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Abstract: In the computational biology community there are many biological cases that are 
considered as multi-one-class classification problems. Examples include the classification of 
multiple tumor types, protein fold recognition and the molecular classification of multiple cancer 
types. In all of these cases the real world appropriately characterized negative cases or outliers are 
impractical to achieve and the positive cases might consist of different clusters, which in turn might 
lead to accuracy degradation. In this paper we present a novel algorithm named MultiKOC multi-
one-class classifiers based K-means to deal with this problem. The main idea is to execute a 
clustering algorithm over the positive samples to capture the hidden subdata of the given positive 
data, and then building up a one-class classifier for every cluster member’s examples separately: in 
other word, train the OC classifier on each piece of subdata. For a given new sample, the generated 
classifiers are applied. If it is rejected by all of those classifiers, the given sample is considered as a 
negative sample, otherwise it is a positive sample. The results of MultiKOC are compared with the 
traditional one-class, multi-one-class, ensemble one-classes and two-class methods, yielding a 
significant improvement over the one-class and like the two-class performance. 
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1. Introduction 
The aim of the one-class classification model is to distinguish data belonging to the 

target class from other possible classes [1–5]. This is an interesting problem because there 
are many real-world situations where a representative set of labeled examples for the 
second class is difficult to obtain or not available at all. This situation occurs in many real-
word problems, such as in medical diagnosis for breast cancer detection [6,7], in the 
prediction of protein–protein interactions [8], the one-class recognition of cognitive brain 
functions [3], text mining [9], functional Magnetic Resonance Imaging [10], signature 
verification [11], biometrics [12] and bioinformatics [5,13–16], and social media [17]. 

In the literature, a vast amount of research has been carried out to tackle the problem 
of how to implement a multi-class classifier by an ensemble of one-class classifiers [18,19]. 
Lai et al. [20] proposed a method for combining different one-class classifiers for the 
problem of image retrieval. They reported that combining multi-SVM-based classifiers 
improves the retrieval precision. In a similar way, Tax et al. [21] suggest combining 
different one-class classifiers to improve the performance and the robustness of the 
classification for the handwritten digit recognition problem.  

A multi-one-class SVMs technique (OC-SVM) that combines a beforehand clustering 
process for detecting hidden messages in digital images was provided by Lyu et al. [22]. 
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They showed that a multi-one-class SVM significantly simplifies the training stage of the 
classifiers and that even though the overall detection improves with an increasing number 
of hyperspheres, the false-positive rate increases considerably when the number of the 
hyperspheres increases. Menahem et al. [23] suggested a different multiple one-class 
classification approach called TUPSO, which combines multi-one-class classifiers via a 
metaclassifier. They showed that TUPSO outperforms existing methods such as the OC-
SVM. Ban et al. [24] proposed multiple one-class classifiers to deal with the nonlinear 
classification and the feature space problem. The multiple one-class classifiers were 
trained on each class in order to extract a decision function based on minimum distance 
rules. This proposed method outperforms the OC-SVM, as shown in their experiments. 

In the domain of the computational biology community much work exists on 
multiple one-class classification. A multi-one-class classification approach to detect 
novelty in gene expression data was proposed by Spinosa et al. [25]. The approach 
combined different one-class classifiers such as the OC-KNN and OC-Kmeans. For a given 
sample, the final classification is considered by the majority votes of all classifiers. It was 
shown that the robustness of the classification was increased because each classifier judges 
the sample from a different point-of-view. For the avian influenza outbreak classification 
problem, a similar approach was provided by Zhang et al. [26]. 

In classification we assume that two-class data consist of two pure compact clusters 
of data, but in many cases one of the clusters might consist of multiple subclusters. For a 
certain dataset, a special method is required and the one-class reveals insufficient results. 
In this paper we propose a new approach called MultiKOC (Multi-one-class classifier 
based on K-means) which is an ensemble of one-class classifiers that, as a first step, devises 
the positive class into clusters or-subdata using the K-means applied to the examples of 
the data (not on the features space) and in the second step it trains a one-class classifier 
for each cluster (subdata). The main idea of our approach is to execute the K-means 
clustering algorithm over the positive examples. Next, a one-class classifier for each 
cluster is constructed separately. For a given new sample, our algorithm applies all the 
generated one-class classifiers. If it is classified as positive by at least one of those 
classifiers then it will be considered as a positive sample, otherwise it is considered as a 
negative sample. In our experiments we show that the proposed approach outperforms 
the one-class. In addition, we show that MultiKOC is stable over a different number of 
clusters. 

