
algorithms

Article

Self-Configuring (1 + 1)-Evolutionary Algorithm for the
Continuous p-Median Problem with Agglomerative Mutation †

Lev Kazakovtsev * , Ivan Rozhnov and Guzel Shkaberina

����������
�������

Citation: Kazakovtsev, L.;

Rozhnov, I.; Shkaberina, G.

Self-Configuring (1 + 1)-Evolutionary

Algorithm for the Continuous

p-Median Problem with

Agglomerative Mutation. Algorithms

2021, 14, 130. https://doi.org/

10.3390/a14050130

Academic Editor: Eugene Semenkin

Received: 28 March 2021

Accepted: 18 April 2021

Published: 22 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Reshetnev Siberian State, University of Science and Technology, Institute of Informatics and Telecommunications,
660037 Krasnoyarsk, Russia; ris2005@mail.ru (I.R.); z_guzel@mail.ru (G.S.)
* Correspondence: levk@bk.ru
† Comparative study of local search in SWAP and agglomerative neighbourhoods for the continuous p-median

problem. In Proceedings of the 9th International Workshop on Mathematical Models and their Applications,
Krasnoyarsk, Russia, 16–18 November 2020.

Abstract: The continuous p-median problem (CPMP) is one of the most popular and widely used
models in location theory that minimizes the sum of distances from known demand points to the
sought points called centers or medians. This NP-hard location problem is also useful for clustering
(automatic grouping). In this case, sought points are considered as cluster centers. Unlike similar
k-means model, p-median clustering is less sensitive to noisy data and appearance of the outliers
(separately located demand points that do not belong to any cluster). Local search algorithms includ-
ing Variable Neighborhood Search as well as evolutionary algorithms demonstrate rather precise
results. Various algorithms based on the use of greedy agglomerative procedures are capable of
obtaining very accurate results that are difficult to improve on with other methods. The computa-
tional complexity of such procedures limits their use for large problems, although computations
on massively parallel systems significantly expand their capabilities. In addition, the efficiency of
agglomerative procedures is highly dependent on the setting of their parameters. For the majority
of practically important p-median problems, one can choose a very efficient algorithm based on
the agglomerative procedures. However, the parameters of such algorithms, which ensure their
high efficiency, are difficult to predict. We introduce the concept of the AGGLr neighborhood based
on the application of the agglomerative procedure, and investigate the search efficiency in such a
neighborhood depending on its parameter r. Using the similarities between local search algorithms
and (1 + 1)-evolutionary algorithms, as well as the ability of the latter to adapt their search parameters,
we propose a new algorithm based on a greedy agglomerative procedure with the automatically
tuned parameter r. Our new algorithm does not require preliminary tuning of the parameter r of
the agglomerative procedure, adjusting this parameter online, thus representing a more versatile
computational tool. The advantages of the new algorithm are shown experimentally on problems
with a data volume of up to 2,000,000 demand points.

Keywords: p-median; (1 + 1)-EA; location problems; evolutionary computation

1. Introduction
1.1. Problem Statement

One of the central problems of location theory is the p-median problem. The goal of
the continuous p-median problem is to find p points (centers, medians) such that the sum
of the distances from N known points (called demand points or data vectors) to the nearest
of the p centers reaches its minimum.

Algorithms 2021, 14, 130. https://doi.org/10.3390/a14050130 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0667-4001
https://doi.org/10.3390/a14050130
https://doi.org/10.3390/a14050130
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14050130
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14050130?type=check_update&version=2

Algorithms 2021, 14, 130 2 of 30

Let us assume that we have N known demand points A1, . . . , AN in a continuous space,
Ai = (ai,1, . . . , ai,d), Ai ∈ Rd, and S = {X1, . . . , Xp}⊂ Rd is the set of sought points (medians,
centers). The objective function (sum of distances) of the p-median problem is [1]:

F
(
X1, . . . , Xp

)
= F(S) =

N

∑
i=1

minj=1,pL(Ai, Xj) → minX1,...,Xp∈Rd . (1)

Here, integer p must be known in advance.
The distance metric L (·,·) between objects is the key concept in the location theory.

As a rule, a metric is understood as a function or an equation that determines the distance
between any points and classes in a metric space [2]. A metric space is a set of points with
a defined distance function. The distance of order l between two points is determined by
the Minkowski function [3]:

Ll
(
Xj, Ai

)
=

(
d

∑
k=1

∣∣∣xj,k − ai,k

∣∣∣l) 1
l

. (2)

The parameter l is determined by the researcher. We can use it to progressively increase
or decrease the weight of the ith variable. Special cases of the Minkowski function are
distinguished by the value of l. For l = 2 the function calculates Euclidean metric between
two points. By default, location problems use Euclidean metric:

L2
(
Xj, Ai

)
=

(
d

∑
k=1

(
xj,k − ai,k

)2
)1/2

(3)

Here, Xj =
(

xj,1, . . . , xj,k

)
∀ j = 1, p, k = 1, d are sought centers, also called medians,

Ai = (ai,1, . . . , ai,k) ∀ i = 1, N are known points called demand points or data vectors.
For l = 1, the function calculates Manhattan distance [3]. For l = +∞, the function

calculates Tschebychev distance (L∞ metric), and for l = 0, the function calculates Hamming
distance [4].

Weber, in his work [5], investigated the problem of finding the center for a set of
weighted points (the Weber problem or 1-median problem [5]) which is a special (simplest)
case of the problem (1) for p = 1. At the same time, the Weber problem is a generalization
of a similar Fermat problem [6] with three demand points (N = 3, p = 1). Weiszfeld, in his
work [7], proved a theorem formulated by Sturm [8] and derived a sequence that converged
to the optimal solution of the Weber problem. This was a version of the gradient descent
algorithm [9] for the Weber problem.

The clustering problem is to divide a given set (sample) of N objects (data vectors) into
p disjoint subsets, called clusters, so that each cluster consists of similar objects, and the
objects of different clusters differ significantly. In the process of grouping a set of objects
into certain groups (subsets), the general features of the object and the applied algorithms
play an important role. Some of the automatic grouping problems can be considered from
the point of view of location problems. The most popular k-means clustering model [10]
can be described by Equation (1) where L (·,·) is the squared Euclidean distance between
two points. The existence of a trivial non-iterative solution of the corresponding Weber
problem with the squared Euclidean distances [11] makes the k-means problem one of the
most popular optimization models for clustering. A disadvantage of this model is its high
sensitivity to the outliers (separately located data points), and the p-median model is free
from this drawback.

