
algorithms

Article

No-Wait Job Shop Scheduling Using a Population-Based
Iterated Greedy Algorithm

Mingming Xu, Shuning Zhang and Guanlong Deng *

����������
�������

Citation: Xu, M.; Zhang, S.; Deng, G.

No-Wait Job Shop Scheduling Using a

Population-Based Iterated Greedy

Algorithm. Algorithms 2021, 14, 145.

https://doi.org/10.3390/a14050145

Academic Editors: Frank Werner and

Jean-Charles Billaut

Received: 2 April 2021

Accepted: 28 April 2021

Published: 30 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Key Laboratory of Cyber-Physical System and Intelligent Control in Universities of Shandong,
School of Information and Electrical Engineering, Ludong University, Yantai 264025, China;
hawkeagle57@163.com (M.X.); zhangshn0221@163.com (S.Z.)
* Correspondence: dglag@ldu.edu.cn

Abstract: When no-wait constraint holds in job shops, a job has to be processed with no waiting
time from the first to the last operation, and the start time of a job is greatly restricted. Using key
elements of the iterated greedy algorithm, this paper proposes a population-based iterated greedy
(PBIG) algorithm for finding high-quality schedules in no-wait job shops. Firstly, the Nawaz–Enscore–
Ham (NEH) heuristic used for flow shop is extended in no-wait job shops, and an initialization
scheme based on the NEH heuristic is developed to generate start solutions with a certain quality
and diversity. Secondly, the iterated greedy procedure is introduced based on the destruction
and construction perturbator and the insert-based local search. Furthermore, a population-based
co-evolutionary scheme is presented by imposing the iterated greedy procedure in parallel and
hybridizing both the left timetabling and inverse left timetabling methods. Computational results
based on well-known benchmark instances show that the proposed algorithm outperforms two
existing metaheuristics by a significant margin.

Keywords: no-wait; job shop; local search; iterated greedy; metaheuristics

1. Introduction

No-wait constraints widely exist in the steel-making industry (Pinedo [1]; Tang et al. [2]),
concrete manufacturing (Grabowski and Pempera [3]), chemical and pharmaceutical in-
dustries (Rajendran [4]), food industries (Hall and Sriskandarajah [5]), and so on. The job
shop problem with no-wait constraints is called the no-wait job shop scheduling problem
(NWJSP) and it differs from traditional job shop problem (JSP) a lot because of the no-
wait constraints. NWJSP has gained the increasing attention of researchers over decades.
With regard to its complexity, NWJSP is NP (non-deterministic polynomial time)-hard in
the strong sense (Lenstra et al. [6]). Sahni and Cho [7] proved that it is strongly NP-hard
even for two machine cases. Mascis and Pacciarelli [8] formulated it as an alternative graph
and presented several heuristics and a branch and bound method. Broek [9] formulated
the problem as a mixed integer program (MIP) and presented a branch and bound method.
Recently, Bürgy and Gröflin [10] provided a compact formulation of the problem and
proposed an effective approach based on optimal job insertion.

Due to the NP-hardness of NWJSP, the focus has been mostly on metaheuristic ap-
proaches for the problem. The pioneer work conducted by Macchiaroli et al. [11] decom-
posed the problem into two sub-problems and gave out a two-phase tabu search algorithm
that is superior to dispatching rules. Schuster and Framinan [12] presented a variable
neighborhood search (VNS) algorithm and a hybrid algorithm of simulated annealing
and generic algorithm (GASA). Later, Schuster [13] developed a fast tabu search (TS)
method, and Framinan and Schuster [14] proposed a complete local search with memory
(CLM). Zhu et al. [15] investigated the timetabling methods and developed a complete
local search with limited memory (CLLM), which was shown to be comparable to the VNS,
GASA and CLM. Zhu and Li [16] also proposed an efficient shift penalty-based timetabling

Algorithms 2021, 14, 145. https://doi.org/10.3390/a14050145 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a14050145
https://doi.org/10.3390/a14050145
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14050145
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14050145?type=check_update&version=2

Algorithms 2021, 14, 145 2 of 13

method and further put forward a modified complete local search with memory (MCLM).
Mokhtari [17] presented a neuro-evolutionary variable neighborhood search which is based
on the combination of an enhanced variable neighborhood search and an artificial neural
network. The proposed algorithm was shown to be applicable and effective for the problem.
Very recently, Aitzai et al. [18] proposed a branch and bound method and a particle swarm
optimization algorithm for the problem. They compared the proposed algorithms with
several heuristics but bypassed the other metaheuristics. Li et al. [19] improved the CLLM
and developed a complete local search with memory and variable neighborhood structure
(CLMMV) algorithm. The CLMMV was shown to have similar effectiveness to and better
efficiency than the CLLM. More recently, Sundar et al. [20] proposed a hybrid artificial bee
colony (HABC) algorithm and stated that the HABC outperforms the MCLM, as well as
the CLLM.

According to the decomposition scheme in Macchiaroli et al. [11], the NWJSP can be
decomposed into a timetabling problem and sequencing problem. The sequencing problem
is to find a processing sequence of an optimal schedule, whereas the timetabling problem
is to determine a feasible starting time for each job in the processing sequence. Using
this decomposition scheme, the NWJSP can be solved in a similar way as the flow shop
scheduling problem. As an effective and efficient procedure, the iterated greedy (IG) algo-
rithm originally presented by Ruiz and Stutzle [21] has been applied in various scheduling
environments, such as identical parallel machine scheduling [22], the distributed flow shop
scheduling problem [23], and the blocking flow shop scheduling problem [24]. The IG
has shown its unique potentials and advantages of fast convergence, good effectiveness,
and easy implementation. In this study, we try to introduce and adapt the IG for the NWJSP.
In order to enhance the diversity of the algorithm, we introduce a co-evolutionary scheme,
and present a population-based IG algorithm.

The rest of the paper is organized as follows. In Section 2, the NWJSP is formulated into
two sub-problems: the timetabling problem and the sequencing problem. Section 3 presents
the iterated greedy algorithm and the competitive co-evolutionary scheme. Section 4
analyzes the computational results. Finally, concluding remarks are given in Section 5.

2. No-Wait Job Shop Scheduling Problem (NWJSP) with Makespan Minimization
2.1. Problem Statement

The NWJSP involves a set of machines and a set of jobs which have to be processed
on the machines. Each job has its own processing route, namely its own sequence of
operations. Each operation is associated with a processing time and a processing machine.
The no-wait constraint holds for each job, which means no waiting time is allowed between
two consecutive operations of the same job. Besides, we have the following assumptions:
(1) all the jobs and machines are available at time zero; (2) at any time, a machine can
process at most one job, and a job can be processed on at most one machine; (3) preemption
is not allowed; (4) the set-up, release, and transfer time is incorporated in the processing
time; (5) no job is allowed to reenter previous machines.

