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Abstract: As studies move into deeper characterization of the impact of selection through non-neutral
mutations in whole genome population genetics, modeling for selection becomes crucial. Moreover,
epistasis has long been recognized as a significant component in understanding the evolution of
complex genetic systems. We present a backward coalescent model, EpiSimRA, that accommodates
multiple loci selection, with multi-way (k-way) epistasis for any arbitrary k. Starting from arbitrary
extant populations with epistatic sites, we trace the Ancestral Recombination Graph (ARG), sampling
relevant recombination and coalescent events. Our framework allows for studying different complex
evolutionary scenarios in the presence of selective sweeps, positive and negative selection with
multiway epistasis. We also present a forward counterpart of the coalescent model based on a Wright-
Fisher (WF) process, which we use as a validation framework, comparing the hallmarks of the ARG
between the two. We provide the first framework that allows a nose-to-nose comparison of multiway
epistasis in a coalescent simulator with its forward counterpart with respect to the hallmarks of the
ARG. We demonstrate, through extensive experiments, that EpiSimRA is consistently superior in
terms of performance (seconds vs. hours) in comparison to the forward model without compromising
on its accuracy.

Keywords: coalescent theory; natural selection; epistasis; recombination event; ancestral recombina-
tion graph

1. Introduction

EpiSimRA (both backward and forward) source, executable, user manuals are avail-
able at: https://github.com/ComputationalGenomics/SimRA (accessed on 24 April 2021).
Nothing in Biology Makes Sense Except in the Light of Evolution [1], and simulating
the evolution process, whether of multi-cellular humans, unicellular micro-organisms or
even cancer-tumors, continues to be an important device in understanding the observed
molecular profiles of populations. These profiles are an attribute of the genetic variability
due to mutations and the change in frequency of alleles within populations over time. The
selectively neutral infinite-sites model [2] is often used to analyze this variation [3]. Simu-
lating random populations plays a significant role in investigating the effects of complex
evolutionary processes on genetic diversity [4]. There are mainly two types of simulation
algorithms: backward-time or coalescent and forward-time. The coalescent simulation [5]
allows for fast approximation of the neutral Wright-Fisher (WF) model with natural selec-
tion, shaping patterns of variation in populations. The ARG [6] is a variant of Kingman’s
coalescent and is used to reconstruct the most recent common ancestor (MRCA), starting
backwards from the extant populations or leaves, using coalescent and recombination
events. Once it finds the MRCA or if it involves all the trees, the grand most recent common
ancestor (GMRCA), it traverses the ARG to the extant populations and introduce mutations
or other genetic information in the genealogy. Forward-time simulators are more precise
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than their backward (coalescent) counterparts in modeling selection along with other fac-
tors as it starts from an initial population and tracks its evolution under the influence of
various factors such as recombination, mutations, varying effective population size, fitness
effects, and so forth. It progresses over multiple sequential generations, usually drawing
random samples from the last generation to construct an ARG and its hallmarks. However,
coalescent processes are much faster than forward-time simulation algorithms [7].

The classical approach for coalescent simulation as defined by Hudson in the seminal
ms tool [3], applied the effects of recombination and coalescence to the ancestors of the
samples going back in time in the extant population. This was later computed more
efficiently in msprime [8], which used a new encoding for correlated trees resulting from
simulations of the coalescent with recombination. Some approximations to the coalescent
algorithms, which are fast, also exist, such as SMC [9], MaCS [10] and fastsimcoal [11].
Many programs have been developed to simulate scenarios not captured by ms such
as selection [12–15], demographic inference [12,16] and admixture [17] among others.
Coalescent models tracking genealogies in the presence of selection can also build an
Ancestral Selection Graph (ASG), which is a branching-coalescing random graph within
which the genealogy of a sample is embedded [18] conditional on the frequencies of the
selected allele of the sample [19]. However, none of these methods take into account
epistasis, which has long been recognized as a significant component in understanding
genealogies and the evolution of complex genetic systems [20]. Here, we present the
first coalescent simulator EpiSimRA which captures multiway epistasis, that is, allowing
for interaction between alleles in multiple loci under selection. EpiSimRA tracks the
ARG from randomly sampled extant populations and unlike ASG, is not conditional
on allele frequencies. It constructs the genealogy dependent on the time to the closest
recombination and coalescent event going backwards. Along with this, we also present
an alternative, simple forward-time algorithm fwd-EpiSimRA, which efficiently simulates
epistatic scenarios, to provide a validation framework to the coalescent simulator.