The network p-median problem [12] is to find the p nodes on a network that minimize
the sum of the weighted distances from all nodes to the nearest of the p nodes selected
as centers (medians). The network and continuous p-median problems are proved to be
NP-hard [13,14].

Algorithms 2021, 14, 130 3 of 30

1.2. State-of-the-Art

Weiszfeld proposed an iterative procedure for solving the Weber problem (1-median
problem), one of the simplest location problems, based on the iterative weighted least
squares method [7]. This algorithm determines a set of weights that are inversely pro-
portional to the distances from the current estimate to the sample points, and creates a
new estimate that is the weighted average of the sample according to those weights. The
Weiszfeld procedure is very slow if the solution coincides with one of the demand points.
Many researchers have developed modifications of the Weiszfeld algorithm [6,15–20] to
avoid this disadvantage. The Weiszfeld algorithm can be embedded into more complex
algorithms such as the Alternate Location-Allocation (ALA) procedure also called Lloyd’s
algorithm. This algorithm alternates the allocation step which divides the demand points
into p groups in accordance with the number of the closest center and the location step
which recalculates the center of each group (i.e., solves the Weber problem for each of
groups). The idea of the ALA algorithm is applicable for both network and continuous
p-median problems.

Reviews of various solution techniques for p-median problems can be found in [11,21,22].
Hakimi considered the problem of finding the median of a graph (the Weber problem

on a network) [12] and generalized this problem to finding the p-medians [23]. The
authors of [24–26] proposed a branch-and-bounds algorithm solving the network p-median
problem, and in [27,28] the authors considered algorithms based on graph theory for rather
small problems. Lagrangian relaxations enables us to obtain an approximate solution to
medium-sized problems [29,30].

Many heuristic approaches have been developed for large-scale problems. The sim-
plest approaches consist in local search, in which a set of network nodes adjacent to the
nodes of the current intermediate solution is considered as a search neighborhood [31,32].
Drezner et al. [33–36] presented local search approaches for solving continuous p-median loca-
tion problems including the Variable Neighborhood Search (VNS). Bernabe-Loranca et al. [37]
introduce the use of a Hybrid VNS/TABU Algorithm to determine the correct location of
p centers. In addition, Drezner et al. [34] proposed heuristic procedures including the
genetic algorithm (GA), for rather small datasets.

Modern literature on location methods offers many heuristic approaches [21,38] to
setting the initial centers of the ALA procedure, which are mainly various evolutionary
and random search methods. A standard local search algorithm starts with some initial
solution S and goes to a neighboring solution if this solution turns out to be superior.
Moreover, finding the set of neighbor solutions n(S) is the key issue. Elements of this
set are formed by applying a certain procedure to a solution S. At each local search step,
the neighborhood function n(S) specifies the set of possible search directions [39,40] and
determines the efficiency of the algorithm [41].

Local search methods have been developed in metaheuristics. Mladenovich and
Hansen [41–44] proposed a search algorithm with alternating neighborhoods (Variable
Neighborhood Search, VNS). In works of Kochetov, Mladenovich, and Hansen [41,42,45–48],
the authors provide an overview of local search methods based on the idea of alternating
neighborhoods, including methods of combining these methods with other metaheuristics
which reduce the dependence of the result on the choice of the neighborhood. Flexibility
and high efficiency explain the VNS competitiveness in solving NP-hard problems, in par-
ticular, for solving automatic grouping and location problems [49,50], multiple Weber prob-
lem [51], p-median problem [50,51], and many others. For example, VNS algorithms [35,52]
or agglomerative algorithms [53,54] demonstrate good results for the p-median problem.
Initialization procedures for local search algorithms may include random seeding or an
accurate seeding based on the estimation of the demand points density [38]. However,
multiple launches of simple local search algorithms from various randomly generated
solutions do not provide a solution to a problem which is close to the global optimum.
More advanced algorithms allow us to obtain the objective function values many times
better than the local search methods [52].

Algorithms 2021, 14, 130 4 of 30

Evolutionary algorithms are a class of search algorithms that are often used as func-
tion optimizers for static objective functions. Using specific evolutionary operators, the
evolutionary algorithms recombine and modify a set (population) of candidate solutions
to a problem. Various efficient evolutionary algorithms were developed for almost all
types of optimization problems including machine learning problems. The use of the
genetic and other evolutionary algorithms for solving discrete and continuous location
problems [55–60] is also a popular approach. For example, in [61], the authors proposed the
online-learning-based reference vector evolutionary many-objective algorithm guided by
the reference-vector-based decomposition strategy which employs a learning-based tech-
nology to enhance its generalization capability. This strategy employs a learning automaton
to obtain the feature of the problem and the searching state according to the feedback in-
formation from the environment to adjust the mutation strategy for each sub-problem
in different status situations and enhance the optimization performance. The authors
use clustering to form groups of reference vectors with the same mutation strategy. The
work [62] focuses on a discrete optimization problem of improving the seaside operations
at marine container terminals. The authors proposed a new Adaptive Island Evolutionary
Algorithm for the berth scheduling problem, aiming to minimize the total weighted service
cost of vessels. The developed algorithm simultaneously executes separate evolutionary
algorithms in parallel on its “islands” (subpopulations of solutions) and exchanges individ-
uals between the “islands” based on an adaptive mechanism, which enables more efficient
exploration of the problem search space. The authors of [63] proposed an alternative
many-objective EA, called AnD. In evolutionary many-objective optimization, there exists
a problem of selecting some promising individuals from the population. The AnD uses
two strategies: angle-based selection and shift-based density estimation, which are em-
ployed to remove poor individuals one by one. In a pair of individuals with the minimum
vector angle (most similar search directions), one of the individuals is considered as a
candidate for elimination. In addition, the EA is a popular solution methodology, showing
a promising performance in solving different types of vehicle routing problems [64,65].
In [66], the authors presented an efficient EA developed to solve the mathematical model,
which addresses the vehicle routing problem with a “factory-in-a-box”. In [67], the authors
proposed an approach to distinguish between bacterial and viral meningitis using genetic
programming and decision trees able to determine the typology of meningitis for any
combination of clinical parameters by achieving 100% of sensitivity.

The EAs are popular for training in various the machine learning methods. In [68], the
Salp Swam Algorithm (SSA) was deployed in training the Multilayer Perceptron (MLP) for
data classification. The proposed method shows supremacy in results as compared with
other evolutionary algorithm-based machine learning problems.