The objective is to find a feasible schedule that minimizes the maximum completion
time of all jobs, namely the makespan.

2.2. Problem Formulation

In conformity with the description in Zhu and Li [16], the notations in Table 1 are used.
For two jobs Ji and Jj, let u and v be their two operations that are processed on the

same machine ({u, v} ∈ ξij). According to the no-wait constraint, the completion time of
operation u and v is ti + Piu and tj + Pjv, respectively. Operation u is either anterior or
posterior to operation v. Therefore, we have tj + Pjv − pjv ≥ ti + Piu or ti + Piu − piu ≥
tj + Pjv, which is equivalent to:

tj − ti ≥ Piu − Pjv + pjv or ti − tj ≥ Pjv − Piu + piu (1)

Algorithms 2021, 14, 145 3 of 13

Table 1. Notations used throughout the paper.

Notation. Description Notation Description

m number of machines ti start time of Ji
n number of jobs π = (π[1], . . . , π[n]) job permutation

M = {M1, M2, . . . , Mm} set of m machines t[i] start time of π[i]
J = {J1, J2, . . . , Jn} set of n jobs ok

i operation of Ji on Mk
oi,u u-th operation of Ji pk

i processing time of ok
i

Mi,u machine on which oi,u is processed Si,j start time difference set
pi,u processing time of oi,u Cmax(π) makespan of π

Pi ,u = ∑u
v=1 pi,v

cumulated processing time of Ji when
oi,u is finished STπ = (t[1], . . . , t[n], Cmax(π)) start time table of π

ξi,j = {(u,v)| Mi ,u = Mj,v} pairs of operations processed on the
same machine Pk

i
cumulated processing time of Ji

when ok
i is finished

Li total processing times of Ji

Using the above condition (1), the problem with the makespan criterion can be de-
scribed as follows:

mintn+1s.t.tn+1 − ti ≥ Li for all i ∈ {1, . . . , n} (2)

ti ≥ 0 for all i ∈ {1, . . . , n} (3)

tj − ti ≥ Piu − Pjv + pjv or ti − tj ≥ Pjv − Piu + piufor all {u, v} ∈ ξij, i < j, i, j ∈ {1, . . . , n}
(4)

tn+1 is the start time of a dummy job, representing the makespan. Constraint (3) means that
each job starts after time zero. Constraint (4) guarantees that the no-wait requirement is
satisfied for any two jobs. Note that the number of constraint (4) is reduced by using i < j
instead of i 6= j.

For the above operation pair {u, v} ∈ ξij, let Mk denote the same machine of operations
u and v, then Piu, Pjv, piu, pjv mean the same as Pk

i , Pk
j , pk

i , pk
j , respectively. Condition (1)

can be rewritten as:

tj − ti ∈
(
−∞, Pk

i − Pk
j − Pk

i

]
∪
[

Pk
i − Pk

j + Pk
j ,+∞

)
(5)

For two jobs Ji and Jj, if their start time difference tj − ti satisfies condition (5),
then these two jobs do not conflict on machine Mk.

Obviously, the start times ti and tj are feasible if and only if jobs Ji and Jj do not
conflict on all machines, which means that tj − ti satisfies condition (5) for all machines Mk
(k = 1, 2, . . . , m). Therefore, constraint (4) can be described as tj − ti ∈ Fij, where Fij is an
interval set with the feasible values of tj − ti, obtained by:

Fij =
k≤m
∩

k=1

(
−∞, Pk

i − Pk
j − Pk

i

]
∪
[

Pk
i − Pk

j + Pk
j ,+∞

)
(6)

With the above notations, the NWJSP with the makespan criterion is further formu-
lated as follows:

mintn+1s.t.tn+1 − ti ≥ Li for all i ∈ {1, . . . , n} (7)

ti ≥ 0 for all i ∈ {1, . . . , n} (8)

tj − ti ∈ Fij for all i < j, i, j ∈ {1, . . . , n} (9)

Li and all Fij can be computed in advance. According to Equation (6), all Fij can be
computed in time O(n2mlogm). Fij is an interval set with at most m + 1 intervals.

The existing effective approaches for the problem usually decompose it into the se-
quencing and timetabling sub-problems. The purpose of the sequencing sub-problem
is to find a job sequence, denoted here as π∗ = (π∗[1], . . . , π∗[n]), that generates a sched-
ule minimizing the makespan. Clearly, the search space of the sequencing sub-problem

Algorithms 2021, 14, 145 4 of 13

has n! solutions. The purpose of the timetabling sub-problem is to find a timetable,
STπ = (t[1], . . . , t[n], Cmax(π)), with a minimum Cmax(π) based on a given job sequence
π = (π[1], . . . , π[n]).

2.3. Timetabling Methods

There are several timetabling methods to determine a feasible schedule from a pro-
vided job permutation. The combinations of different timetabling methods and different
sequencing algorithms are extensively studied by Samarghandi et al. [25]. They found that
complicated methods are not necessarily superior to simple methods, and some simpler
methods prove to be more effective. Deng et al. [26] investigated several timetabling meth-
ods for the problem with total flow time criterion and found that the left timetabling and
inverse left timetabling methods are more effective when the algorithm for the sequenc-
ing problem is run with the same computational efforts. In the left timetabling method,
we set t[1] = 0, and compute the minimum t[i] successively for i = 2, . . . ,n, subjected to
(1) t[i] ≥ 0 and (2) π[i] does not conflict with π[j] for all j < i. The inverse left timetabling
method is the same as the left timetabling method except that it is performed on the inverse
instance. The inverse left timetabling method is based on the fact that a solution for the
inverse instance is also applicable for the original instance (see more in Schuster [13] and
Zhu et al. [15]).

As stated above, tj − ti ∈ Fi,j means the start times of Jj and Ji are feasible. Let
Si,j = [0,+∞) ∩ Fi,j, then tj − ti ∈ Si,j means the start times of Jj and Ji are feasible
and Jj starts not earlier than Ji. All Fi,j and Si,j can be computed in advance with time
complexity O(n2m log m). Without loss of generality, assume that the permutation is
π = (J1, J2, . . . , Jn). The left timetabling of π utilizes all the precomputed S1,j (1 < j) and
Fi,j (1 < i < j). First let t1 = 0. Then tj is computed successively from j = 2 to j = n. For job
Jj, with the already computed ti (i < j), the steps to compute tj is designed as follows.

Step 1: set tj − t1 as the minimum value that satisfies the first interval of S1,j.
Step 2: check Fj−1,j, . . . , F2,j, S1,j successively. When checking Fi,j (i > 1) or Si,j (i = 1),

if the incumbent tj − ti does not satisfy any interval of Fi,j (i > 1) or Si,j (i = 1), augment
tj to make it satisfied and then check Fj−1,j, . . . , F2,j, S1,j successively again. This step is
repeated until tj − ti satisfies all the Fj−1,j, . . . , F2,j, S1,j.

