6. Analysis context of the unstructured dataset.

Figure 7. Analysis context of the structured dataset.

5.2. Results

In order to evaluate the effectiveness of the incremental evaluation approach and the
benefits of query rewriting, we next present the two main focuses of our experimental
evaluation: incrementality and query rewriting.

5.2.1. Defining the Queries

Evaluation of CGMR Rule. In order to evaluate the Common Grouping and Measuring
Rewriting Rule, the grouping attribute g1 and the measuring attribute, m1 was used to create
a set Q of five queries with five different aggregation operations applicable to measuring
attribute m1. The query set Q is defined as follows:

Q = {(g1, m1, sum), (g1, m1, min), (g1, m1, max), (g1, m1, count), (g1, m1, avg)} (5)

The equivalent rewritten of Q by this rule is the following query:

Q = {(g1, m1), (sum, min, max, count, avg)} (6)

Evaluation of the CGR Rule. In order to evaluate the Common Grouping Rewriting Rule,
the grouping attribute g1 and five measuring attributes, m1 . . . m5 are used to create a set Q
of five queries with five different aggregation operations applicable to those measuring
attributes. The query set Q is defined as follows:

Q = {(g1, m1, sum), (g1, m2, min), (g1, m3, max), (g1, m4, count), (g1, m5, avg)} (7)

https://github.com/petrosze/ContHIFUN

Algorithms 2021, 14, 149 14 of 19

The equivalent rewritten of Q by this rule is the following query:

Q = {g1, (m1, sum), (m2, min), (m3, max), (m4, count), (m5, avg)} (8)

Evaluation of the CMOR Rule. In order to evaluate the Common Measuring and Operation
Rewriting Rule, the attributes g1 . . . g5 are used as grouping attributes, the attribute m1 is
used as a measuring attribute and the aggregation operation is a sum applied to measuring
attribute m1.

Q′ = {(g1, m1, sum), (g2, m1, sum), (g3, m1, sum), (g4, m1, sum), (g5, m1, sum)} (9)

The equivalent rewritten of Q by this rule is the following query:

Q′ = {(g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5, m1, sum),
(projG1 , (g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5, m1, sum), sum)
. . .
(projG5 , (g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5, m1, sum), sum)}

(10)

Evaluation of the BR Rule. We define the following set of queries:

Q = {(g11 ◦ g1, m1, sum), . . . , (g15 ◦ g1, m1, sum)} (11)

Q contains five queries, and all of them have the same distributive operation applicable
to the same measuring attribute m1. As described by the rewriting theory, Q can be
equivalently rewritten by the basic rewriting rule as follows:

Q′ = {(g11, (g1, m1, sum), sum), . . . , (g15, (g1, m1, sum), sum))} (12)

5.2.2. Evaluating Incrementality

We evaluated the effectiveness of the incremental approach, contrasting it to the batch
approach. The batch computation approach looks at the entire dataset when new data are
available to be processed. From this perspective, two different scenarios were evaluated:
In the first scenario, Q was executed by the evaluation of the included queries individually
(e.g., without rewriting), and in the second scenario, the rewritten set Q′ was executed as
defined by the rewritten theory. The incremental computation approach is more efficient
by examining only the new incoming data in the last time interval and incorporates the
increment in the result. From this perspective we evaluate the two scenarios again: the
first scenario required the execution of the Q; the second scenario required the execution of
rewritten Q′.

Figures 8 and 9 illustrate the evaluation times when Q and Q′ were executed using
the MapReduce execution model and the two different approaches; Figure 10 illustrates
the evaluation time when Q and Q′ are executed using the SQL execution model and the
two different approaches. For example, at time t + 3∆t, the batch computation approach
requires one to execute the query set Q or the rewritten set Q′, over all data generated
in range of t ≤ +3∆t. At time t + 3∆t, the incremental computation approach requires
one to execute the query set Q or the rewritten set Q′ only on data generated in range of
t + 2∆t ≤ t ≤ t + 3∆t, and then incorporates the increment into the aggregated result.