In the case of p-median and similar location problems, evolutionary algorithms re-
combine the initial solution obtained by the ALA procedure or a local search algorithm.
In genetic algorithms, a set (population) of solutions is successively improved with the
use special genetic operators (algorithms) of initialization, selection, crossover, and mu-
tation. The crossover operator recombines the elements (“genes”) of two parent solution
for generating a new (“offspring”) solution. One-point and two-point crossover which are
standard for many other genetic algorithms have been proved to present drawbacks when
applied to problems such as k-means and p-median problems [69] due to generating the
offspring solutions too far from their parents. The GAs with the greedy agglomerative
crossover operator demonstrates better results [58,70,71]. In this crossover operator, as well
as in the IBC algorithms [53,54], the number of centers is successively reduced down to
the desired number p. Being originally developed for the network p-median problems,
they were adapted for continuous p-median and k-means problems [72]. Metaheuristic
approaches, such as genetic algorithms [73], are aimed at finding the global optimum.
However, in large-scale instances, such approaches require very significant computational
costs, especially if they are adapted to solving continuous problems [58]. The greedy
agglomerative procedure is a computationally expensive algorithm, especially in the case

Algorithms 2021, 14, 130 5 of 30

of continuous problems when it includes multiple execution of a local search algorithm.
However, this procedure allows us to find solutions that are difficult to improve by other
methods without significantly increasing the calculation time.

The concept of the usage of greedy agglomerative procedures as the crossover operator
in genetic algorithms is as follows. First, for two selected parent solutions (sets of medians)
S1 and S2, the algorithm constructs an intermediate solution S’ adding r randomly selected
medians (centers) from the second parent solution S2 to the first solution S1: S′ = S1 ∪ S2

′′ .
Here, S2

′’ is a randomly chosen subset of S2, |S2| = r. Integer parameter r can be given in
advance (often, r = 1 or r = p). After improving this new intermediate solution with the ALA
or local search algorithm, one or more excessive medians are removed until |S’| = p. At each
iteration, the greedy agglomerative procedure removes such a median that its elimination
results in the least significant increase of the objective Function (1).

In [74], the authors systematized approaches to constructing algorithms for searching
in neighborhoods (denoted as GREEDYr) formed using greedy algorithmic procedures for
the k-means problem. Searching in SWAP and GREEDYr neighborhoods has advantages
over the simplest Lloyd’s procedure [75,76]. However, the results strongly depend on the
parameter of the greedy agglomerative procedures, and the optimal values of these param-
eters differ significantly for test problems. However, the GREEDYr search outperforms
the SWAP search in terms of accuracy. Moreover, such algorithms often outperform more
complex genetic algorithms.

Embedding the computationally expensive greedy agglomerative procedures into
metaheuristics is even more computationally expensive, which limits the application of such
a combination of algorithms to large problems. Nevertheless, the development of massively
parallel systems expands the capabilities of such algorithmic combinations [74,77].

The (1 + 1)-evolutionary algorithms or (1 + 1)-EAs are similar with the local search
and VNS algorithms but they have no clearly defined neighborhood; therefore, they can
reach in one single step any point in the search space [78]. Unlike genetic algorithms, in
(1 + 1)-EAs, there is no true population of solutions, and usually, they successively improve
a single current solution with the application of the mutation operator to it.

In an (1 + 1)-evolutionary algorithm [78] for pseudo-Boolean optimization problems,
the bitwise mutation operator flips each bit independently of the others with some proba-
bility pm that depends on the length of the bit string. The current bit string is replaced by
the new one if the fitness of the current bit string is not superior to the fitness of the new
string.

In their work, Borisovsky and Eremeev made the study on performance of the
(1 + 1)–EA [79] and compared other evolutionary algorithms to the (1 + 1)–EA [80]. In [80],
the authors studied the conditions under which (1 + 1)-EA is competitive with other evo-
lutionary algorithms (EAs) in terms of the distribution of the fitness function at a given
iteration and relative to the average optimization time. Their approach is applicable when
the (1 + 1)-EA mutation operator prevails in the reproduction operator of the evolutionary
algorithm. In this case, the lower bounds obtained for the expected optimization time of
(1 + 1)-EA can be extended to other EAs based on the dominant operator. They proved
that under the domination condition it is an optimal search technique with respect to the
probability of finding solutions of sufficient quality after a given number of iterations. In
the case of domination, the (1 + 1)-EA is also preferable with respect to the expected fitness
at any iteration and the expected optimization time.

Reference [81] considers the scenario of the (1 + 1)-EA and randomized local search
(RLS) with memory. The authors present two new algorithms: (1 + 1)-EA-m (with a
raw list and hashtable option) and RLS-m+ (and RLS-m if the function is known in ad-
vance to be unimodal). These algorithms can be regarded as very simple forms of tabu
search. Empirical results, with a reasonable fitness evaluation time assumption, verify that
(1 + 1)-EA-m and RLS-m+ are superior to their conventional counterparts. In paper [82],
the authors investigate the (1 + 1)-EA for optimizing functions over the space {0, ..., r}n,
where r is a positive integer. They show that for linear functions over {0, 1, 2}n, the ex-

Algorithms 2021, 14, 130 6 of 30

pected runtime of this algorithm is O(n log n). This result generalizes an existing result
on pseudo-Boolean functions and is derived using drift analysis. They also show that for
large values of r, no upper bound for the runtime of the (1 + 1)-EA for linear function on
{0, ..., r}n can be obtained with this approach nor with any other approach based on drift
analysis with weight-independent linear potential functions.

In [83], the authors investigate the performance of the (1 + 1)-EA, on the maximum
independent set problem (MISP) from a theoretical point of view. They showed that the
(1 + 1)-EA can obtain an approximation ratio of (∆ + 1)/2 on this problem in expected time
O(n4), where ∆ and n denote the maximum vertex degree and the number of nodes in a
graph, respectively. They reveal that the (1 + 1)-EA has better a performance than the local
search algorithm on an instance of MISP and demonstrate that the local search algorithm
with 3-flip neighborhood will be trapped in local optimum while the (1 + 1)-EA can find
the global optimum in expected running time O(n4).

In [84], the authors theoretically investigate the approximation performance of the
(1 + 1)-EA, on the minimum degree spanning tree (MDST) problem which is a classical
NP-hard optimization problem and show its capability of obtaining an approximate solu-
tion for the MDST problem with a limited maximum degree in expected polynomial time.
In [85], the authors analyze the expected runtime of the (1 + 1)-EA solving robust linear
optimization problems (i.e., linear problems under robust scenarios) with a cardinality con-
straint. They consider two common robust scenarios, i.e., deletion-robust and worst-case,
and disclose the potential of (1 + 1)-EAs for robust optimization.