Since there are at most m + 1 intervals in Fi,j or Si,j, when the worst case happens,
to compute tj needs time complexity O(mj2), and to compute all the tj (j = 1, . . . , n) needs
time complexity O(mn3), which results in the worst case time complexity O(mn3) for the
left timetabling. According to Deng et al. [26], the above procedure is effective for the left
timetabling method and inverse left timetabling method.

3. Population-Based Iterated Greedy Algorithm

In this section, we try to introduce and adapt the IG for the NWJSP. We first develop
an IG algorithm as a combination of a perturbator and an insertion-based local search.
Thereafter, we introduce a co-evolutionary scheme and present a population-based IG
(PBIG) algorithm. Most of the algorithms in the existing studies apply one timetabling
method, whereas the PBIG in this study uses both the left timetabling and inverse left
timetabling methods to enhance the quality of schedule solutions.

3.1. Iterated Greedy Procedure

In the framework of IG for permutation flow shop scheduling problem (PFSP), the in-
cumbent solution is updated by iterating over three phases. Firstly, the destruction and
construction (DC) operator is used as a perturbator to generate a candidate solution usually
different from the incumbent solution. Then an iterative improvement local search is
applied to the candidate solution and a new solution is obtained. Finally, an acceptance
criterion decides whether the new solution will replace the incumbent one. In this paper,
these phases are applied to NWJSP as follows.

Algorithms 2021, 14, 145 5 of 13

3.1.1. Destruction and Construction

The DC operator consists of two phases: destruction phase and construction phase.
In destruction phase, d jobs are randomly selected, removed from the incumbent permuta-
tion π. Then in the construction phase, all the deleted jobs are reinserted, one by one, into π
to construct a complete permutation. The procedure of the DC is shown in Algorithm 1,
where the final πF is the candidate solution found by the DC.

Algorithm 1. The destruction and construction (DC) operator.

1: choose d unrepeated jobs s1, . . . , sd randomly, delete them from π, and a sequence πF with n – d jobs is
obtained.
2: for i from 1 to d
3: insert si into the n – d + i positions of πF, evaluate the obtained n – d + i sequences, and replace πF with
the best one.
4: endfor.

3.1.2. Local Search

The local search is performed on the candidate solution found by the DC. In the
local search of the IG algorithm by Ruiz and Stutzle [21], a job s is extracted from the
permutation π and inserted into the other n − 1 possible positions. Let πs

binsert denote the
permutation of the best insert move, namely the permutation resulting in the best makespan
among the n − 1 permutations. If πs

binsert is better than π, π is replaced with πs
binsert.

The process is then repeated for another job, and it terminates when no improvement
occurs for all jobs. Deng et al. [26] improved this local search by avoiding redundant
search, and developed insert-based local search (IBLS). Here we introduce the IBLS for the
makespan criterion. The procedure of the IBLS is shown in Algorithm 2. The IBLS employs
a random permutation at the very beginning to make the local search more stochastic.

Algorithm 2. Insertion-based local search (IBLS).

1: πR = a permutation generated randomly
2: i = 0, h = 1
3: while (i < n)
4: let s = πR[h]
5: find πs

binsert
6: if (πs

binsert is better than π)
7: π = πs

binsert
8: i = 1
9: else
10: i = i + 1
11: endif
12: h = (h + 1) % n
13: endwhile

3.2. Initialization

Since the PBIG is a pullulation-based algorithm, there is a population with p solutions
evolving in the algorithm. Each solution is performed with the IG procedure. The Nawaz–
Enscore–Ham (NEH) heuristic (Nawaz et al. [27]) has been shown to be one of the most
effective heuristics for flow shop problems, and it has been extensively utilized to generate
initial solutions for metaheuristics for the flow shop problems. The NEH heuristic firstly
sequences the jobs in non-increasing order of the total processing time on all the machines.
Then it constructs a partial solution by taking into consideration the first two jobs. Finally,
a complete solution is constructed by inserting these jobs one by one into the current
partial solution.

To adapt the NEH heuristic for NWJSP, the evaluation of a partial sequence in NWJSP
is different from that in PFSP. For a partial sequence, here the timetabling method is applied
to construct a partial time table as a partial solution. With this, the NEH heuristic is
described as follows.

Algorithms 2021, 14, 145 6 of 13

Step 1: sequence the jobs in non-increasing order of the total processing time on all the
machines and obtain a priority job order ρ = (ρ[1], . . . , ρ[n]). Let partial sequence σ = (ρ[1])
and k = 2.

Step 2: insert job ρ(k) to all the possible k positions of σ and obtain k tentative partial
sequences. Evaluate these partial sequences by applying the timetabling method, replace σ
with the partial sequence that results in the minimum makespan.

Step 3: Let k = k + 1. If k ≤ n, go to step 2; otherwise σ is the final permutation.
To employ the NEH heuristic to generate a random solution with good quality, we use

a random job permutation as job order in the first step, and develop a variant of the NEH
heuristic, called NEH_RAN. It should be noted that both the left timetabling and inverse
left timetabling methods can be used in the above NEH heuristic and its variants. In other
words, the heuristic can be applied with the left timetabling for the original instance to
obtain a solution, and it can also be applied with the inverse timetabling for the inverse
instance to obtain another solution.

To take advantage of both the left timetabling and inverse left timetabling methods,
both methods are applied in the p IG procedures. A bool vector md = (md(1), . . . , md(p)) is
designed to indicate the timetabling method for the p IG procedures. md(k) = true means
that the k-th IG procedure is performed with the left timetabling, otherwise it is performed
with the inverse left timetabling. md is initialized in a form of (true, false, true, false, . . .).
Then, the p initial solutions of the p IG procedures are initialized as follows.

The first is initialized by the NEH heuristic using the left timetabling, and the second
is initialized by the NEH heuristic using the inverse left timetabling. The remaining p − 2
initial solutions are initialized by the NEH_RAN using the inverse left timetabling (if the
md(k) value is true) or using the inverse left timetabling (if the md(k) value is false). Such an
initialization strategy not only takes advantage of both the timetabling methods, but also
constructs the initial start solutions with both quality and diversity.

3.3. Competitive Co-Evolutionary Scheme

Three best solutions, πL, πI and πG, are stored together in the algorithm. πL is the
best solution found by all IG procedures with respect to left timetabling method, while
πI is the best solution found by all IG procedures with respect to inverse left timetabling
method. πG is the better of πL and πI, namely the global best solution found so far. πL, πI
and πG are initialized based on the p initial solutions.