The experimental results presented in the figures demonstrate the effectiveness of our
incremental computation. As shown, as the dataset grows, the evaluation cost remains
stable independently of the overall increasing data size. On the other hand, when the
queries are evaluated over a batch data, the evaluation cost grows linearly to the size of the
input batch data. Furthermore, as shown, the execution time of the non-rewritten queries
is dramatically higher as the dataset increases, independently of the applicable rewriting
rule. However, when the rewritings are used, in total, querying consumes significantly less
execution time, exploiting the shared common attributes. In addition, we can observe that

Algorithms 2021, 14, 149 15 of 19

the execution times are similar to when the MapReduce and the SQL execution models are
used for the same rewritings (Figures 8 and 10).

Figure 8. Evaluation of CGMRR and CGRR when the MapReduce execution model is used over an
unstructured dataset.

Figure 9. Evaluation of CMORR and BRR when the MapReduce execution model is used over an
unstructured dataset.

Algorithms 2021, 14, 149 16 of 19

Figure 10. Evaluation of CGMRR and CGRR when the SQL execution model is used over an
structured dataset.

5.2.3. Evaluating Rewritings

In this experimental protocol we focused more on the effectiveness of the rewritings,
when the incremental processing approach was used to refresh previously generated
results. We also used the queries defined in previous experiment for each rewriting rule.
Firstly, we evaluated the non-rewritten set Q by running the query evaluation process
for it. We started by including only one query in Q, and gradually increasing the query
number to reach n = 5 queries. In this scenario, each included query in Q was executed
for each micro-batch individually, and we report the average execution time. Secondly, we
evaluated the execution of the rewritten set Q′ by starting again with one query (n = 1)
and gradually increasing the query number to n = 5. In this scenario, each included query
in Q′ is executed for each micro-batch, and the average execution time is reported.

Figures 11 and 12 illustrate the results for this series of experiments. As shown,
when Q was executed without rewritting, the execution cost increased as the number
of participating queries increased as well. Moreover, we observed that even with the
more queries participating in the rewritten set Q′, the execution cost remained the same.
The variation in the execution time between the rewriting rules arose due to the nature
of the queries included in the non-rewritten set Q and depends on the types of shared
common attributes.

The evaluation of CGMRR and GMRR demonstrates that the reduction of evaluation
cost was significant while the number of queries included in the query set increased.
This is because the grouping construction and grouping reduction steps were performed
once by applying the n operations, whereas in the case of the non-rewritten set, the
grouping construction and grouping reduction steps were executed as many times as the
number of queries included. The effectiveness of the CGORR and the BRR rewritings was
significant, as the number of included queries increased. The rewritten set Q′ consisted of
five queries and each one used the answer of the base query as its measure. To investigate
the effectiveness of the rewriting rule, we ran the experiments for the sets Q and Q′, starting
initially with one query and adding each time another one, till we reached a total number
of five queries to be executed each time. We noticed that as more queries participated in the
rewritten Q′, a significant improvement in the performance resulted due the exploitation
of the intermediate answers of each additional query.

Algorithms 2021, 14, 149 17 of 19

Figure 11. Evaluation of rewriting rules for unstructured datasets, while the number of queries in
the rewritten and non-rewritten set Q increases.

Figure 12. Evaluation of CGMRR and CGRR for structured datasets, while the number of queries in
the rewritten and the non-rewritten set Q increases.

6. Conclusions

In this paper, we leveraged the HIFUN language, while adding an incremental evalua-
tion mechanism using Spark Streaming. We presented an approach allowing the incremen-
tal updating of continuous query results, thereby preventing costly re-computation from
scratch. We also showed the additional benefits of query rewriting, enabled by the adoption
of the HIFUN language. The query rewriting rules can be implemented in the physical layer
as well, further benefiting the efficiency of query answering. We demonstrated experimen-
tally the considerable advantages gained by using the incremental evaluation—reducing
the overall evaluation cost using both the MapReduce implementation and the SQL one.
Our system provides a compact solution for big data analytics and can be extended to
support a big variety of dataset formats; its evaluation mechanisms work regardless of the
nature of the data.

Limitations and Future Work

As a next step we intend to extend our system to make it capable of low-latency
query processing. A critical aspect in real life applications is the evaluation of a query in
the millisecond low-latency processing mode of streaming called continuous mode. Our
implementation exploits stream processing capabilities through micro-batching. The main
disadvantage of this approach is that each query is evaluated on a micro-batch, which
needs to be collected and scheduled at regular intervals. This introduces latency. However,
in real world use cases, we want to analyze and detect interesting patterns almost instantly.