An interesting approach was proposed in [86]. The authors propose a (1 + 1)-fast
evolutionary algorithm ((1 + 1)-FEA) with an original approach to the adjustment of the
mutation rate. This algorithm uses a random variable λ = ∈

{
1, n
}

which takes its values in
accordance with some distribution D. The mutation operator in this (1 + 1)-FEA generates
an instance λ’ of λ in accordance with this distribution, applies the mutation with the
mutation rate λ’ to the current solution (replacing λ’ bits with random values), and, if the
new obtained solution improves the objective function value, then it replaces the current
solution with the new one and corrects the probability distribution D so that the probability
of generating the current value λ’ increases. The worst case estimation of (1 + 1)-FEA for
any black box function is significantly smaller than that for the original (1 + 1)-EA with a
random mutation rate.

1.3. Research Gap and Our Contribution

Many important practical problems require obtaining a solution to a problem with
a minimum error. For the p-median problem, such cases may include optimal location
problems with a high cost of error, determined, for example, by the cost of transportation
between sites. If the p-median problem is considered as a mathematical statement for
clustering problems, it may be necessary to obtain a solution that would be difficult to
improve by known methods without a multiple increase in the computation time. When
comparing the accuracy of various algorithms, we need a reference solution which is not
necessarily the exact global optimum of the problem, but at the same time is the best known
solution. In this work, aimed at obtaining the most accurate solutions, we understand the
accuracy of the algorithm exclusively as the achieved value of the objective function.

Algorithms based on the use of greedy agglomerative procedures, despite their com-
putational costs without guaranteeing an exact result or even a result with a predetermined
accuracy, enable one to obtain solutions to practical p-median problems that are difficult
to improve by other known methods in comparable time [71,77]. Such algorithms are
extremely sensitive to the parameter r of these procedures which determines the number of
centers (medians) added to the intermediate solution [77]. In the field of (1 + 1)-evolutionary
algorithms for pseudo-Boolean optimization problems, there are known approaches that
can adjust a similar mutation parameter that determines the number of replaced bits in the
current solution.

The work hypotheses of this article are as follows:

Algorithms 2021, 14, 130 7 of 30

1. The efficiency of the greedy agglomerative procedure applied to successive improve-
ment of the p-median problem solution embedded into a more complex algorithm,
such as evolutionary algorithm, highly depends on its parameter r (a number of
excessive centers to be eliminated), and this dependence is hardly predictable.

2. The principle of adjusting the numerical parameter of the mutation operator by chang-
ing the probability distribution of its values, which is used in (1 + 1)-evolutionary
algorithms with 0–1 coding of solutions for pseudo-Boolean optimization problems,
can also be effectively applied to adjust the numerical parameter of the agglomerative
mutation operator based on the use of agglomerative procedures in an evolutionary
algorithm with real coding of solutions when solving the p-median problems.

We propose a new algorithm based on the ideas of known search algorithms with
greedy agglomerative procedures and (1 + 1)-evolutionary algorithms which successively
improves the current solution with the use of greedy agglomerative procedures with
the randomly chosen value of parameter r and simultaneously adjusts the probability
distribution of parameter r in such procedures.

This article is an extended version of the paper presented at the International Workshop
on Mathematical Models and their Applications (IWMMA’2020, 16–18 November 2020,
Krasnoyarsk, Russia) [79].

The rest of this article is organized as follows. In Section 2, we describe known al-
gorithms for the p-median problem including the algorithms with greedy agglomerative
procedures. We investigate the dependence of their efficiency on parameter r. We pro-
pose the a massive parallel (CUDA) version for the greedy agglomerative procedures.
In addition, using the similarities between local search algorithms and (1 + 1)-evolutionary
algorithms, as well as the ability of the latter to adapt their search parameters, we propose a
new algorithm based on the use of greedy agglomerative procedures with the automatically
tuned parameter r. In Section 3, we describe the results of our computational experiments
on various datasets up to 2 million demand points. Experiments demonstrate the advan-
tage of our new algorithm in comparison with known ones. In Section 4, we discuss the
applicability of the new algorithm to practical problems and propose possible directions
for the further development of such algorithms. In Section 5, we give a short conclusion.

2. Methods
2.1. The Basic Algorithmic Approaches

Based on the algorithm proposed by Lloyd [75] for discrete p-median problems
on a network, Alternate Location-Allocation (ALA) procedure [87,88] also known as the
standard k-means procedure [76] the most popular algorithm for the k-means and p-median
problems. This simple algorithm can be considered as a special case of similar Expectation
Maximization (EM) procedure [89–92]. The ALA procedure sequentially improves an
intermediate solution, enabling us to find a local minimum of the objective Function (1).

In terms of continuous optimization, the ALA procedure is not a true local search
algorithm since it searches for a new solution not necessarily in the ε-neighborhood of the
existing solution.

However, it usually outperforms simpler local optimization methods: gradient or
coordinate descent, etc.

In the case of a p-median problem, Algorithm 1 solves the Weber problem (i.e., cen-
ter search problem or a 1-median problem) for each cluster. The iterative Weiszfeld procedure
gives an approximate solution to the Weber problem with given accuracy ε1.
At each subsequent iteration, the coordinates of the solution (center) X′ of a subset
S′ = {A′1, . . . , A′N′} ⊂ {A1, . . . , AN} of N′ demand points are calculated from the previ-
ous solution X as follows:

X′ ←∑N′

i=1
A′ i

L(X, A′ i)
/ ∑N′

i=1
1

L(X, A′ i)
(4)

Algorithms 2021, 14, 130 8 of 30

Algorithm 1 ALA (): Alternate Location-Allocation (Lloyd’s procedure)

Require: Set S of p initial centers S = { X1, . . . , Xp
}

.
1. For each center Xi, i = 1, p, define its cluster Ci ⊂ {A1, . . . , AN} as a subset of demand points
having the same closest center Xi.
2. For each cluster Ci, i = 1, p, recalculate its center Xi, i.e., solve the Weber problem:

Xi ← argminX ∑
Y∈Ci

L(X, Y)

3. Repeat from Step 1 if Steps 1, 2 made any changes.

These calculations are repeated until L(X, X′) < ε1. Usually, the Weiszfeld procedure
converges quickly. For the majority of problems, no more than 50 iterations are required in
order to reach the accuracy limits of the double data type except include the cases where
the solution coincides with one of the demand points. Such situations are easily bypassed:

X′ ←
∑

i∈{
−

1,N′},L(X,A′ i)<ε2

[
A′ i

L(X,A′ i)

]
∑

i∈{
−

1,N′},L(X,A′ i)<ε2

[
1

L(X,A′ i)

] (5)