After the p initial solutions are generated, the p IG procedures go into iteration simul-
taneously. Each IG procedure evolves according to its own timetabling method, either
left timetabling or inverse left timetabling. It can be easily inferred that as the evolution
proceeds, the incumbent solutions found by the IG algorithms are probably not the same,
which means some of the incumbent solutions may be relatively better than others. There-
fore, a reasonable assumption is that when an iteration is accomplished, some advantage
should be taken of the relatively better solutions. Based on this assumption, the tour-
nament selection is introduced as a competitive strategy. In the tournament selection,
firstly, three solutions are randomly selected, and then the worst one is replaced with a
perturbation solution which is generated by performing the DC on πL or πI with parameter
D. Let πk (k = 1, . . . , p) denote the incumbent solution of the k-th IG procedure, and let
mdbest denote the bool value indicating the timetabling method for πG. The competitive
strategy is illustrated in Algorithm 3, where rand is a real number randomly generated
in [1]. Note that mdbest = true means that πG is the same as πL, otherwise it is the same as πI.
The perturbation solution is generated based on the global solution πG with probability pb.
Considering that the global solution πG should be given more chances than the other best
solution, the suggested value of pb are between 0.5 and 1.0.

Algorithms 2021, 14, 145 7 of 13

Algorithm 3. Competitive Strategy.

1: randomly select three solutions from all and find the worst one.
2: if (rand < pb)
3: πC := πG
4: md(k*) := mdbest
5: else if (mdbest)
6: πC := πL
7: md(k*) := true
8: else
9: πC := πI
10: md(k*) := false
11: endif
12: endif
13: perform DC on πC with parameter D and obtain a perturbation solution πC∗

14: πk∗ := πC∗

3.4. Procedure of the Population-Based Iterated Greedy (PBIG) Algorithm

Since the details of all components of the PBIG have been given, the whole compu-
tational procedure is outlined in Algorithm 4. Such an algorithm is expected to solve the
NWJSP with the makespan criterion effectively and efficiently. It should be noted that
although the PBIG in this study has an analogous framework with the population-based
iterated greedy (denoted PBIG_D here) algorithm in [26], they are different in several
facets. Firstly, the PBIG in this study is applied to the makespan criterion, whereas the
PBIG_D is designed for the total flow time criterion. Secondly, different optimization
criteria cause different characteristics for the NWJSP, including the distribution features of
the solutions and the effects of timetabling methods. Therefore, the PBIG uses both the left
timetabling and inverse left timetabling methods, whereas the PBIG_D only employs the
left timetabling method. Lastly, the PBIG contains a newly-designed competitive scheme,
where the perturbation solution is generated based on a solution with either of the two
timetabling methods, whereas in the competitive mechanism of the PBIG_D, the shaking
solution is simply generated from the best solution found so far.

Algorithm 4. Procedure of the PBIG.

1: set parameters d, p, D, pb.
2: initialize πk (k = 1, . . . , p), πL, πI, πG, md, mdbest, Temp.
3: while (not termination)
4: for (each πk) //perform each IG procedure
5: perform the DC operator on πk and then the IBLS, and obtain a new solution π′k . If π′k is better
than πk, then let πk := π′k and update πL, πI, πG, mdbest if possible.
6: endfor
7: perform competitive strategy.
8: endwhile

4. Computational Results and Comparisons

Computational experiments are performed on the following well-known benchmark
instances: ft06, ft10, ft20 (Fisher and Thompson [28]), orb01-10 (Applegate and Cook [29]),
abz5-9 (Adams et al. [30]), la01-40 (Lawrence [31]), and swv01-20 (Storer et al. [32]). The al-
gorithm is programmed in C++ language and the running environment is a PC with Intel
Core(TM) i5-6200 2.3 GHz processor. The acceleration method for insert neighborhood
in [33] is used in order to save computational efforts. The following relative percentage
deviation (RPD) is calculated to indicate the effectiveness:

RPD =
CALG − CREF

CREF × 100 (10)

where CALG is the solution obtained by the tested algorithm, and CREF is the reference
solution. In this study, we use the same reference solution as in [16,20].

Algorithms 2021, 14, 145 8 of 13

4.1. Calibration of the PBIG Algorithm

There are four parameters in total to calibrate for the PBIG, namely p, d, pb, and D.
A larger Design of Experiments (DOE) [34] is carried out based on the following factor: (1)
parameter p tested at four levels: 4, 6, 8, 10; (2) parameter d tested at four levels: 2, 4, 6, 8;
(3) parameter pb tested at four levels: 0.6, 0.7, 0.8, 0.9; (4) parameter D tested at four levels:
2, 4, 6, 8. We select the following seven instances with different sizes from each other: la06,
la11, la21, la26, la31, la36, and swv01. Each instance is solved by the algorithm for each
combination of the factors with five independent replications. The average RPD (ARPD)
obtained by the algorithm is calculated as a response variable. The stopping criterion is
the elapsed CPU time not less than 6 mn2 milliseconds (ms). The multi-factor Analysis of
Variance (ANOVA) technique is used to analyze the computational results. The ANOVA
results are shown in Table 2. It can be seen from Table 2 that the parameters p, d, and D are
statistically significant, whereas the parameter pb is not. The means plots of these factors,
together with least significant difference (LSD) 95% confidence intervals, are illustrated
in Fig. 1. Recall that if the LSD intervals for two means are not overlapping, then the
difference between the two means is statistically significant.

Table 2. Analysis of variance (ANOVA) results for the calibration.

Source Sum of Squares Df Mean Square F-Ratio p-Value

MAIN EFFECTS
A: p 54.9931 3 18.3310 16.8500 0.0000
B: d 343.396 3 114.465 105.220 0.0000

C: pb 5.45246 3 1.81749 1.67000 0.1737
D: D 142.747 3 47.5825 43.7400 0.0000

E: instance 7962.73 6 1327.12 1219.90 0.0000
REDIDUAL 9797.72 8941 1.09582

TOTAL (CORRECTED) 18307.0 8959

Figure 1 suggests that for the values of parameter p, 8 is statistically better than 4 and
6, although its difference from 10 is not significant. For the values of parameter d, 4 is
statistically better than 2 and 8. The values 6 and 8 are relatively better than 2 and 4 for
the parameter D, while no statistical significance is found for the parameter pb. Finally,
the parameters of the algorithm are set as p = 8, d = 4, pb = 0.7, and D = 6.

Algorithms 2021, 14, x FOR PEER REVIEW 10 of 15

Figure 1. Means plot for the parameters with least significant difference (LSD) 95% confidence
intervals.