Forward simulators usually track the complete ancestral information, that is, studying
all the lineages that survived until the last generation as a result of recombination events.
Although forward simulations have been around for decades, only a few forward simu-
lators exist to provide a framework to model multi-way epistasis, such as SELAM [21],
allowing for pairwise epistatic selection to model the process and consequences of admix-
ture or SLiM [22,23], which constructs ecologically realistic scenarios while accounting
for a host of complex biological processes beyond the WF framework. Specifically, its
functionality of tree-sequence recording draws parallels to fwd-EpiSimRA in a WF frame-
work, providing support for epistatic interactions. However, none of these packages [21,23]
can be used to compare with EpiSimRA as it is not possible to reconstruct the ARG from
random extant samples. As fwd-EpiSimRA traces the ARG to obtain the MRCA of the
random extant samples and record its hallmarks, we use it for a nose-to-nose comparison
with the coalescent simulator as a validation framework. In the remainder of the paper
we introduce the coalescent simulator and explain how it tracks multiway epistasis in the
presence of recombination, followed by an overview of the forward simulator and the
ARG tracking algorithm. Thereafter, we show the concordance between the coalescent and
forward models for complex evolutionary scenarios and finally conclude by discussing
multiway epistasis in simulating real world scenarios of admixture, cryptic relatedness and
viral phylodynamics.

2. Materials and Methods
2.1. The Coalescent Simulator

The algorithm works back-in-time starting from the present (time 0), moving back
into the past. Here we focus on how EpiSimRA is able to simulate multiway epistasis
(the interested reader is referred to [17] for the neutral scenario). Let the number of loci
under selection be l, possibly with multiway epistasis. As an illustration let l be 3 with
selection values s1, s2 and s3. The algorithm will assign three random locations on the
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genetic segment, unless the locations are explicitly specified and we assume that one of the
alleles (either major or minor) is under selection while the other is neutral. The possible
multiway epistasis are e12, e13, e23 and e123. If no value is specified then the epistasis is
assumed to be neutral. Given this, we get 2l possible types of lineages, each of them
denoted as lz. Let l0 be the lineage type with no selection. For the example we ran, the
other lineage types are l1, l2, l3, l12, l13, l23 and l123. For two lineage types za and zb, let

lza ≺ lzb when za ⊃ zb.

For example, l12 ≺ l1 and l12 ≺ l2. Also, l123 ≺ l12. For the lineage type z, let Nz be the
effective population size.

2.1.1. Selection Scenarios

Effective population size is the reciprocal of the probability that two individuals will
have the same parent—or that two chromosomes in the next generation will share the
same parent chromosome. Fitness, in this case, would just be the ratio of the probability
that the parent chromosome lineage with the allele will have an offspring chromosome to
the probability that a parent chromosome lineage without the allele (neutral) will have an
offspring chromosome [24]. The fitness, 1 + s is thus the expected number of copies that
a copy of the allele gives rise to in generation t + 1, relative to the expected number that
a neutral allele will give rise to. Thus, in infinitely large populations, the proportion of
alleles under selection in a generation is related to the effective population size. Let Ns be
the partially effective population size with the allele under selection and Ns̃ (= N − Ns)
is the partially effective population size with the reference or ancestral allele which is not
under selection, giving:

Ns

Ns + Ns̃
:

Ns̃

Ns + Ns̃
= 1 + s : 1 =⇒ Ns =

1 + s
2 + s

N = fsN. (1)

Thus −1 < s, extendable to multiple loci with or without epistasis and the fitness
defined as

fs =
1 + s
2 + s

. (2)

The fitness coefficient is a representative average of the allele frequency of the selected
alleles in a generation, p. With the allele frequency, the effective population size with
selection at a single locus would be E[Ns] =

(1+s)pN
(1+ps) where the fitness fs = p(1+s)

(1−p) . The
effective population size is defined as Nz = 2N f ′ where f ′ is the fitness for lz-coalescence
in the coalescent simulator and Nz is the effective population size for lz lineage coalescence
with alleles under selection.

The f ′ varies with neutral or epistatic scenarios for the loci under selection. For a
neutral scenario with no selection f ′ is defined as follows

f ′ = 1−∑
i

fsi + ∑
i,j

fsij − fsαβγ
, (3)

where we remove the fitness effects of odd sites under selection and add the effects from
even sites in a simulation scenario with three Single Nucleotide Polymorphisms or SNPs
(α, β and γ) are considered to be under selection. Alternatively, for a single locus (α) under
selection with no epistasis in effect f ′ will be defined as follows with the signs reversed for
even and odd sites under selection

f ′ = fsα −∑
i

fsαi + ∑
i,j

fsαij . (4)

For two or multiple loci under selection there can be two cases with differing fs. We
define it as follows:
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fs =

{
fesαβ..ω

with epistasis

∏ω
i fsi without epistasis,

where es is the user defined epistatic coefficient when epistasis is in effect across all ω sites.
For a scenario with all three sites are under selection f ′ = fsαβγ

.