Here, ε2 < ε1 is a minimum distance at which two points are considered different.
Embedding the Weiszfeld iterative procedure in an iterative ALA algorithm, which,

in turn, is embedded in more complex algorithms, makes such algorithmic constructions
difficult to use effectively with large-scale problems. Steps 1 and 2 of the ALA algorithm are
aimed at the reduction of the objective function. Knowing the coordinates of the centers Xi,
without changing their coordinates, Step 1 redistributes the demand points Ai, . . . , AN
among the centers (i.e., forms clusters of demand points around the centers) so that the sum
of the distances from each of the demand points to the nearest center becomes minimal.
Step 1 solves a simplest simple discrete optimization problem. Step 2 solves a series of
continuous optimization problems (Weber problems) which minimize the total distance
from the center Xi to the demand points A′1, . . . , A′N′ of its cluster. Each iteration of the
Weiszfeld procedure (4) is also aimed at gradual improvement of the current solution X.
For a gradual improvement of solutions, the Weber problem does not have to be solved to
a given accuracy ε1 at each iteration of the ALA algorithm. Thus, Steps 2 and 3 can take the
following form:

Step 2: For each cluster Ci, i = 1, p, correct its center Xi with an iteration of
Weiszfeld procedure:

Xi ←
∑Y∈Ci ,L(X,Y)<ε2

[
Y

L(Xi ,Y)

]
∑Y∈Ci ,L(X,Y)<ε2

[
1

L(Xi ,Y)

] (6)

Step 3: Repeat from Step 1 if Steps 1 and 2 moved at least one of centers Xi by a
distance exceeding ε1.

The essence of the VNS [42] is that for some intermediate solution, we determine a set
of neighborhoods of this solution. From this set, the next type of neighborhood is selected,
and we apply the corresponding local search algorithm for searching in this solution.
If this algorithm finds an improved solution, the intermediate solution is replaced by this
new solution, and the search continues in the same neighborhood. If the next local search
algorithm cannot improve the solution, a new search neighborhood is selected from the set
of neighborhoods. The stop criterion is the time limitation.

Several algorithms use only two types of neighborhoods: the first is ε-neighborhood
(i.e., at this step, the problem of continuous optimization is solved). For example, the search
in SWAP neighborhood is a popular method for solving p-median and k-means problems.
The j-means [93] algorithm using these neighborhoods is one of the most accurate methods
for solving such problems. The essence of the search in SWAP neighborhoods is as follows.

Algorithms 2021, 14, 130 9 of 30

Let S = {X1, . . . , Xp} be the local optimum of the p-median problem in ε-neighborhood
(such a solution can be obtained by the ALA algorithm or other algorithms such as gradient
descent). If the value of the objective function has improved due to this replacement, then
the search continues in the ε-neighborhood of the new obtained solution (the problem of
continuous optimization is solved again).

The search algorithm makes an attempt to replace some of the medians X1, . . . , Xp
with one of the data vectors A1, . . . AN. Search in the SWAP neighborhoods can be regular
(all possible replacements are enumerated) or randomized (the medians and demand
points are randomly picked for the replacement).

Let us denote by SWAPr a neighborhood (set of solutions) of a current solution
obtained by the replacement of r medians by demand points.

In our computational experiments (described in detail in Section 3) on various prob-
lems from repositories [94,95], we investigated the dependence of the efficiency (ability to
reach the minimum values of the objective functions) of the search in SWAPr neighborhood
on the parameter r. The results obtained after the fixed runtime are given in Figure 1.
Obviously, these results are highly dependent on r.

Algorithms 2021, 14, x FOR PEER REVIEW 9 of 31

search algorithm cannot improve the solution, a new search neighborhood is selected
from the set of neighborhoods. The stop criterion is the time limitation.

Several algorithms use only two types of neighborhoods: the first is ε-neighborhood
(i.e., at this step, the problem of continuous optimization is solved). For example, the
search in SWAP neighborhood is a popular method for solving p-median and k-means
problems. The j-means [93] algorithm using these neighborhoods is one of the most accu-
rate methods for solving such problems. The essence of the search in SWAP neighbor-
hoods is as follows. Let S = {X1, …, Xp} be the local optimum of the p-median problem in
ε-neighborhood (such a solution can be obtained by the ALA algorithm or other algo-
rithms such as gradient descent). If the value of the objective function has improved due
to this replacement, then the search continues in the ε-neighborhood of the new obtained
solution (the problem of continuous optimization is solved again).

The search algorithm makes an attempt to replace some of the medians X1, …, Xp
with one of the data vectors A1, …AN. Search in the SWAP neighborhoods can be regular
(all possible replacements are enumerated) or randomized (the medians and demand
points are randomly picked for the replacement).

Let us denote by SWAPr a neighborhood (set of solutions) of a current solution ob-
tained by the replacement of r medians by demand points.

In our computational experiments (described in detail in Section 3) on various prob-
lems from repositories [94,95], we investigated the dependence of the efficiency (ability to
reach the minimum values of the objective functions) of the search in SWAPr neighbor-
hood on the parameter r. The results obtained after the fixed runtime are given in Figure
1. Obviously, these results are highly dependent on r.

(a) (b)

(c) (d)

Figure 1. Comparative results of the search in SWAPr neighborhoods. Dependence of the result (1) on r: (a) BIRCH3 da-
taset, search for 300 centers, 100,000 data vectors, time limitation 10 s; (b,c) IHEPC dataset, search for 100 and 300 centers,
respectively, 2,075,259 data vectors, time limitation 300 s; (d) Mopsi-Finland dataset, search for 30 centers, 13467 data
vectors, time limitation 5 s.

Figure 1. Comparative results of the search in SWAPr neighborhoods. Dependence of the result (1) on r: (a) BIRCH3
dataset, search for 300 centers, 100,000 data vectors, time limitation 10 s; (b,c) IHEPC dataset, search for 100 and 300 centers,
respectively, 2,075,259 data vectors, time limitation 300 s; (d) Mopsi-Finland dataset, search for 30 centers, 13,467 data
vectors, time limitation 5 s.

2.2. Greedy Agglomerative Procedures

The agglomerative approach to solving the p-median problem is often successful [70].
To solve the p-median problem in a continuous space, the authors of [60] use genetic
algorithms with various crossover operators based on greedy agglomerative procedures.
Alp, Erkut, and Drezner in [70] presented a genetic algorithm for facility location problems,
where evolution is facilitated by a greedy agglomerative heuristic procedure. A genetic

Algorithms 2021, 14, 130 10 of 30

algorithm with a faster greedy heuristic procedure for clustering and location problems
was also proposed in [71].