Algorithms 2021, 14, 149 18 of 19

The continuous processing mode which we intend to explore next attempts to overcome
this limitation by avoiding launches of periodic tasks and processes the incoming data
in real-time. However, applying our model to that setting is challenging and will require
further research. Finally, another limitation of our paper is the fact that real world data in
many cases have missing values and nulls which should be appropriately tackled, whereas
data distribution also plays an essential role in query efficiency. However, those topics are
orthogonal to our approach and fall outside the scope of our paper.

Author Contributions: Formal analysis, P.Z.; methodology, H.K. and N.S.; software, P.Z.; supervision,
N.S. and D.P.; writing—original draft, P.Z.; writing— review and editing, N.S. and D.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mello, B.; Rios, R.; Lira, C.; Prazeres, C. FoT-Stream: A Fog platform for data stream analytics in IoT. Comput. Commun. 2020,

164, 77–87. [CrossRef]
2. Kondylakis, H.; Dayan, N.; Zoumpatianos, K.; Palpanas, T. Coconut: sortable summarizations for scalable indexes over static and

streaming data series. VLDB J. 2019, 28, 847–869. [CrossRef]
3. Queiroz, W.; Capretz, M.A.; Dantas, M. An approach for SDN traffic monitoring based on big data techniques. J. Netw. Comput.

Appl. 2019, 131, 28–39. [CrossRef]
4. Carcillo, F.; Dal Pozzolo, A.; Le Borgne, Y.A.; Caelen, O.; Mazzer, Y.; Bontempi, G. SCARFF: A scalable framework for streaming

credit card fraud detection with spark. Inf. Fusion 2018, 41, 182–194. [CrossRef]
5. Banerjee, A.; Chakraborty, C.; Kumar, A.; Biswas, D. Chapter 5—Emerging trends in IoT and big data analytics for biomedical

and health care technologies. In Handbook of Data Science Approaches for Biomedical Engineering; Balas, V.E., Solanki, V.K., Kumar, R.,
Khari, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 121–152. [CrossRef]

6. Kondylakis, H.; Bucur, A.I.D.; Crico, C.; Dong, F.; Graf, N.M.; Hoffman, S.; Koumakis, L.; Manenti, A.; Marias, K.;
Mazzocco, K.; et al. Patient empowerment for cancer patients through a novel ICT infrastructure. J. Biomed. Inform. 2020,
101, 103342. [CrossRef]

7. Agathangelos, G.; Troullinou, G.; Kondylakis, H.; Stefanidis, K.; Plexousakis, D. Incremental Data Partitioning of RDF Data in
SPARK; Springer: Cham, Swizterland, 2018.

8. Kondylakis, H.; Plexousakis, D. Ontology Evolution in Data Integration: Query Rewriting to the Rescue. In Proceedings of
the Conceptual Modeling—ER 2011, 30th International Conference, ER 2011, Brussels, Belgium, 31 October–3 November 2011;
Volume 6998, Lecture Notes in Computer Science; Jeusfeld, M.A., Delcambre, L.M.L., Ling, T.W., Eds.; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 393–401. [CrossRef]

9. Pappas, A.; Troullinou, G.; Roussakis, G.; Kondylakis, H.; Plexousakis, D. Exploring Importance Measures for Summarizing
RDF/S KBs. In Proceedings of the Semantic Web—14th International Conference—ESWC 2017, Portorož, Slovenia, 28 May–1 June
2017; Part I; Volume 10249, Lecture Notes in Computer Science; pp. 387–403. [CrossRef]

10. Troullinou, G.; Kondylakis, H.; Stefanidis, K.; Plexousakis, D. Exploring RDFS KBs Using Summaries. In Proceedings of the
Semantic Web—ISWC 2018—17th International Semantic Web Conference, Monterey, CA, USA, 8–12 October 2018; Part I; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11136, pp. 268–284. [CrossRef]

11. Bolt, C.R. Hadoop: The Definitive Guide; OReilly Media, Inc.: Sebastopol, CA, USA, 2014.
12. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
13. Jakóbczyk, M.T. Practical Oracle Cloud Infrastructure; Springer: Berlin/Heidelberg, Germany, 2020.
14. Karimov, J.; Rabl, T.; Katsifodimos, A.; Samarev, R.; Heiskanen, H.; Markl, V. Benchmarking Distributed Stream Data Processing

Systems. In Proceedings of the 2018 IEEE 34th International Conference on Data Engineering (ICDE), Paris, France, 16–19 April
2018; pp. 1507–1518.