2.1.2. EpiSimRA: Multiple Loci Selection & Multiway Epistasis

If si and sj are two locations with the minimum (or derived) allele under selection
at locus i and j respectively, then eij denotes the epistasis between the two. The fitness
coefficients in Equation (2) takes into account the eij with respect to the s. If it is not
explicitly specified then a neutral case (without epistasis) is assumed. The algorithm
randomly chooses the location of the SNPs on the genetic segment being simulated.

We assume that no more than one event, coalescent or recombination, occurs at a
generation and there is no back mutation, that is, a base undergoes no more than one
mutation in the entire ARG. The mutation and recombination rates are uniform over the
segment being simulated. If there is recombination, the lineages are randomly assigned
but if r = 0, the lineages are so assigned that no pair of types of lineages straddle (either
they are disjoint or one is contained in the other). Lineage l0 corresponds to lineage with
no alleles under selection. For each lineage lz, the algorithm only appends each node to
a list when a recombination occurs with time t > Tz where Tz keeps track of the time to
GMRCA. The recombination rate for lz, r′l is defined as

r′l = NzgrI.

For nodes which are not leaf nodes the length of the genetic material, s is proportional
to the recombination rate as the rate is governed by the effective population size Nz. The
stochastic nature of the method allows for a loop which pools lineages together at each
iteration to find the event closest to the time tz, over all lineages lz. For each lineage
tz = Nz × t is computed where t is the time to next event using

t = min

︷ ︸︸ ︷
min

1≤a<b≤Lz
(tcoal

ab ), min
1≤i≤Lz

(trcmb
i )︸ ︷︷ ︸


= Exp

(︷ ︸︸ ︷
1 + 1 + ... + 1+ r′1 + r′2 + .. + r′Lz︸ ︷︷ ︸

)
= Exp

(︷︸︸︷
Lz + r′1 + r′2 + .. + r′Lz︸ ︷︷ ︸

)
. (5)

tcoal is the time to coalescence and similarly trcmb is the time to the next recombination
event. Equation (5) computes the closest event to this time (coalescent or recombination)
where the overbraces capture the (Lz

2 ) coalescent events and the underbraces capture the
LZ recombination events. When there is only one lineage in the pool, only recombination
event can occur. Otherwise, we use the three properties outlined in the Appendix A to find
the next event closest to the time computed in Equation (5). The time T, aggregated over t
is thus the time to GMRCA as outlined in Algorithm 1. The event is a coalescence is chosen
with the probability

(Lz
2 )

(Lz
2 ) + ∑l r′l

(6)

and recombination at lineage 1 ≤ k ≤ Lz with probability,

r′k
(L

2) + ∑l r′l
. (7)
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Equations (6) and (7) are used in a single draw of a random number such as in unit
interval [0,1] broken up into 1 + Lz sub intervals with cumulative ratio. The first interval
implies a coalescent event and kth interval (k > 1) implies a recombination at the lineage
lk−1. Since the events are randomly selected, t is estimated first and then the lineages are
picked at random from Lz active lineages. If the Tz falls in the respective interval for a
coalescent event, then the next event is coalescence and otherwise, if r > 0, then the next
event is recombination.

Algorithm 1: EpiSimRA
Input : Parameters from Table 1
Output : T, time to GMRCA
L =

⋃
z lz

foreach lineage lz until L0 = 1 do
Tz = 0, Cz = {}
r′l = NzgrI
tz = Nz × t
Compute t as per Equation (5)
Tz = Tz + tz.

end

Coalescence Event

In a coalescence event Lz is decremented by 1 as two random lineages of type lz are
coalesced into one at time Tz and the outgoing edge of the coalesced node is labeled by
lineage lz. If |L| = 1, z is a singleton label (such as s1 but not s1s2 or s1s2s3), and, there
exist no active lineage l′z such that z′ ≺ z, then the mutation(s) corresponding to lineage lz
is assigned to this edge (using an approach in [17]) and the label of the outgoing edge of
the new node is changed to l0 and L is incremented by 1. Next, L is set to 0 and thus the
lineage lz is made inactive.

Recombination Event

In a recombination event a lineage of type lz is randomly picked and a node v is
created at Tz. The label of z is randomly split it into two lineage labels that is compatible
with the location of the SNPs on the genetic segment I carried by the node v. Thereafter, L
is incremented by 1.