Greedy agglomerative procedures can be used as independent algorithms or em-
bedded in VNS or evolutionary algorithms [52,96]. Such procedures can be described as
follows in Algorithm 2:

Algorithm 2 BasicAggl (S)

Require: Set of initial centroids S = {X1, . . . , XK}, |S| = K > k, required final number of centroids k.
Improve S with the two-step local search algorithm if possible;
while |S| > k do

for i = 1, |S| do
Fi ← SSE(S\{Xi});

end for;
Select a subset S’⊂S of to remove centroids with the minimum values of the corresponding

variables Fi; // By default, rtoremove = 1;
Improve this new solution S← (S \S′); with the two-step local search algorithm;

end while.

To improve the performance of such a procedure, the number of simultaneously
eliminated centers can be calculated as rtoremove = max

{
1, d(|S| − p) · rcoe f

⌉}
. In [52,97],

the authors used the elimination coefficient value rcoe f = 0.2. This means that at each
iteration, up to 20% of the excessive centers are eliminated, and such values are proved to
make the algorithm faster.

The agglomerative procedure for obtaining an AGGLr neighborhood can be defined
as follows in Algorithm 3:

Algorithm 3 AGGLr (S, S2)

Require: Two sets of centers S, S2, |S|=|S2|= p, the number of centers r of the solution S2
which are used to obtain the resulting solution, r ∈

{
1, p
}

.
for i = 1, nrepeats do

1. Select a subset S′ ⊂ S2 : |S′| = r;
2. S′ ← BasicGreedy(S ∪ S′);
3. if F(S’) < F(S) then

S← S′

end if;
end for;
return S.

Such procedures use various values of r ∈
{

1, p
}

, and nrepeats depends on
r: nrepeats = max {1,[p/r]}.

If the solution S2 is fixed, then all possible results of applying the AGGLr (S, S2)
procedure form a neighborhood of the solution S, and S2 as well as r are parameters of
such a neighborhood. If S2 is a randomly chosen locally optimal solution obtained by ALA (S2′)
procedure applied to a randomly chosen subset S′2 ⊂ {A1, . . . , AN},

∣∣S2
′∣∣ = p, then we

deal with a randomized neighborhood.
Let us denote such a neighborhood by AGGLr (S). Our experiments demonstrate that the

obtained result of the local search in AGGLr neighborhoods strongly depends on r (see Figure 2).
As mentioned above, the greedy agglomerative procedure AGGLr can be used as the

crossover operator of the genetic algorithms. Algorithms proposed in [52,71] use such
procedures with r = 1 and r = p for solving the k-means and p-median problems.

Algorithms 2021, 14, 130 11 of 30

Algorithms 2021, 14, x FOR PEER REVIEW 11 of 31

Let us denote such a neighborhood by AGGLr (S). Our experiments demonstrate that
the obtained result of the local search in AGGLr neighborhoods strongly depends on r (see
Figure 2).

(a) (b)

(c) (d)

(e) (f)

Figure 2. Comparative results of the search in AGGLr neighborhoods. Dependence of the result (1) on r: (a,b) BIRCH3
dataset, search for 100 and 300 centers, respectively, 100,000 data vectors, time limitation 10 s; (c,d) IHEPC dataset, search
for 30 and 100 centers, respectively, 2,075,259 data vectors, time limitation 300 s; (e) Mopsi-Finland dataset, search for 300
centers, 13,467 data vectors, time limitation 5 s; (f) Mopsi-Joensuu dataset, search for 100 centers, 6014 data vectors, time
limitation 5 s.

As mentioned above, the greedy agglomerative procedure AGGLr can be used as the
crossover operator of the genetic algorithms. Algorithms proposed in [52,71] use such
procedures with r = 1 and r = p for solving the k-means and p-median problems.

Figure 2. Comparative results of the search in AGGLr neighborhoods. Dependence of the result (1) on r: (a,b) BIRCH3
dataset, search for 100 and 300 centers, respectively, 100,000 data vectors, time limitation 10 s; (c,d) IHEPC dataset, search
for 30 and 100 centers, respectively, 2,075,259 data vectors, time limitation 300 s; (e) Mopsi-Finland dataset, search for
300 centers, 13,467 data vectors, time limitation 5 s; (f) Mopsi-Joensuu dataset, search for 100 centers, 6014 data vectors, time
limitation 5 s.

As a rule, the VNS algorithms move from neighborhoods of lower cardinality to
wider neighborhoods. For instance, in [52], the authors propose a sequential search in the
neighborhoods AGGL1→AGGLrandom→ AGGLp→AGGL1→ . . . Here, AGGLrandom is a
neighborhood with randomly selected r ∈

{
2, p− 1

}
. In this case, the initial neighborhood

type has a strong influence on the result [52]. Figure 1 shows that the dependence of the
obtained objective function value on r is complex. For the specific problems, there may
exist specific values of the parameter r which enable us to obtain better results which are
hardly predictable. Nevertheless, a search algorithm may collect the information of the
most efficient values of r during its runtime.

Algorithms 2021, 14, 130 12 of 30

2.3. CUDA Implementation of Greedy Agglomerative Procedures

Compute Unified Device Architecture (CUDA) is a hardware-software parallel com-
puting architecture that can significantly increase computational performance [98] designed
for the effective use of non-graphical computing on the graphics processing units (GPUs).
A GPU is a set of multiprocessors that simultaneously execute parallel threads grouped
into data blocks. The threads execute the same instructions on different data in parallel.
Communication and synchronization in blocks is impossible.

A thread is assigned an identifier (threadIdx.x) depending on its position in the block,
and a block identifier (blockIdx.x) is also assigned to a thread depending on its position in
the grid. The thread and block identifiers are available at run time, which allows us to set
specific memory access patterns. Each thread in the GPU performs the same procedure,
known as the kernel [98].

CUDA versions of the algorithms for solving discrete p-median problems [99–101]
(which actually solve rather small discrete problems from the OR (Operation Research)
Library) as well as parallel implementations of the ALA algorithm for the k-means problems
are described in the modern literature [74,98,102]. In our research, we take into account the
specificity of the continuous problems.