The most significant contributions of our research are: 
1. The proposed new approach in the way that it first clusters the positive data into 

clusters that each cluster form a subdata, before the classification process.  
2. The suggested preprocessing method (i.e., the clustering phase) prevents the 

drawback of using only a single hypersphere generated by the one-class classifier 
which may not provide a particularly compact support for the training data.  

3. Experimental results showing that our new approach significantly improves the 
accuracy of the classification against other OC classifieres. 
The rest of this paper is organized as follows: Section 2 describes the necessary 

preliminaries. Our MultiKOC approach is described in Section 3 and evaluated in Section 
4. Our main discussions and future work can be found in Section 5. 

2. Preliminaries 
2.1. One-Class Methods 

In general, a binary learning (two-class) approach to a given data discovery considers 
both positive and negative classes by providing examples from the two-classes to a 
learning algorithm in order to build a classifier that will attempt to discriminate between 
them. The most common term for this kind of learning is supervised learning where the 
labels of the two-classes are known beforehand and are provided by the teacher 
(supervisor). 
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One-class uses only the information for the target class (positive class) to build a 
classifier which is able to recognize the examples belonging to its target and reject others 
as outliers. Among the many classification algorithms available, we chose four one-class 
algorithms to compare their one-class and two-class versions with our suggested tool. We 
give a brief description of different one-class classifiers and we refer to the references 
[27,28] for additional details including a description of the parameters and thresholds. The 
LIBSVM library [29] was used as implementation of the OC-SVM (one-class using the RBF 
kernel function). The WEKA software [30] that is integrated in Knime [31] was used for 
the one and two-class classifiers. 

2.2. One-Class Support Vector Machines (OC-SVM) 
Support Vector Machines (SVMs) are a learning machine developed as a two-class 

approach [32,33]. The use of one-class SVM was originally suggested by [28]. One-class 
SVM is an algorithmic method that produces a prediction function trained to “capture” 
most of the training data. For that purpose, a kernel function is used to map the data into 
a feature space where the SVM is employed to find the hyperplane with maximum margin 
from the origin of the feature space. In this use, the margin to be maximized between the 
two classes (in two-class SVM) becomes the distance between the origin and the support 
vectors which define the boundaries of the surrounding circle, (or hypersphere in high-
dimensional space) which encloses the single class.  The study of [34] presents a multi-
class classifier based on weighted one-class support vector machines (OCSVM) operating 
in the clustered feature space reporting very interesting results. 

2.3. One-Class Classifiers 
Hempstalk et al. [35] have developed many one-class classifiers that rely on the 

simple idea of using the standard two-class learning algorithm by combining density and 
class probability estimation. They have used the reference distribution to generate 
artificial data to be used as the negative examples. In other word, the two-class algorithm 
requires both positive and negative data. We assume that the positive data are given so 
one need to generate artificial negative data to be subject to the two-class classifier. The 
idea suggested by them actually allows to convert each two-class to one-class classifiers 
by generating the artificial negative data. 

The one-class classification, by combining density and class probability estimation, 
was implemented on WEKA. We have considered the related node in Knime called 
OneClassClassifier (version 3.7) in order to examine different OC classifiers. We have 
considered J48, random forest, Naïve Bayes and SVM. 

3. MultiKOC—Multi-one-class Classifiers 
As described in the previous methods, the classifier will be trained on a positive class. 

However, in real-world data, the positive class might consist of different subsets (see Figure 
1). The classic multi-one-class classifiers use the positive samples in order to train different 
classifiers, then they run the ensemble classification for new instances. As a result, if we 
train the classifier over all the points from those subsets then the negative class will be a 
part of this training procedure, yielding low performance. 
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Figure 1. The positive class consists of four subgroups. The negative class is in blue color. Each 
cluster has a different color (pink, green, black, and red). 