The algorithm for EpiSimRA is described in Algorithm 1 and see Appendix A for an
illustrative example of the algorithm for a three-way epistatic scenario.

Table 1. Input parameters of the coalescent simulator.

Parameters Example Values User-Specified Units Units in bp for the Algorithm Scaling Factor

g seqment length 25; 75 Kb ×103 bp ×103

m extant units 10; 20; 30; 40 - - × 1
N population size 100; 200; 500; 1000 - - × 1
I length of genetic material 1000 bp 1 bp × 1

rates/generation

r recombination rate 1 bp/gen ×10−7 bp/gen ×10−7

µ SNP mutation rate 1.5 mut/bp/gen ×10−8 ×1 mut/bp/gen ×10−8

selection, epistasis parameters

si fitness 0.3 - × 1
eij epistasis 0.1, 0.15 - - × 1
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2.2. The Forward Simulator

The model simulates evolution for a full population, forward in time with each gener-
ation containing N individuals with equal number of males and females, each carrying
two chromosomes (see Appendix A for a detailed discussion and extension to selection
on multiple loci). The complex evolutionary relationships between generations yields a
number of mutations, recombinations, selected allele inheritance, linkage disequilibrium,
and so forth, along the length of chromosome for each individual. These data are recorded
in a data structure, which we call the “book of populations”, keeping a record of the past
genealogy of the population. We trace the lineage of each site along the chromosome
while tracing the ‘book’ and constructing the ARG. Inheritance follows the convention of
a standard WF model applied to diploid organisms [3], with children randomly picking
their parents weighted by the fitness coefficients when selection is in effect.

2.2.1. Simulating the “Book of Populations”

Each chromosome is represented by the alleles at each locus l ∈ [1, g], which is
randomly assigned initially. We use same notations as defined in Table 1 to describe
fwd-EpiSimRA. The model assumes that each locus l has a fitness function sl(a) ∈ R,
where a is an allele comprising the genotype. An individual i with allele ail at locus l is
assigned a selection coefficient sil = s(ail) which is user-defined, similar to EpiSimRA. The
function s(.) denotes the selective pressure and can be varied by intentional specification of
recessive, dominant, additive, and other configurations, including homozygous advantage.
This function encompasses selection at both single and multiple loci allowing flexible
user-defined variations. When selection is not present, we set sil = 0.

For an individual i, the probability that it has children is given by

pi =
∏l(1 + sil)

∑i ∏l(1 + sil)
. (8)

(See Appendix A for derivation). In each new generation, as in the WF model, the N
children pick their parents with replacement according to the parent probabilities pi. The
simulation is run for t = {0, 1, . . . , G} discrete generations with the t = 0 being the base
generation, outlined in Figure 1.

Figure 1. Schematic diagram for simulating the “book of populations” which closely resembles the
biological process of evolution.
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In each new generation, as in the WF model, the N children pick their parents
with replacement according to the parent probabilities pi. The simulation is run for
t = {0, 1, . . . , G} discrete generations with the t = 0 being the base generation, outlined in
Figure 1.

2.2.2. Modeling Multiway Epistasis

Multiway epistasis requires multiple interacting loci with similar selection effects. We
assign selection coefficients to interacting sites for k-way epistasis, where k is the maximum
number of interacting sites. Let there be q groups of loci, each containing at most k elements
and we re-compute Equation (8) accounting for fitness related to interacting sites as,

pi =
∏q
(
1 + Siq

)
∑i ∏q

(
1 + Siq

) . (9)

If a group only has one element, that is if the selected locus is non-interacting, then
we allow S = s, the user defined selection coefficient. For all other cases, we select S from a
matrix or tensor of all possible allele combinations with respect to the number of interacting
sites. S, the combined fitness coefficient is calculated by taking the fitness product of each
interacting site as,

S = ∏
j

(
1 + ∑

i
s(j)

i

)
+ eq. (10)

eq is the epistatic interaction coefficient for each combination of interacting sites and s(j)
i is

the selection coefficient at allele j in individual i’s chromosome.

2.2.3. Tracing the ARG

Detecting the past recombination events from extant sequences and specifying the
place of each recombination is well studied [25–27]. The ARGs define a genealogical
graph for all of the chromosomes in a population. Recent advances in population genetics
simulators have resulted in tree-sequence recordings, which obtains the genealogical history
of all genomes in a simulated population [28]. However, no natural ARG is recorded for
the interacting loci with epistasis in effect and randomly sampling populations from extant
generation, in forward simulators. It is traced from the “book of populations” from a
number of extant haplotypes. We start from m randomly selected extant populations and
trace the recombination and coalescent events back each generation. We keep track of each
lineage corresponding to every site along the chromosome and stop when we have found
a convergence for all lineages. This final coalescent event along the entire “book” is known
as MRCA and we output the corresponding ARG.