For large amounts of data, calculating the distances L
(
Xi, Aj

)
from demand points

to cluster centers is the most computationally expensive part of the ALA algorithm. The
distances should be calculated to all centers, since the algorithm does not know in ad-
vance which center is the nearest one. Traditionally used in solving the k-means problem,
this approach can be accelerated by using the triangle inequality [103,104] in the case of
p-median problems: if the displacement of the ith center relative to the previous itera-
tion was ∆Xi = L

(
Xi, X′i

)
, and its distance to the jth demand point was Lij = L

(
Xi, Aj

)
,

then the new distance lies within Lij ± ∆Xi. If ∃i∗ ∈
{

1, p
}

:

Li∗ j + ∆Xi∗ < Lij − ∆Xi, (7)

such that for new distances, L
(
X′i∗ , Aj

)
< L

(
X′i , Aj

)
. Knowing all distances Lij from the

previous iteration and the shift of the centers Xi , we can avoid calculating a significant
part of the distances at each iteration, which is especially important when processing
multidimensional data. Nevertheless, for large-scale problems, matrix

{
Lij
}

requires a
significant additional amount of memory (pN values). Moreover, checking the condi-
tion (7) for each pair

(
Aj, Xi

)
which requires significantly less computational resources

than distance calculation

Lij = L
(

Aj, Xi
)
=

√√√√ d

∑
l=1

(
aj,l − xi,l

)2
(8)

will not accelerate the execution of the algorithm in the case of its CUDA implementation,
which assumes strictly simultaneous execution of all instructions by all threads. Therefore,
in this work, we do not use of the triangle inequality to accelerate the CUDA version of the
ALA algorithm, although more complex implementations for CUDA could probably take
advantage of the triangle inequality.

Note that the distances (8) are calculated both in Step 1 of Algorithm 1, and in its
Step 2 which includes the iteration of the Weiszfeld procedure (4).

We used the following CUDA implementation of Step 1 of Algorithm 1. The step is
divided into two parts. First, variables common for all threads are initialized Algorithm 4:

Algorithms 2021, 14, 130 13 of 30

Algorithm 4 CUDA implementation of Step 1 in the ALA algorithm, part 1 (initialization)

X′ j ← 0∀j = 1, p // Here, X′ j are vectors used for recalculation of centers.
counterj ← 0∀j = 1, p // Counters of objects assigned to each of centers.
Dj ← 0∀j = 1, p // Dj are used to calculate ∑

j∈Cj ,L(Aj ,Xi)>ε2

1
L(Xi ,Aj)

.

D′ j ← 0∀j = 1, p // d-dimensional vectors to calculate ∑
j∈Cj ,L(Aj ,Xi)>ε2

Aj

L(Xi ,Aj)
.

For the rest of the CUDA implementation of Step 1 of the ALA algorithm, we used
the number of threads Ntrreads = 512 for each CUDA block. The number of blocks is
calculated as

Nblocks = (N + Nthreads − 1)/Nthreads. (9)

Thus, each thread processes a single demand point in Algorithm 5:

Algorithm 5 CUDA implementation of Step 1 in the ALA algorithm

i← blockIdx.x timesblockDim.x + threadIdx.x
if i > N then
return
end if
j′ ← argminj ‖ Aj − Xi ‖2 // number of a center for the ith data point
d′ ← minj ‖ Aj − Xi ‖2 ; Ci ← j′ // Assign Ai to center j′.

D ← (
√

d′)
−1

; Dj ← Dj + D ; D′ j ← D′ j + AjD ; counterj′ ← counterj′ + 1 ;
Synchronize threads.

The parallel implementation of Step 2 of the ALA algorithm (see Algorithm 6) uses
Nthreads = 512 threads for each CUDA block. The number of blocks is Nblocks2 = (p + Nthreads − 1)
/Nthreads. The changed variable, common to all threads, is initialized to 0.

Algorithm 6 CUDA implementation of Step 2 in the ALA algorithm

j← blockIdx.x× blockDim.x + threadIdx.x
if j > k then
return;
end if;

X′ j ←
D′ j
Aj

;

if L
(

X′ j, Xj

)
> ε2 then

changed← 1 ;
end if;
Xj ← X′ j ;
Synchronize threads.

Variable changed is used at the last step of the ALA algorithm and signals the need to
continue the iterations.

In addition, we implemented Step 3 of BasicAggl algorithm on the GPU. At this step,
Algorithm 2 calculates the sum of the distances after removing a single center with index
i′: F′ i′ = F(S\{Xi′}). Knowing the objective function value F(S) for set S of centers, we
can calculate its new value

F′ i′ ← F(S\{Xi′}) = F(S) +
N

∑
l=1

∆Dl (10)

where

Algorithms 2021, 14, 130 14 of 30

∆Dl =

0, Ci′ 6= l,(

min
j∈{1,p}, j 6=i′

L
(

Aj, XCj

))
− L

(
Aj, Xl

)
, Ci′ = l.

(11)

Here, Ci’ is the center number which Ai’ is assigned to (nearest to Xi’). We also used 512 threads
per block, the number of blocks is calculated according to (9).

After initialization of common variable Dsum←0, the Algorithm 7 is started in a separate thread
for each data point:

Algorithm 7 CUDA implementation of Step 3 in Algorithm 2

l ← blockIdx.x timesblockDim.x + threadIdx.x ;
if l > k then
return;
end if;
Calculate ∆Dl in accordance with (2.8);
if ∆Dl > 0 then
Dsum ← Dsum + ∆Dl ;
end if;
Synchronize threads.

After parallel running this algorithm, Fi is calculated in accordance with (10) on Step 3 of
Algorithm 2: F′ i′ ← F(S) + Dsum .

The remaining parts of our GA are implemented by the central processor unit. The remaining
parts performing the selection do not have any significant effect on the calculation speed. This CUDA
implementation of the ALA algorithm enables us to use both the ALA algorithm and more complex
algorithms that include it, on large amounts of data, up to millions of demand points.

2.4. New Algorithm
As in local search algorithms, in accordance with the general idea of (1 + 1)-EAs, our new algo-

rithm successively improves the single intermediate solution. To improve it, the AGGLr procedure is
applied to it (see Algorithm 3) with an additional intermediate solution randomly generated as the
second parameter S2, which is improved by the ALA procedure. A similar idea was applied for the
k-means problem in VNS algorithms with randomized neighborhoods [54], which we included in the
list of algorithms for comparison. The key feature of the new algorithm is that it does not fix values
of the r parameter nor does it generate r values with equal probability, but it adjusts the values of
the generation probabilities for each of the possible r values in accordance with the results obtained.
If the use of the AGGLr—procedure has resulted in an improvement in the value of the objective
function, our algorithm increases the probability Pr for the used r and for values close to it.

The new algorithm can be described as follows in Algorithm 8.

Algorithm 8 Aggl-EA ()

Randomly select a subset S⊂ {A1, . . . , AN}; S← ALA(S) ; assign Pi ← 1/p ∀i = 1, p ;
repeat

randomly select a subset S2⊂ {A1, . . . , AN}; S2 ← ALA(S2) ;
in proportion to the values of the probabilities Pi, i = 1, p, choose the value of r ⊂

{
1, p
}

;
S3 ← AGGLr(S, S2);
if F(S3) < F(S) then

Pi ← k1·Pi ∀i =
⌈

r
k2

⌉
, min{p, k2·r} ; // we used k1 = 1.1 and k2 = 1.5.