4.2. Comparisons with Other Metaheuristics
Among the metaheuristics developed for the NWJSP in the literature, the MCLM [16]

and the HABC [18] algorithms are two state-of-the-art approaches. Therefore, these two
algorithms are used to compare with the proposed PBIG in this subsection. We bypassed
the other algorithms either because it provided a low-level performance or because it was
hard to compare with the PBIG due to different performance indexes. Like the MCLM and
HABC algorithms, the PBIG is applied to 22 small instances and 40 large instances with
20 replications. It should be noted that the MCLM was implemented in Java on a Pentium
4 processor and its average central processing unit (CPU) time was 6.55 s for the small
instances and 654.48 s for the large instances, while the HABC was implemented in C on
an identical processor and its average CPU time was 4.63 and 570.40 s for the small and
large instances, respectively. Both the MCLM and the HABC adopted a stopping criterion
determined by the current results found by the algorithm, and thus the computational
time of the algorithm was not controllable. Such kind of stopping criterion makes it diffi-
cult to compare the algorithms in a fair way. Take instance Swv09 as an example, the av-
erage CPU time of the MCLM was 448 s whereas that of the HABC was 1531.08 s, and it
was difficult to determine which algorithm was better although the RPD results of the
MCLM were worse than those of the HABC. For this reason, the stopping criterion of the
PBIG was set as the elapsed CPU time not less than 3 mn2 ms for the small instances and
60 mn2 ms for the large instances to facilitate the comparisons under the same criterion by
future researchers. Using this stopping criterion, the PBIG required less average CPU time
than the MCLM and HABC. We adopt the original results from [16,18] and do not reim-
plement the MCLM and HABC. The computational results are given in Tables 3 and 4 for
the small and large instances, respectively. In Tables 3 and 4, TA denotes the average CPU
time (in seconds) of 20 runs. Best denotes the best makespan value among 20 runs for the
corresponding algorithm. RPDB denotes the RPD value of the Best. ARPD denotes the av-
erage RPD value over 20 runs. Best results among the three algorithms are shown in bold
for Best, RPDB, and ARPD. NA denotes that the value was not provided in the original
results. The column noted as BKS shows the reference solution used in the RPD. Note that
the BKS values in Table 3 are also optimal solutions of the small instances.

Figure 1. Means plot for the parameters with least significant difference (LSD) 95% confidence intervals.

4.2. Comparisons with Other Metaheuristics

Among the metaheuristics developed for the NWJSP in the literature, the MCLM [16]
and the HABC [18] algorithms are two state-of-the-art approaches. Therefore, these two
algorithms are used to compare with the proposed PBIG in this subsection. We bypassed
the other algorithms either because it provided a low-level performance or because it was

Algorithms 2021, 14, 145 9 of 13

hard to compare with the PBIG due to different performance indexes. Like the MCLM and
HABC algorithms, the PBIG is applied to 22 small instances and 40 large instances with
20 replications. It should be noted that the MCLM was implemented in Java on a Pentium
4 processor and its average central processing unit (CPU) time was 6.55 s for the small
instances and 654.48 s for the large instances, while the HABC was implemented in C on
an identical processor and its average CPU time was 4.63 and 570.40 s for the small and
large instances, respectively. Both the MCLM and the HABC adopted a stopping criterion
determined by the current results found by the algorithm, and thus the computational time
of the algorithm was not controllable. Such kind of stopping criterion makes it difficult to
compare the algorithms in a fair way. Take instance Swv09 as an example, the average CPU
time of the MCLM was 448 s whereas that of the HABC was 1531.08 s, and it was difficult
to determine which algorithm was better although the RPD results of the MCLM were
worse than those of the HABC. For this reason, the stopping criterion of the PBIG was set as
the elapsed CPU time not less than 3 mn2 ms for the small instances and 60 mn2 ms for the
large instances to facilitate the comparisons under the same criterion by future researchers.
Using this stopping criterion, the PBIG required less average CPU time than the MCLM
and HABC. We adopt the original results from [16,18] and do not reimplement the MCLM
and HABC. The computational results are given in Tables 3 and 4 for the small and large
instances, respectively. In Tables 3 and 4, TA denotes the average CPU time (in seconds)
of 20 runs. Best denotes the best makespan value among 20 runs for the corresponding
algorithm. RPDB denotes the RPD value of the Best. ARPD denotes the average RPD value
over 20 runs. Best results among the three algorithms are shown in bold for Best, RPDB,
and ARPD. NA denotes that the value was not provided in the original results. The column
noted as BKS shows the reference solution used in the RPD. Note that the BKS values in
Table 3 are also optimal solutions of the small instances.

Table 3. Results for the modified complete local search with memory (MCLM), hybrid artificial bee colony (HABC) and
population-based iterated greedy (PBIG) on the small instances.

Instance. n, m BKS MCLM HABC PBIG

RPDB ARPD TA(s) RPDB ARPD TA(s) RPDB ARPD TA(s)

Ft06 6, 6 73 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.65
La01 10, 5 971 0.00 0.00 4.55 0.41 0.41 0.78 0.00 0.02 1.50
La02 10, 5 937 0.00 0.00 7.60 2.56 2.56 1.41 0.00 0.00 1.50
La03 10, 5 820 0.00 0.00 3.10 0.00 0.00 0.70 0.00 0.00 1.50
La04 10, 5 887 0.00 0.00 6.25 0.00 0.00 0.87 0.00 0.00 1.50
La05 10, 5 777 0.51 0.90 3.90 0.51 0.51 1.14 0.00 0.00 1.50
Ft10 10, 10 1607 0.00 0.00 7.85 0.00 0.00 9.86 0.00 0.00 3.00

Orb01 10, 10 1615 0.00 0.00 6.65 0.00 0.00 8.00 0.00 0.00 3.00
Orb02 10, 10 1485 2.16 2.16 6.70 0.00 0.00 6.86 0.00 0.00 3.00
Orb03 10, 10 1599 0.00 0.00 13.75 0.00 0.00 10.07 0.00 0.00 3.00
Orb04 10, 10 1653 0.00 0.12 7.85 0.00 0.00 5.28 0.00 0.00 3.00
Orb05 10, 10 1365 0.00 0.00 8.50 0.37 0.37 4.77 0.15 0.15 3.00
Orb06 10, 10 1555 0.00 0.00 3.55 0.00 0.00 5.76 0.00 0.00 3.00
Orb07 10, 10 689 0.00 0.00 7.25 NA NA NA 0.00 0.00 3.00
Orb08 10, 10 1319 0.00 0.00 6.40 0.00 0.00 8.99 0.00 0.00 3.00
Orb09 10, 10 1445 0.00 0.00 4.25 0.00 0.28 4.10 0.00 0.00 3.00
Orb10 10, 10 1557 0.00 0.00 11.85 0.00 0.00 5.51 0.00 0.00 3.00
La16 10, 10 1575 1.84 1.84 5.65 0.00 0.00 5.43 0.00 0.00 3.00
La17 10, 10 1371 0.00 0.12 11.85 0.00 0.00 4.62 0.00 0.00 3.00
La18 10, 10 1417 2.82 2.82 6.15 0.00 5.22 7.13 0.00 0.00 3.00
La19 10, 10 1482 0.00 0.61 5.00 0.00 0.43 3.44 0.00 0.00 3.00
La20 10, 10 1526 1.31 1.31 5.40 0.00 0.00 3.00 0.00 0.00 3.00

Average 0.39 0.45 6.55 0.23 0.47 4.63 0.01 0.01 2.55

Algorithms 2021, 14, 145 10 of 13

Table 4. Results for the MCLM, HABC and PBIG on the large instances.