3. Results
3.1. Comparison Study

Comparing the two models under selection calls for an assessment of the values. In
both the models, common phenomena such as faster coalescence, decreasing diversity,
decreasing number of recombination events occur when we study the individuals under
selection. Hence, we compare the H, the height of the ARG or the time to MRCA, as it is a
significant hallmark of the common history of a sample.

We run simulations for different parameter set-ups for the forward and backward
model by running each experiment 100 times. We demonstrate the accuracy of the two
algorithms by comparing H under different simulation scenarios allowing at most three
interacting loci. The simple scenarios in this case is when there is no selection in effect,
that is, the neutral coalescent model and selection at a single locus. We show that the two
proposed models EpiSimRA and fwd-EpiSimRA show agreement in all of the different
epistatic scenarios including selection in single locus.
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The results for the complex scenario in this setting, accounting for epistasis with three
loci, are shown in Figure 2, where we show the concordance for the forward and backward
simulation with box-whisker plots, QQ-plots, CDF plots and PP plots (Figure A5). To
obtain further validation we observed similar agreement in the Kolmogorov-Smirnov (KS)
test on the distributions of H as returned by fwd-EpiSimRA and EpiSimRA for all scenarios.
We found that for each, the null hypothesis that the two samples are drawn from the same
distribution is never rejected and the test statistic is very small (Table A1).

Figure 2. Comparison of the height of the ARG (H) between fwd-EpiSimRA and EpiSimRA with and
without epistatis with recombination for N = 100, g = 250 kbp, r = 1.0× 10−8, m = {10, 20, 30, 40},
s = {0.3, 0.3, 0.3} with epistastic parameters for sisj = 0.15 for i, j ∈ [1, 3] and s1s2s3 = 0.125. (A) The
box-and-whisker diagram summarizes the result for each. On each box, the central mark is the mean,
the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data
points and outliers are plotted individually. (B) QQ plot and (C) Cumulative Distribution Function
(CDF) plot of the backward and forward models show similar distributions with further agreement
in Kolmogorov-Smirnov tests (Table A1).

3.2. Evaluating Epistatic Scenarios

We compare the H under selection in EpiSimRA and show how different scenarios
impact the height of the ARG (Figure A1). We find that positive selection affects the time
to coalescence inversely with more selective pressure results in less time to coalescence
when simulated with N = 1000 samples and genome length of g = 250 kbp. Epistasis in
two and three interacting loci results in lower time to MRCA (MRCA) than single locus
selection and the neutral case amounting to higher selective pressure. We further studied
effects of epistasis by simulating populations of N = 10,000 with three-way epistasis. We
find epistasis leads to a more complex evolutionary history resulting in longer time to
coalescence in MRCA (Figure A2 in Appendix A). When epistasis is not in effect, that is,
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when fs∗ = ∏i fsi , when i ∈ [1, 3] results in a shorter TMRCA with simpler evolutionary
history. In addition, an exhaustive comparison between the two simulators for all scenarios
with or without epistasis is included in the Appendix A.

4. Discussion

Selection in a diploid organism impacts heritability two ways: (1) heterozygosity can
mediate the impact of selection on the transmission of a selected haploid lineage, and (2)
recombination can hide the impact selection may have had on the ARG. This model focuses
more on the impact of the latter. Selection in a diploid heterozygous sample can boost, for
one generation, the non-selected chromosome. This can complicate the impact of selection
on lineages in the diploid forward model, but not the haploid. We expected the impact of
boosted preference to be minimal along any given lineage since such a boost only occurs
for dominant or additive alleles, and then for only one generation, with combinations in a
population over time, this effect could be more significant.

The coalescent model and its forward counterpart under epistatic selection scenarios
were concordant in the simulation studies. Epistasis makes the evolutionary history of
extant populations more complex, but with selective pressure on certain alleles, the TMRCA
appears to be shorter than the single locus selection or the neutral scenarios, respectively.
It is expected that the H would be shorter for any selection scenario when compared to the
neutral case, however, it is particularly intriguing to observe how the epistatic two and
three-way scenarios have more selective pressure with a cumulative effect resulting in a
decreased TMRCA. Although, the mean of fwd-EpiSimRA distribution (Figure 2) is a bit
lower than EpiSimRA, we see concordance in the overall distribution, including the QQ
and CDF plots and as well as in the KS tests. We posit that the difference in mean may
be due to underlying differences in model assumptions such as diploid mechanisms for
fwd-EpiSimRA in comparison to a haploid structure in EpiSimRA.