The main problem with this technique (i.e., classic multi-one-class) is that the one-
class classifiers do not see the negative samples (Blue points in Figure 1). As a result, the 
classifier will classify those points (blue points) as a positive class. To overcome this issue, 
we decided to train one-classifier for each subset and instead to execute one-classifier we 
apply multi-one-class classifiers using only one subset. For a given new instance all the 
one-class classifiers are employed, where if at least one of them assigns it to the positive 
class then it will be considered as a positive. Otherwise, it will be considered as a negative. 

The main challenge of this technique is to identify the subsets. For instance, in Figure 
1 we aim to identify the pink, green, black, and red subsets. Based on the fact that the 
points belonging to the same subset are more similar than the samples from different subsets 
we decided to use clustering techniques to identify the different subsets as illustrated in Figure 
2. It is important to note that here: (1) we cluster only the positive class into several clusters 
and (2) based on our empirical experiments we see that the number of clusters is not 
critical. Moreover, considering two different subsets as a one subset is a more problematic 
situation than splitting one subset into two subsets. 

To alleviate this type of data we propose the MultiKOC Classifier that works subset 
of the positive data. Our approach trains the one-class classifier on each subset of the 
positive class detected by the clustering algorithm K-means (see Figure 3) as following 
Algorithm 1: 

Algorithm1: MultiKOC Classifier Algorithm 
1. Select k—the number of the subsets; 
2. Apply the K-means clustering algorithm over the positive class (apply on the 

examples of the training set); 
3. For each cluster build a one-class classifier; 
4. Given an unlabeled instance 𝑥; 
5. Let 𝑐𝑙𝑎𝑠𝑠 ← 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒; 
6. For each classifier 𝑐𝑙𝑓௜do; 
a. If 𝑐𝑙𝑓௜ሺ𝑥ሻ is positive then 

i. 𝑐𝑙𝑎𝑠𝑠 ← 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
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Figure 2. The MultiKOC trained over the positive examples. As can be seen, the positive examples 
are classified into four different clusters. 

 
Figure 3. Illustration of the proposed method. Firstly the algorithm clusters the positive dataset 
into k clusters, then traisn a one-class classifier for each cluster. Given a new instance, if at least 
one-classifier labeled it as a positive then it will be assigned as positive, otherwise negative. 

It is important to note that the choice of the clustering algorithm and the number of 
the clusters is still a challenge. We have several proposed directions for dealing with this 
challenge, such as: (1) selecting the clustering algorithm to organize the data shapes; (2) 
using measures to evaluate the performance of the clustering; (3) using different 
hyperparameters to obtain the best clustering results (such as the K in K-means). 
However, selecting the clustering algorithm is the user choice based on the given data set. 

Finally, although the proposed method uses the K-means clustering algorithm, it is 
different from the OC-Kmeans algorithm. In OC-Kmeans, the algorithm classifies each 
new instance based on its distance from the centroids of the clusters. In contrast, our 
method builds a classifier over each cluster, and then classifies new instances using those 
classifiers. 

4. Results 
We conducted experiments on three different datasets. The first dataset is syntactic 

which consists of two classes positive and negative samples as shown on Figure 1. Here, 
the data contains two classes; positive and negative of 800 samples each. The positive 
examples are divided into four clusters beforehand. 

The second and the third data set are from the UCI repository [36]. In these data sets 
there are three classes. The Iris data set contains 3 classes of 50 samples each, where each 
class refers to a type of iris plant. The third data set is called “Thyroid gland data” which 
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contains 150 samples from class “normal”, 35 hyper, and 30 hypo class (in our experiments 
we assign normal as class 1, hyper as class 2 and hypo as class 3). 

For both data sets “Iris” and “Thyroid gland data”, each time in our experiments, 
one-class out of the three classes was considered as the negative class, while the other two 
classes were considered as positive class. The generated datasets are summarized in Table 1. 

Table 1. Description of the data sets. Positive and negative classess. 