Instance n, m BKS MCLM HABC PBIG

Best RPDB ARPD TA(s) Best RPDB ARPD TA(s) Best RPDB ARPD TA(s)

La06 15, 5 1248 1248 0.00 0.75 90.00 1248 0.00 0.00 39.99 1248 0.00 0.00 67.50
La07 15, 5 1172 1178 0.51 2.46 83.00 1172 0.00 0.92 90.19 1172 0.00 0.44 67.50
La08 15, 5 1244 1244 0.00 0.47 80.00 1244 0.00 0.15 85.63 1244 0.00 0.48 67.51
La09 15, 5 1358 1365 0.52 0.73 106.00 1362 0.29 0.67 34.43 1362 0.29 0.61 67.50
La10 15, 5 1287 1287 0.00 0.04 69.00 1294 0.54 0.70 65.42 1294 0.54 0.84 67.50
La11 20, 5 1671 1635 −2.15 −0.58 439.00 1627 −2.63 −1.97 259.37 1621 −2.99 −1.08 120.02
La12 20, 5 1452 1429 −1.58 0.57 593.00 1434 −1.24 0.00 168.97 1425 −1.86 0.17 120.02
La13 20, 5 1624 1605 −1.17 −0.15 303.00 1580 −2.71 −1.47 222.40 1582 −2.59 −0.09 120.02
La14 20, 5 1691 1648 −2.54 −1.16 314.00 1640 −3.02 −2.24 156.58 1640 −3.02 −1.96 120.02
La15 20, 5 1694 1685 −0.53 1.09 424.00 1679 −0.89 −0.09 240.56 1677 −1.00 0.35 120.02
La21 15, 10 2048 2048 0.00 0.11 78.00 2043 −0.24 0.27 71.42 2043 −0.24 −0.04 135.01
La22 15, 10 1887 1902 0.80 0.99 142.00 1852 −1.85 −1.12 91.66 1852 −1.85 −1.19 135.01
La23 15, 10 2032 2022 −0.49 1.47 50.00 2032 0.00 0.71 120.56 2032 0.00 0.14 135.01
La24 15, 10 2015 2015 0.00 0.77 98.00 1994 −1.04 −0.02 97.64 1994 −1.04 −0.30 135.01
La25 15, 10 1917 1930 0.68 2.07 71.00 1906 −0.57 −0.57 92.53 1906 −0.57 −0.57 135.01
La26 20, 10 2553 2532 −0.82 1.91 349.00 2506 −1.84 0.30 223.46 2506 −1.84 1.66 240.02
La27 20, 10 2747 2715 −1.17 0.28 388.00 2674 −2.66 −2.62 154.83 2673 −2.69 −2.19 240.02
La28 20, 10 2624 2560 −2.44 1.77 313.00 2560 −2.44 0.62 197.33 2581 −1.64 0.77 240.03
La29 20, 10 2489 2367 −4.90 −2.48 445.00 2389 −4.02 −2.70 531.94 2405 −3.37 −2.18 240.03
La30 20, 10 2665 2544 −4.54 −1.51 376.00 2452 −7.99 −3.00 248.25 2452 −7.99 −3.50 240.03
La31 30, 10 3745 3575 −4.54 −1.40 3099.00 3592 −4.09 −2.60 1716.18 3479 −7.10 −2.35 540.16
La32 30, 10 4028 3835 −4.79 0.56 3314.00 3913 −2.86 −0.35 1590.40 3877 −3.75 −0.68 540.19
La33 30, 10 3749 3574 −4.67 −1.52 3003.00 3529 −5.87 −3.37 1544.34 3560 −5.04 −2.51 540.18
La34 30, 10 3824 3684 −3.66 −0.88 3375.00 3610 −5.60 −2.76 1405.05 3615 −5.47 −2.55 540.20
La35 30, 10 3760 3698 −1.65 1.27 3083.00 3593 −4.44 −0.41 1797.55 3687 −1.94 0.43 540.19
La36 15, 15 2685 2736 1.90 4.98 189.00 2685 0.00 0.29 76.42 2685 0.00 0.00 202.51
La37 15, 15 2962 2962 0.00 0.11 93.00 2938 −0.81 0.98 184.41 2831 −4.42 0.06 202.51
La38 15, 15 2617 2525 −3.52 −1.73 91.00 2525 −3.52 −1.08 311.66 2525 −3.52 −2.80 202.51
La39 15, 15 2697 2729 1.19 2.43 116.00 2703 0.22 0.88 146.87 2687 −0.37 0.34 202.51
La40 15, 15 2594 2580 −0.54 −0.54 61.00 2594 0.00 0.00 190.51 2594 0.00 0.00 202.51

Swv01 20, 10 2328 2333 0.22 0.37 516.00 2318 −0.43 −0.02 874.70 2318 −0.43 −0.17 240.02
Swv02 20, 10 2418 2418 0.00 0.38 488.00 2417 −0.04 −0.02 961.12 2417 −0.04 −0.02 240.02
Swv03 20, 10 2415 2381 −1.41 −0.41 517.00 2381 −1.41 −0.92 1018.02 2381 −1.41 −0.89 240.02
Swv04 20, 10 2506 2462 −1.76 −0.30 426.00 2506 0.00 0.29 1728.64 2462 −1.76 −0.10 240.02
Swv05 20, 10 2333 2333 0.00 0.00 285.00 2333 0.00 0.00 535.69 2333 0.00 0.00 240.02
Swv06 20, 15 3291 3291 0.00 1.69 747.00 3291 0.00 0.40 885.67 3291 0.00 0.05 360.02
Swv07 20, 15 3271 3219 −1.59 −0.95 584.00 3188 −2.54 −2.54 829.20 3188 −2.54 −2.43 360.01
Swv08 20, 15 3530 3423 −3.03 −2.21 413.00 3423 −3.03 −1.78 1150.09 3423 −3.03 −2.56 360.02
Swv09 20, 15 3307 3270 −1.12 −0.28 448.00 3246 −1.84 −0.86 1531.08 3246 −1.84 −1.12 360.02
Swv10 20, 15 3488 3451 −1.06 0.12 520.00 3462 −0.75 −0.22 1425.36 3462 −0.75 −0.64 360.02

Average −1.25 0.28 654.48 −1.73 −0.64 577.40 −1.88 −0.64 238.16

Table 3 shows that the PBIG can optimally solve all the small instances except Orb05.
Further, for all the instances except Orb05 and La01, the PBIG can find the optimal solutions
for every single run since the RPDB and ARPD values are both 0.00. The average RPDB

and ARPD values of the PBIG are both 0.01, which are better than those of the MCLM
(0.39, 0.45) and HABC (0.23, 0.47), whereas the average computational time of the PBIG
(2.55 s) is much less than that of the MCLM (6.55 s) and HABC (4.63 s). It can be seen
clearly from Table 4 that the results obtained by the PBIG and HABC are clearly better that
that of the MCLM. Besides, Table 4 illustrates that the PBIG is a competitive algorithm for
the large instances, and the average computational time of the PBIG is less than half of that
of the HABC. The results also show that the PBIG finds equal best solution for 25 instances
and better best solution for 9 instances when compared with the HABC. The PBIG obtains
the same average ARPD value (−0.64) as the HABC while the average RPDB value of the
PBIG (−1.88) is slightly better that that of the HABC (−1.74), which implies that the peak
performance of the PBIG is superior to that of the HABC. We do not perform statistical test
due to lack of the original data for the MCLM and HABC. However, it can be concluded
from the results of Tables 3 and 4 that the proposed PBIG algorithm is a competitive
metaheuristic to solve the problem under consideration, especially for the large instances.