Computational complexity of EpiSimRA is directly proportional to N, the number
of individuals per generation; g, length of the genome under simulation and k for k-way
epistatic interactions. As we increase these parameters, we obtain a more complex evo-
lutionary history leading to longer running time due to complex interactions between
the inherited loci from one generation to the other, for randomly sampled extant popula-
tions. As we observe concordance in the observed TMRCA for the coalescent simulator
EpiSimRA as well as in fwd-EpiSimRA when multiway epistasis is in effect, we obtain
validation about the empirical correctness of the coalescent simulator. As in the coalescent
simulator we cannot assume correctness until after the ARG has been established, we used
the forward model to show the correctness of EpiSimRA, under varying values of selection
coefficients and epistatic scenarios. The coalescent simulator, EpiSimRA is extremely fast
in finding approximations to TMRCA, in comparison to fwd-EpiSimRA, as the latter has to
build the entire “book of populations” and trace it. This leads to a difference in running
time of hours for the forward model vs. seconds for its coalescent counterpart with varying
input dimensions.

5. Conclusions

We present an algorithm that builds multi-locus selection and multiway epistasis
into the backward coalescent model with recombinations, as well as in a forward scheme.
Moreover, to the best of our knowledge, this is the first model that has taken a backward
simulator with multiway epistasis and compared it nose-to-nose with its forward counter-
part. Through extensive empirical comparison studies, albeit for small populations due to
the time constraint of the forward model, we show that for complex scenarios with selection
and epistasis (or even under neutral scenarios) the hallmark values by the backward and
the forward schemes approximate each other. As the distributions of both the schemes
are concordant, we conclude that either of the simulators (EpiSimRA or fwd-EpiSimRA)
can be used to understand the effects of negative and positive selection, with multiway
epistasis, along with selective sweeps across generations. Due to the lack of similar as-
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sumptions, parameters and hallmarks of ARGs returned, we did not compare EpiSimRA
with present coalescent simulators for selection at a single locus. As fwd-EpiSimRA is
based on the Wright-Fisher model and allows for epistatic interactions, we used it as a
validation framework.

Multiway interaction across multiple loci leads to complex population genetic history
but has a shorter height of the ARG relative to non-epistatic interactions. EpiSimRA encom-
passes all such scenarios with the potential for further exploration for viral phylodynamics
with random sampling of a bacteria or virus populations. The time to coalescence when
reconstructing its phylogeny under selection and epistasis allows us to study important
epidemiological, immunological and evolutionary processes of viruses [29] such as the
recent SARS-CoV-2 or similar Coronaviridae. This allows a validation framework for
including selection and epistasis into standard population genetic models where we can
now study the different scenarios when all the diploids associated with mutated sites along
the chromosome with differing fitness values corresponding to the alleles.

6. Patents

There is no patent resulting from this work.
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MRCA Most Recent Common Ancestor
SNP Single Nucleotide Polymorphisms
TMRCA Time to Most Recent Common Ancestor
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Appendix A. The Forward Simulator

For two individuals i and i′, the ratio of the probabilities that a locus l contributes to
whether an individual will have an offspring is the relative fitness

pil
pi′ l

=
1 + sil
1 + si′ l

.

The total ratio of probability i will have children to i′ having children is

pi
pi′

= ∏
l

1 + sil
1 + si′ l

=
∏l(1 + sil)

∏l(1 + si′ l)
.

https://github.com/ComputationalGenomics/SimRA
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From this, it follows that

pi

∏l(1 + sil)
=

pi′

∏l(1 + si′ l)
= δ,

where δ has the same for all i, i′ and all other individuals.
Given this,

pi = δ ∏
l
(1 + sil).

Since ∑i pi = 1 = δ ∑i ∏l(1 + sil), it follows that

r =
1

∑i ∏l(1 + sil)
.

Therefore, the probability that i has children is

pi =
∏l(1 + sil)

∑i ∏l(1 + sil)
.

For multiway epistasis we include the conditions of k loci being linked with each other
such that a combined fitness coefficient is calculated by taking the fitness product at each
interacting site as defined in Equation (10).

Appendix A.1. Choosing Parents

The probability that two children will pick the same parent is operationally, the
reciprocal of the effective population size [30,31]. Likewise, the same interpretation was
made by [5] in the construction of the coalescent. Given a set of pi’s in a given generation
t, the probability that two children will pick the same parent is 1

N = ∑i p2
i . While the pi’s

define the probability that children pick their parents, N does not play a direct role in
determining the course of the algorithm in constructing the book of populations but will
affect the shape of the ARG that is traced in the second stage.