Data Positive Class Negative Class 
SynData blue red  

Iris-setosa-versicolor setosa and versicolor verginica 
Iris-setosa-verginica setosa and verginica versicolor 

Iris-versicolor-verginica versicolor and verginica setosa 
newthyroid class 1 class 1 class 2 and class 3 

class1_2_newthyroid class 1 and class 2 class 3 
class1_3_newthyroid class 1 and class 3 class 2 
class2_3_newthyroid class 2 and class 3 class 1 

In each experiment for the OC classifiers, the positive data were split into two 
subsets— one for training and the other for testing—while all the examples from the 
negative class were used for testing and not seen in training the OC. All algorithms were 
trained using 80% of the positive class and the remaining 20%, together with all the 
negative examples, were used for testing. Each experiment was repeated one hundred 
times and the averaged results were reported. 

For the two-class classifiers we considered both the positive and negative data. 
Similarly, the data were split into training and testing sets, where 80% was used for 
training and 20% for testing. 

We tested the performance of MultiKOC using four different classifiers: J48, SVM, 
Naïve Bayes, and Random Forest versus that of the classical one-class versions of these 
classifiers. Additionally, we tested the MultiKOC with different values of k that define the 
number of clusters generated by K-means. We have considered k = 1, 2, …, 6. 

The first experiment was conducted using the J48 classifier, as can be seen in Table 2. 
The performance of the multiKOC(J48) outperforms the classic one-class classifier. 

Table 2. Results summary for J48 classifier. The column #clusters is the optimal number of clusters 
obtained for MultiKOC. 

Data #Clusters MultiKOC(J48) OC-J48 Two-J48 
SynData 3 0.263 0.405 0.999 

Iris-setosa-versicolor 3 0.325 0.000 0.960 
Iris-setosa-verginica 3 0.303 0.000 0.956 

Iris-versicolor-verginica 4 0.286 0.754 0.995 
newthyroid class 1 2 0.330 0.275 0.947 

class1_2_newthyroid 2 0.447 0.052 0.980 
class1_3_newthyroid 2 0.535 0.387 0.979 
class2_3_newthyroid 5 0.102 0.000 0.886 

Average 0.355 0.267 0.974 

The second experiment’s results are summarized in Table 3. The experiment was 
conducted using the Naïve Bayes classifier. The performance of the proposed method 
using the Naïve bayes classifier (i.e., multiKOC(J48)) outperforms the classic one-class 
Naïve Bayes classifier. 
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Table 3. Results summary for Naïve Bayes classifier. The column #clusters is the optimal number 
of clusters obtained for MultiKOC. 

Data #Clusters MultiKOC(NB) OC-NB Two-NB 
SynData 3 0.550 0.147 0.876 

Iris-setosa-versicolor 3 0.529 0.597 0.929 
Iris-setosa-verginica 3 0.443 0.271 0.937 

Iris-versicolor-verginica 4 0.498 0.963 1.000 
newthyroid class 1 2 0.771 0.768 0.954 

class1_2_newthyroid 2 0.816 0.854 0.986 
class1_3_newthyroid 2 0.723 0.720 0.986 
class2_3_newthyroid 5 0.083 0.081 0.873 

Average 0.619 0.617 0.952 

The third experiment was conducted using the Support Vector Machine classifier, as 
can be seen in Table 4. The performance of the multiKOC(SVM) outperforms the classic 
one-class SVM classifier in five experiments out of eight. Moreover, as can be seen in Table 
4, the averaged performance of the new proposed method outperforms the classical one 
by more than 10%. 

Table 4. Results summary for Support Vector Machine classifier. The column #clusters is the 
optimal number of clusters obtained for MultiKOC. 

Data #Clusters MultiKOC(SVM) OC-SVM Two-SVM 
SynData 3 0.150 0.157 1.000 

Iris-setosa-versicolor 3 0.792 0.691 0.980 
Iris-setosa-verginica 3 0.258 0.275 0.979 

Iris-versicolor-verginica 4 0.963 0.682 1.000 
newthyroid class 1 2 0.355 0.242 0.971 

class1_2_newthyroid 2 0.676 0.592 0.925 
class1_3_newthyroid 2 0.498 0.302 0.932 
class2_3_newthyroid 5 0.082 0.088 0.944 

Average 0.527 0.420 0.970 

The fourth experiment was conducted using the Random Forest classifier, as can be 
seen in Table 5. The performance of the multiKOC(RF) was equivalent to the result of the 
classic one-class classifier. 