Algorithms 2021, 14, 145 11 of 13

In addition, to illustrate the best scheduling results provided by the PBIG more clearly,
Gantt charts are drawn in Figures 2 and 3 for two instances, La11 and La12, respectively.
In Figures 2 and 3, we assume that time unit is minute, and the job number starts from zero.
The start time of each job is marked as red. The processing times of all jobs are taken from
the benchmark instances La11 and La12 (Lawrence [31]). For instance with La11, it can be
seen from Table 4 that the best solutions obtained by the MCLM and HABC are 1635 and
1627, respectively. Compared with the MCLM and HABC, the PBIG can yield a solution
with lower makespan value (1621). With La12, the PBIG can also yield a solution with
lower makespan value than the MCLM and HABC.

Algorithms 2021, 14, x FOR PEER REVIEW 13 of 15

jobs are taken from the benchmark instances La11 and La12 (Lawrence [31]). For instance
with La11, it can be seen from Table 4 that the best solutions obtained by the MCLM and
HABC are 1635 and 1627, respectively. Compared with the MCLM and HABC, the PBIG
can yield a solution with lower makespan value (1621). With La12, the PBIG can also yield
a solution with lower makespan value than the MCLM and HABC.

Figure 2. Scheduling Gantt chart obtained by the PBIG for the instance La11.

Figure 3. Scheduling Gantt chart obtained by the PBIG for the instance La12.

5. Conclusions
This study considers the no-wait job shop scheduling problem by using a population-

based iterated greedy (PBIG) algorithm. The problem is decomposed into a sequencing
problem and timetabling problem. The Nawaz–Enscore–Ham (NEH) heuristic used for
flow shop is extended in no-wait job shops, and an initialization scheme based on the
NEH heuristic is developed to generate start solutions with both quality and diversity.

Figure 2. Scheduling Gantt chart obtained by the PBIG for the instance La11.

Algorithms 2021, 14, x FOR PEER REVIEW 13 of 15

jobs are taken from the benchmark instances La11 and La12 (Lawrence [31]). For instance
with La11, it can be seen from Table 4 that the best solutions obtained by the MCLM and
HABC are 1635 and 1627, respectively. Compared with the MCLM and HABC, the PBIG
can yield a solution with lower makespan value (1621). With La12, the PBIG can also yield
a solution with lower makespan value than the MCLM and HABC.

Figure 2. Scheduling Gantt chart obtained by the PBIG for the instance La11.

Figure 3. Scheduling Gantt chart obtained by the PBIG for the instance La12.

5. Conclusions
This study considers the no-wait job shop scheduling problem by using a population-

based iterated greedy (PBIG) algorithm. The problem is decomposed into a sequencing
problem and timetabling problem. The Nawaz–Enscore–Ham (NEH) heuristic used for
flow shop is extended in no-wait job shops, and an initialization scheme based on the
NEH heuristic is developed to generate start solutions with both quality and diversity.

Figure 3. Scheduling Gantt chart obtained by the PBIG for the instance La12.

Algorithms 2021, 14, 145 12 of 13

5. Conclusions

This study considers the no-wait job shop scheduling problem by using a population-
based iterated greedy (PBIG) algorithm. The problem is decomposed into a sequencing
problem and timetabling problem. The Nawaz–Enscore–Ham (NEH) heuristic used for
flow shop is extended in no-wait job shops, and an initialization scheme based on the
NEH heuristic is developed to generate start solutions with both quality and diversity.
Furthermore, a population-based co-evolutionary scheme is presented by imposing the
iterated greedy procedure in parallel and hybridizing both the left timetabling and inverse
left timetabling methods. Lastly, the proposed algorithm is compared with two effective
metaheuristics in literature, and its effectiveness is demonstrated by computational results.

Considering the structural simplicity and high effectiveness of the PBIG, we hold the
view that the algorithm is technically feasible to apply in practical production environment.
In future, we will focus on adapting the PBIG algorithm for the multi-objective job shop
scheduling problem, as well as the job shop scheduling problem with uncertainty.

Author Contributions: Conceptualization, G.D.; Formal analysis, S.Z.; Methodology, G.D.; Soft-
ware, S.Z.; Supervision, G.D.; Validation, M.X.; Visualization, M.X.; Writing—original draft, M.X.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by project ZR2019QF008 supported by Shandong Provincial
Natural Science Foundation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pinedo, M. Scheduling: Theory, Algorithms, and Systems, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2016.
2. Tang, L.; Liu, J.; Rong, A.; Yang, Z. A mathematical programming model for scheduling steelmaking-continuous casting

production. Eur. J. Oper. Res. 2000, 120, 423–435. [CrossRef]
3. Grabowski, J.; Pempera, J. Sequencing of jobs in some production system. Eur. J. Oper. Res. 2000, 125, 535–550. [CrossRef]
4. Rajendran, C. A no-wait flow shop scheduling heuristic to minimize makespan. Eur. J. Oper. Res. 1994, 45, 472–478.
5. Hall, N.; Sriskandarajah, C. A survey of machine scheduling problems with blocking and no-wait in process. Oper. Res. 1996, 44,

510–525. [CrossRef]
6. Lenstra, J.K.; Kan, A.H.G.R.; Brucker, P. Complexity of machine scheduling problems. Ann. Discret. Math. 1997, 1, 343–362.
7. Sahni, S.; Cho, Y. Complexity of scheduling shops with no-wait in process. Math. Oper. Res. 1979, 4, 448–457. [CrossRef]
8. Mascis, A.; Pacciarelli, D. Job-shop scheduling with blocking and no-wait constraints. Eur. J. Oper. Res. 2002, 143, 498–517.