With selection on a single locus in effect, each generation will have Ns individuals that
contains the allele under selection, yielding ∏l(1 + sil) = 1 + s, and (N − Ns) individuals
without the allele with ∏l(1 + sil) = 1.

Transfer of Genetic Material

After the children have randomly selected their parents, the child requests one chro-
mosome from each of the parents. The parents randomly select whether to pass one of
their two chromosomes, or to construct a new chromosome via a recombination event
involving a crossover between its two chromosomes with respect to the recombination
rate, r. If a crossover is generated, the parent randomly selects a location and transfers the
genetic material up to that location from one chromosome and the rest from the its other
copy. This is done in part to reconstruct the ARG, and to characterize genetic variation
along chromosomes yielding the final recombinations [32]. In case of no recombination,
the parent randomly decides which chromosome’s genetic material should be passed over
to the child (see Figure 1 of the main manuscript).

Each newly constructed chromosome is painted with new SNP mutations randomly
generated according to a mutation rate probability µ, a randomly selected location, and
allele value. With probability of mutation on each polymorphic site, the resultant mutated
chromosomes are finally passed to the child from the parents along with the sites of
mutations and recombinations.

Throughout the generation, forward in time, we keep track of the sites of recombina-
tions and mutations to efficiently trace the ARG from extant individuals to its GMRCA.
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Appendix A.2. Tracing the ARG from the Book of Populations

Detecting the past recombination events from extant sequences and specifying the
place of each recombination and recombinant sequences has been well studied [25–27].
The ARGs define a genealogical graph for all of the chromosomes in a population. For
each locus, the ARG for any given segment between recombination crossovers will form
a tree. When the sequences are non-recombining, we only need to use coalescences and
mutations to describe their genealogy to find a most recent common ancestor (MRCA).
Traversing back through an ARG, coalescent events are very common in occurrence, but,
in case of a recombination, the history of lineages not only show bifurcations, but also
recombinations resulting in cycles. Our algorithm looks for recombination events going
back every generation and traces them until convergence to a GMRCA.

Appendix A.3. Simulating the Book of Populations with Selection and Two-Way Epistasis

ALGORITHM:

1. Initialization:

(a) N individuals ( N
2 males and N

2 females) in the base generation, which remains
constant throughout the simulation.

(b) Number of Generations, G = c ∗ N, where c is a constant.
(c) Randomly allocate genetic material along the length of chromosome, g.
(d) Assign selection coefficients for interacting sites for two-way epistasis (0

for neutral).
(e) Set flag, f , for allele(s) under selection on a mutated site (0 for neutral).

2. If f is set, randomly select an individual among N and a site, gs along g which
underwent mutation. Select an allele randomly in gs and set f to 1.

3. Loop For each generation, t ∈ {1, · · · , G}
4. Loop For each individual i in {1, · · · , N}, in (t− 1)th generation.

5. Compute pi =
∏k(1+Sik)

∑i ∏k(1+Sik)
, where any group k of loci could contain a single locus

under selection, for which S = s is defined as the user input. It can also contain a
locus interacting with another locus, in a two-way epistasis. In this case s is populated
from a matrix formed by the all possible alleles at each loci, from the following
form, S = ∏j

(
1 + ∑i s(j)

i

)
. s(j)

i is the selection cofficient at allele j in individual
i’s chromosome.

6. Select parents for each child in tth generation based on pi from (t− 1)th genera-
tion.

7. End
8. For each child i in tth generation, compute scaled recombination rate r′ = r ∗ g and

select a value, rval ∈ [0, 1].

9. If rval =

{
[0, (1− r′)), No recombination event
[(1− r′), 1], recombination event

10. If No recombination event: Randomly pick a chromosome from the parent and
assign its genetic material to the child.

11. Else Randomly pick a crossover index z ∈ [1, g]. Get the genetic material from [1, z]
in the first chromosome of the parent and [(z + 1), g] in the second, combine them
and assign it to the child.

12. In the child’s genetic material, randomly select locations along the chromosome
length, g for mutation according to the Poisson distribution and the scaled mutation
rate µ′ = µ ∗ g. Assign the alleles randomly to other bases. For example, if the allele
was A, change it randomly to one of the other bases {G, T, C}.

13. Update the Chromosomes of the current generation with the new genetic informa-
tion obtained from the previous generation and continue until the last generation, G.

14. End
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Appendix A.4. Tracing the ARG from the Book of Populations

ALGORITHM:

1. Initialization:

(a) Randomly select m number of extant individuals from N in the last generation.
(b) Select one chromosome out of the two in these m extant samples, randomly.