15. Zaharia, M.; Das, T.; Li, H.; Hunter, T.; Shenker, S.; Stoica, I. Discretized streams: Fault-tolerant streaming computation at scale. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, Farmington, PA, USA, 3–6 November 2013.

16. Armbrust, M.; Das, T.; Torres, J.; Yavuz, B.; Zhu, S.; Xin, R.; Ghodsi, A.; Stoica, I.; Zaharia, M. Structured Streaming: A Declarative
API for Real-Time Applications in Apache Spark. In Proceedings of the 2018 International Conference on Management of Data,
Houston, TX, USA, 10–15 June 2018.

17. Iqbal, M.; Soomro, T.R. Big Data Analysis: Apache Storm Perspective. Int. J. Comput. Trends Technol. 2015, 19, 9–14. [CrossRef]
18. Carbone, P.; Katsifodimos, A.; Ewen, S.; Markl, V.; Haridi, S.; Tzoumas, K. Apache Flink™: Stream and Batch Processing in a

Single Engine. IEEE Data Eng. Bull. 2015, 38, 28–38.

http://doi.org/10.1016/j.comcom.2020.10.001
http://dx.doi.org/10.1007/s00778-019-00573-w
http://dx.doi.org/10.1016/j.jnca.2019.01.016
http://dx.doi.org/10.1016/j.inffus.2017.09.005
http://dx.doi.org/10.1016/B978-0-12-818318-2.00005-2
http://dx.doi.org/10.1016/j.jbi.2019.103342
http://dx.doi.org/10.1007/978-3-642-24606-7_29
http://dx.doi.org/10.1007/978-3-319-58068-5_24
http://dx.doi.org/10.1007/978-3-030-00671-6_16
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.14445/22312803/IJCTT-V19P103

Algorithms 2021, 14, 149 19 of 19

19. Akidau, T.; Bradshaw, R.W.; Chambers, C.; Chernyak, S.; Fernández-Moctezuma, R.; Lax, R.; McVeety, S.; Mills, D.; Perry, F.;
Schmidt, E.; et al. The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale,
Unbounded, Out-of-Order Data Processing. Proc. VLDB Endow. 2015, 8, 1792–1803. [CrossRef]

20. Alami, K.; Maabout, S. A framework for multidimensional skyline queries over streaming data. Data Knowl. Eng. 2020,
127, 101792. [CrossRef]

21. Ramesh, S.; Baranawal, A.; Simmhan, Y. Granite: A distributed engine for scalable path queries over temporal property graphs. J.
Parallel Distrib. Comput. 2021, 151. [CrossRef]

22. Kvet, M.; Matiasko, K. Flower Master Index for Relational Database Selection and Joining; Springer: Cham, Switzerland, 2021;
pp. 181–202. [CrossRef]

23. Kvet, M.; Kršák, E.; Matiaško, K. Study on Effective Temporal Data Retrieval Leveraging Complex Indexed Architecture. Appl.
Sci. 2021, 11, 916. [CrossRef]

24. Dam, T.L.; Chester, S.; Nørvåg, K.; Duong, Q.H. Efficient top-k recently-frequent term querying over spatio-temporal textual
streams. Inf. Syst. 2021, 97, 101687. [CrossRef]

25. Dhont, M.; Tsiporkova, E.; Boeva, V. Layered Integration Approach for Multi-View Analysis of Temporal Data; Springer: Cham,
Switzerland, 2020; pp. 138–154. [CrossRef]

26. Babu, S.; Widom, J. Continuous queries over data streams. SIGMOD Rec. 2001, 30, 109–120. [CrossRef]
27. Franklin, A.; Gantela, S.; Shifarraw, S.; Johnson, T.R.; Robinson, D.J.; King, B.R.; Mehta, A.M.; Maddow, C.L.; Hoot, N.R.;