[CrossRef]
9. Van den Broek, J. MIP-Based Approaches for Complex Planning Problems. Ph.D. Thesis, Technische Universiteit Eindhoven,

Eindhoven, The Netherlands, 2009.
10. Bürgy, R.; Gröflin, H. Optimal job insertion in the no-wait job shop. J. Comb. Optim. 2013, 26, 345–371. [CrossRef]
11. Macchiaroli, R.; Mole, S.; Riemma, S. Modelling and optimization of industrial manufacturing processes subject to no-wait

constraints. Int. J. Prod. Res. 1999, 37, 2585–2607. [CrossRef]
12. Schuster, C.; Framinan, J. Approximate procedures for no-wait job shop scheduling. Oper. Res. Lett. 2003, 31, 308–318. [CrossRef]
13. Schuster, C. No-wait job shop scheduling: Tabu search and complexity of subproblems. Math. Methods Oper. Res. 2006, 63,

473–491. [CrossRef]
14. Framinan, J.M.; Schuster, C. An enhanced timetabling procedure for the no-wait job shop problem: A complete local search

approach. Comput. Oper. Res. 2006, 331, 1200–1213. [CrossRef]
15. Zhu, J.; Li, X.; Wang, Q. Complete local search with limited memory algorithm for no-wait job shops to minimize makespan. Eur.

J. Oper. Res. 2009, 198, 378–386. [CrossRef]
16. Zhu, J.; Li, X. An effective meta-heuristic for no-wait job shops to minimize makespan. IEEE Trans. Autom. Sci. Eng. 2012, 9,

189–198. [CrossRef]
17. Mokhtari, H. A two-stage no-wait job shop scheduling problem by using a neuro-evolutionary variable neighborhood search. Int.

J. Adv. Manuf. Technol. 2014, 74, 1595–1610.

http://doi.org/10.1016/S0377-2217(99)00041-7
http://doi.org/10.1016/S0377-2217(99)00224-6
http://doi.org/10.1287/opre.44.3.510
http://doi.org/10.1287/moor.4.4.448
http://doi.org/10.1016/S0377-2217(01)00338-1
http://doi.org/10.1007/s10878-012-9466-y
http://doi.org/10.1080/002075499190671
http://doi.org/10.1016/S0167-6377(03)00005-1
http://doi.org/10.1007/s00186-005-0056-y
http://doi.org/10.1016/j.cor.2004.09.009
http://doi.org/10.1016/j.ejor.2008.09.015
http://doi.org/10.1109/TASE.2011.2163305

Algorithms 2021, 14, 145 13 of 13

18. Aitzai, A.; Benmedjdoub, B.; Boudhar, M. Branch-and-bound and PSO algorithms for no-wait job shop scheduling. J. Intell. Manuf.
2016, 27, 679–688. [CrossRef]

19. Li, X.; Xu, H.; Li, M. A memory-based complete local search method with variable neighborhood structures for no-wait job shops.
Int. J. Adv. Manuf. Technol. 2016, 87, 1401–1408.

20. Sundar, S.; Suganthan, P.N.; Jin, C.T.; Xiang, C.T.; Soon, C.C. A hybrid artificial bee colony algorithm for the job-shop scheduling
problem with no-wait constraint. Soft Comput. 2017, 21, 1193–1202.

21. Ruiz, R.; Stutzle, T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J.
Oper. Res. 2007, 177, 2033–2049.

22. Lee, C.H. A dispatching rule and a random iterated greedy metaheuristic for identical parallel machine scheduling to minimize
total tardiness. Int. J. Prod. Res. 2018, 56, 2292–2308. [CrossRef]

23. Ruiz, R.; Pan, Q.K.; Naderi, B. Iterated greedy methods for the distributed permutation fowshop scheduling problem. OMEGA
2019, 83, 213–222. [CrossRef]

24. Ribas, I.; Companys, R.; Tort-Martorell, X. An iterated greedy algorithm for solving the total tardiness parallel blocking flow shop
scheduling problem. Expert Syst. Appl. 2019, 121, 347–361. [CrossRef]

25. Samarghandi, H.; ElMekkawy, T.Y.; Ibrahem, A.M. Studying the effect of different combinations of timetabling with sequencing
algorithms to solve the no-wait job shop scheduling problem. Int. J. Prod. Res. 2013, 51, 4942–4965. [CrossRef]

26. Deng, G.; Su, Q.; Zhang, Z.; Liu, H.; Zhang, S.; Jiang, T. A population-based iterated greedy algorithm for no-wait job shop
scheduling with total flow time criterion. Eng. Appl. Artif. Intell. 2020, 88, 103369. [CrossRef]

27. Nawaz, M.; Enscore, J.E.E.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983,
11, 91–95. [CrossRef]

28. Fisher, H.; Thompson, G.L. Probabilistic Learning Combinations of Local Job-Shop Scheduling Rules. Industrial Scheduling; Prentice-Hall:
Englewood Cliffs, NJ, USA, 1963; pp. 225–251.

29. Applegate, D.; Cook, W. A computational study of the job-shop problem. ORSA J. Comput. 1991, 3, 149–156. [CrossRef]
30. Adams, J.; Balas, E.; Zawack, D. The shifting bottleneck procedure for job shop scheduling. Manag. Sci. 1988, 34, 391–401.

[CrossRef]
31. Lawrence, S. Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques; Technical

Report; Carnegie-Mellon University: Pittsburgh, PA, USA, 1984.
32. Storer, R.H.; Wu, S.D.; Vaccari, R. New search spaces for sequencing instances with application to job shop scheduling. Manag.

Sci. 1992, 38, 1495–1509. [CrossRef]
33. Deng, G.; Zhang, Z.; Jiang, T.; Zhang, S. Total flow time minimization in no-wait job shop using a hybrid discrete group search

optimizer. Appl. Soft Comput. 2019, 81, 105480. [CrossRef]
34. Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; Wiley: New York, NY, USA, 2012.

http://doi.org/10.1007/s10845-014-0906-7
http://doi.org/10.1080/00207543.2017.1374571
http://doi.org/10.1016/j.omega.2018.03.004
http://doi.org/10.1016/j.eswa.2018.12.039
http://doi.org/10.1080/00207543.2013.784410
http://doi.org/10.1016/j.engappai.2019.103369
http://doi.org/10.1016/0305-0483(83)90088-9
http://doi.org/10.1287/ijoc.3.2.149
http://doi.org/10.1287/mnsc.34.3.391
http://doi.org/10.1287/mnsc.38.10.1495
http://doi.org/10.1016/j.asoc.2019.05.007

	Introduction
	No-Wait Job Shop Scheduling Problem (NWJSP) with Makespan Minimization
	Problem Statement
	Problem Formulation
	Timetabling Methods

	Population-Based Iterated Greedy Algorithm
	Iterated Greedy Procedure
	Destruction and Construction
	Local Search

	Initialization
	Competitive Co-Evolutionary Scheme
	Procedure of the Population-Based Iterated Greedy (PBIG) Algorithm

	Computational Results and Comparisons
	Calibration of the PBIG Algorithm
	Comparisons with Other Metaheuristics

	Conclusions
	References