Compute the active lineages, j by comparing the genetic material g in each of
the m chromosomes selected.

2. Loop for each generation, t going backwards from {G, · · · , 1}
3. Identify each chromosome from the previous generation (t− 1) which contributed

to each chromosome in the current generation, following the book of populations.
4. Check to see if multiple children in the gth generation share the same parent in the

previous generation.
5. Iterate and Count the number of active samples, m′ in each generation.
6. Until m′ = 1
7. Compute the Height of the GMRCA from the height of convergence.

Appendix A.5. Experiments and Comparison Study

Here we exhaustively list all the box-whisker diagrams, Q-Q and CDF plots for
two-way epistasis and P-P plots for all experiments conducted while comparing the two
simulators fwd-EpiSimRA and EpiSimRA (Figures A3–A5).

Figure A1. Comparing the height of the ARG (H) for different scenarios of selection in EpiSimRA
with epistatis and recombination for N = 1000, g = 250 kbp, r = 1.0× 10−8, m = {30, 60, 90, 120},
s = {0.3, 0.3, 0.3} with epistastic parameters for sisj = 0.15 for i, j ∈ [1, 3] and s1s2s3 = 0.125. The
box-and-whisker diagram summarizes the result for each m and selection scenarios such as neutral
(s = 0), single locus (s = 0.3), epistatic interaction at two loci and three loci respectively.
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Figure A2. Comparing the height of the ARG (H) for different scenarios of selection in EpiSimRA
with and without epistatis in recombination for N = 10,000, g = 250 kbp, r = 1.0 × 10−8,
m = {30, 60, 90, 120}, s = {0.3, 0.3, 0.3} with epistastic parameters for sisj = 0.15 for i, j ∈ [1, 3]
and s1s2s3 = 0.125. The box-and-whisker diagram summarizes the result for each m and selection
scenarios with and without epistatic interaction at three loci.

Figure A3. Comparing the height of the ARG (H) between fwd-EpiSimRA and EpiSimRA with
and without epistatis in two loci with recombination for N = 100, g = 250 kbp, r = 1.0× 10−8,
m = {10.20, 30, 40}, s = {0.3, 0.3} with epistastic parameters for s0s1 = 0.15. (A) The box-and-
whisker diagram summarizes the result for each. On each box, the central mark is the mean, the
edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data
points not considered outliers, and outliers are plotted individually. (B) QQ plot and (C) CDF plot of
the backward and forward models show similar distributions.
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Figure A4. Comparing the height of the ARG (H) between fwd-EpiSimRA and EpiSimRA for selection
in single locus with recombination for N = 100, g = 250 kbp, r = 1.0× 10−8, m = {10.20, 30, 40},
s = 0.3. (A) The box-and-whisker diagram summarizes the result for each. On each box, the central
mark is the mean, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers, and outliers are plotted individually. (B) QQ plot
and (C) CDF plot of the backward and forward models show similar distributions.

Figure A5. P-P plots of distributions of the height of the ARG (H) between fwd-EpiSimRa and
EpiSimRA for (A) single locus selection, (B) epistatic interaction at two loci and (C) epistatic interac-
tion at three loci g = 250K, r = 1.0× 10−8, N = 100, s = 0.3, es = {0, 0.1} and m = {10, 20, 30, 40}.
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We also provide the test statistics and p-values obtained by running K-S test which
does not reject the null hypothesis that the samples of H as returned by the two simulators
are indeed drawn from the same distribution as shown in Table A1.

Table A1. K-S test statistics with corresponding p-values showing that the probability distributions
of H as returned by fwd-sSimRA and back-sSimRA abstracts each other very closely.

3 Interacting loci es m p-Value Test Statistics1 s2 s3

10 0.1400 0.16
20 0.4431 0.12

× × × × 30 0.3439 0.13
40 0.9995 0.05

10 0.6766 0.08
20 0.7942 0.08

s1 × × × 30 0.6766 0.10
40 0.5750 0.11

10 0.9921 0.06
20 0.5560 0.11

s1 s2 × × 30 0.7942 0.09
40 0.8938 0.08

10 0.8938 0.08
20 0.9995 0.05

s1 s2 × 0.1 30 0.9710 0.06
40 0.7942 0.09

10 0.3439 0.13
20 0.7942 0.08

s1 s2 s3 × 30 0.6766 0.10
40 0.5576 0.11

10 0.9610 0.07
20 0.9610 0.07

s1 s2 s3 0.1 30 0.3556 0.13
40 0.6766 0.10
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