Table 5. Results summary for Random Forest classifier. The column #clusters is the optimal 
number of clusters obtained for MultiKOC. 

Data #Clusters MultiKOC(RF) OC-RF Two-RF 
SynData 3 0.167 0.357 0.999 

Iris-setosa-versicolor 3 0.333 0.312 0.966 
Iris-setosa-verginica 3 0.318 0.143 0.959 

Iris-versicolor-verginica 4 0.433 0.367 1.000 
newthyroid class 1 2 0.443 0.422 0.966 

class1_2_newthyroid 2 0.610 0.747 0.987 
class1_3_newthyroid 2 0.559 0.478 0.987 
class2_3_newthyroid 5 0.085 0.298 0.900 

Average 0.409 0.404 0.981 
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Moreover, we can see that in all the algorithms above, the proposed MultiKOC 
methods outperform or are comparable to the existing methods. The results are 
summarized in Table 6. 

Table 6. Results summary for all the classifiers from the different datasets. 

Classifier MultiKOC OC 
J48 0.355 0.267 

Naïve Bayes 0.619 0.617 
Support Vector Machine 0.527 0.420 

Random Forest 0.409 0.404 

Another experiment was conducted to check the effectiveness of the number of the 
clusters on the performance of the MultiKOC as can be seen in Tables 7–9 for each dataset. 

Table 7. Results summary for MultiKOC method with 2, 3, 4, 5 clusters on Synthetic data. 

Classifier 2 3 4 5 
MultiKOC(J48) 0.233 0.263 0.167 0.167 

MultiKOC(SVM) 0.148 0.150 0.153 0.158 
MultiKOC(NB) 0.186 0.550 0.514 0.337 
MultiKOC(RF) 0.167 0.167 0.167 0.167 

Table 8. Results summary for MultiKOC method with 2, 3, 4, 5 clusters on Iris-setosa-versicolor data. 

Classifier 2 3 4 5 
MultiKOC(J48) 0.344 0.325 0.290 0.272 

MultiKOC(SVM) 0.770 0.792 0.679 0.695 
MultiKOC(NB) 0.388 0.529 0.547 0.379 
MultiKOC(RF) 0.333 0.333 0.419 0.371 

Table 9. Results summary for MultiKOC method with 2, 3, 4, 5 clusters on new thyroid class 1  
data. 

Classifier 2 3 4 5 
MultiKOC(J48) 0.356 0.330 0.316 0.316 

MultiKOC(SVM) 0.369 0.355 0.347 0.342 
MultiKOC(NB) 0.505 0.771 0.437 0.490 
MultiKOC(RF) 0.385 0.443 0.373 0.347 

In conclusion, in general, the performance of MultiKOC algorithm does not depend 
in the number of the clusters. There are few cases that the performance of some classifiers 
was affected by the number of clusters, as a result, our future work will be focus on this 
issue. 

5. Discussion 
This study suggests MultiKOC, a novel approach for performing one-class 

classification that is based on partitioning the training data into clusters to model each 
cluster by the one-class model. 

The current results show that it is possible to build up a multi-one-class classifier 
with a combined clustering beforehand process based only on positive examples yielding 
a significant improvement over the one-class and similar results as the two-class. 
However, the MultiKOC would include more interpretable classifiers than the two-class 
version as one can perform a deep analysis to explore the hidden structure of the data. 
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Additionally, MultiKOC is robust at dealing with outliering examples, while the one-class 
version might add more clusters to capture those outliers and reduce their influence on 
the performance of the classifications. 

Further research could proceed in several interesting directions. First, the suitability 
of the framework of our approach for different data types could be investigated. Second, 
it would be interesting to apply our approach to other types of classifiers and to more 
robust clustering methods such as Mean-Shift [37]. 

In the current version of MultiKOC we have considered only a one-class algorithm. 
One future approach is to perform an ensemble of OC and suggest a suitable voting 
procedure to assign the label to the new unlabeled instance. 
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