Nguyen, V.; et al. Dashboard visualizations: Supporting real-time throughput decision-making. J. Biomed. Inform. 2017,
71, 211–221. [CrossRef]

28. Laurent, D.; Lechtenbörger, J.; Spyratos, N.; Vossen, G. Monotonic complements for independent data warehouses. VLDB J. 2001,
10, 295–315. [CrossRef]

29. Ahmad, Y.; Kennedy, O.; Koch, C.E.; Nikolic, M. DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views.
Proc. VLDB Endow. 2012, 5, 968–979. [CrossRef]

30. Spyratos, N.; Sugibuchi, T. HIFUN—A high level functional query language for big data analytics. J. Intell. Inf. Syst. 2018,
51, 529–555. [CrossRef]

31. Spyratos, N.; Sugibuchi, T. A High Level Query Language for Big Data Analytics. Available online: http://publications.ics.forth.
gr/tech-reports/2017/2017.TR467_HiFu_Query_Language_Big_Data_Analytics.pdf (accessed on 8 May 2021).

32. Papadaki, M.E.; Spyratos, N.; Tzitzikas, Y. Towards Interactive Analytics over RDF Graphs. Algorithms 2021, 14, 34. [CrossRef]
33. Zervoudakis, P.; Kondylakis, H.; Plexousakis, D.; Spyratos, N. Incremental Evaluation of Continuous Analytic Queries in HIFUN.

In International Workshop on Information Search, Integration, and Personalization; Springer: Cham, Switzerland, 2019; pp. 53–67.
34. Garcia-Molina, H.; Ullman, J.D.; Widom, J. Database Systems—The Complete Book (International Edition); Pearson Education:

London, UK, 2002.
35. Le, D.; Chen, R.; Bhatotia, P.; Fetze, C.; Hilt, V.; Strufe, T. Approximate Stream Analytics in Apache Flink and Apache Spark

Streaming. arXiv 2017, arXiv:1709.02946.
36. Terry, D.; Goldberg, D.; Nichols, D.; Oki, B.M. Continuous queries over append-only databases. In Proceedings of the SIGMOD ’92,

San Diego, CA, USA, 3–5 June 1992.
37. Chen, J.; DeWitt, D.; Tian, F.; Wang, Y. NiagaraCQ: A scalable continuous query system for Internet databases. In Proceedings of

the SIGMOD ’00, Dallas, TX, USA, 16–18 May 2000.
38. Liu, L.; Pu, C.; Tang, W. Continual Queries for Internet Scale Event-Driven Information Delivery. IEEE Trans. Knowl. Data Eng.

1999, 11, 610–628.

http://dx.doi.org/10.14778/2824032.2824076
http://dx.doi.org/10.1016/j.datak.2020.101792
http://dx.doi.org/10.1016/j.jpdc.2021.02.004
http://dx.doi.org/10.1007/978-3-030-63872-6_9
http://dx.doi.org/10.3390/app11030916
http://dx.doi.org/10.1016/j.is.2020.101687
http://dx.doi.org/10.1007/978-3-030-65742-0_10
http://dx.doi.org/10.1145/603867.603884
http://dx.doi.org/10.1016/j.jbi.2017.05.024
http://dx.doi.org/10.1007/s007780100055
http://dx.doi.org/10.14778/2336664.2336670
http://dx.doi.org/10.1007/s10844-018-0495-6
http://publications.ics.forth.gr/tech-reports/2017/2017.TR467_HiFu_Query_Language_Big_Data_Analytics.pdf
http://publications.ics.forth.gr/tech-reports/2017/2017.TR467_HiFu_Query_Language_Big_Data_Analytics.pdf
http://dx.doi.org/10.3390/a14020034

	Introduction
	Related Work
	Preliminaries—The HIFUN Query Language
	Analysis Context
	Query Rewriting

	Methods
	Incremental Computation in HIFUN
	System Implementation
	Continuous HIFUN Queries over Micro-Batches
	Continuous HIFUN Queries Using MapReduce
	Translating Continuous HIFUN Queries to SQL

	Results
	Setup and Datasets
	Results
	Defining the Queries
	Evaluating Incrementality
	Evaluating Rewritings

	Conclusions
	References