Pi ← Pi

∑
p
i=1 Pi
∀i = 1, p; // probability normalization

S← S3;
end if;

until time limitation is reached.
return S.

Algorithms 2021, 14, 130 15 of 30

3. Results of Computational Experiments
In all our experiments, we used the classic datasets from the UCI Machine Learning and Cluster-

ing basic benchmark repositories [94,95,105]: (a) Individual Household Electric Power Consumption
(IHEPC)—energy consumption data of households during several years, more than 2 million de-
mand points (data vectors) in R2, 0–1 normalized data, “date” and ”time” columns removed; (b)
BIRCH3: 100 groups of points of random size, 100,000 demand points in R2; (c,d) S1 and S4 datasets,
respectively: Gaussian clusters with cluster overlap (5000 demand points in R2); (e) Mopsi-Joensuu:
geographic locations of users (6014 data vectors, 2 dimensions) in Joensuu city; (f) Mopsi-Finland:
geographic locations of users (13,467 data vectors, 2 dimensions) in Finland.

For our computational experiments, we used the following test system: Intel Core 2 Duo E8400
CPU, 16GB RAM, NVIDIA GeForce GTX1050ti GPU with 4096 MB RAM, floating-point performance
2138 GFLOPS. This choice of the GPU hardware was made due to its prevalence, and also one of the
best values of the price/performance ratio. The program code was written in C++. We used Visual
C++ 2017 compiler embedded into Visual Studio v.15.9.5, NVIDIA CUDA 10.0 Wizards, and NVIDIA
Nsight Visual Studio Edition CUDA Support v.6.0.0. For all datasets, 30 attempts were made to run
each of algorithms (Algorithms 1–6).

We examined the following algorithms: (a) Lloyd: the ALA algorithm in the multi-start mode;
(b) j-means: j-means algorithm (regular search in SWAP1 neighborhood in combination with the
ALA algorithm) in the multi-start mode; (c) AGGLr: randomized search in the AGGLr neighborhood,
r = 1, p; (d) SWAPr: local search in SWAPr neighborhoods, r = 1, p (only the best result for r = 1, p
is given); (e–g) GH-VNS1, GH-VNS2, GH-VNS3: Variable Neighborhood Search algorithms with
neighborhoods formed by application of AGGLr() procedure, see [52]; (h) GA-1POINT: genetic
algorithm with a standard 1-point crossover; (i) GA-UNIFORM: genetic algorithm with a standard
1-point crossover and uniform random mutation [56]; (j) Aggl-EA: our new algorithm.

For all datasets, 30 attempts were made to run each of the algorithms (see Tables 1 and A1,
Tables A2–A15 in Appendix A). In Table 1, we present the results of our new algorithm Aggl-
EA() and the best of listed known algorithms, i.e., known algorithms which provided the best average
or median values of the objective function (1) after 30 runs.

For the smallest and simplest test problems (see Tables A1 and A4 in Appendix A), several
algorithms including Aggl-EA() and search in the AGGL neighborhoods resulted in the same objective
function value (standard deviation of the result is 0.0) which is probably the global minimum.
Nevertheless, the Aggl-EA() algorithm outperforms both genetic algorithms and simplest local search
algorithms such as Lloyd() or j-means which do not reach this minimum value in all attempts. For
more complex test problems, the comparative efficiency varies. However, there were no test problems
for which our new algorithm demonstrated a statistically significant disadvantage in comparison
with the best of known algorithms.

The best (minimum), worst (maximum), average, and median values of the achieved objective
function were averaged after 30 runs of each algorithm with fixed time limitation. The best average
and median values of the objective Function (1) are underlined. We compared our new Aggl-EA ()
algorithm with known examined algorithm having the best median or average results. The significance
of advantage/disadvantage of Aggl-EA() algorithm was estimated with the t-test [106,107] and non-
parametric Wilcoxon rank sum test [108,109].

In the analysis of algorithm efficiency, the researchers often estimate the computational expenses
as the number of the objective function calculations. The ALA procedure is the most computationally
expensive part of all examined algorithms. In the ALA algorithm, the objective Function (1) is never
calculated directly. The program code profiling results show that Step 2 of Algorithm 1 and Step
3 of Algorithm 2 occupy more than 99% of computational resources (processor time). These steps
were implemented on GPUs. Moreover, we use the same implementation of the ALA procedure and
BasicAggl() algorithm for all examined algorithms. Thus, the consumed time could be proportional
with the number of iterations of the ALA algorithm (its Step 2) and the most time-consuming
iterations of Algorithm 2 (its Step 3). However, the time consumption of these iterations depends on
the number of centers which successively decreases during the work of the BasicAggl () algorithm.
Thus, for the p-median problems, we used the astronomical time as the most informative unit for the
computational expenses.

Algorithms 2021, 14, 130 16 of 30

Table 1. Comparative results for all datasets (best of known algorithms vs. new algorithm).

Algorithm or
Neighborhood

Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

BIRCH3 dataset. 100,000 data vectors in R2, k = 30 clusters, time limitation 10 s
GH-VNS1 3.45057 × 109 3.45057 × 109 3.45057 × 109 3.45057 × 109 0.00000

Aggl-EA↔⇔ 3.45057 × 109 3.45057 × 109 3.45057 × 109 3.45057 × 109 0.00000
BIRCH3 dataset. 100.000 data vectors in R2, k = 100 clusters, time limitation 10 s

AGGL2 1.49271 × 109 1.57474 × 109 1.49822 × 109 1.49445 × 109 1.51721 × 107

AGGL5 1.49341 × 109 1.57503 × 109 1.50433 × 109 1.49439 × 109 2.44200 × 107

Aggl-EA↔⇔ 1.49199 × 109 1.57449 × 109 1.50670 × 109 1.49495 × 109 2.46374 × 107

BIRCH3 dataset. 100.000 data vectors in R2, k = 300 clusters, time limitation 10 s
AGGL250 9.08532 × 108 9.78792 × 108 9.36947 × 108 9.29497 × 108 1.97893 × 107

GH-VNS3 9.12455 × 108 9.44414 × 108 9.31225 × 108 9.32001 × 108 8.25653 × 106

Aggl-EA↔⇔ 9.14179 × 108 9.71905 × 108 9.34535 × 108 9.33403 × 108 1.51920 × 107

Mopsi-Joensuu dataset. 6014 data vectors in R2, k = 30 clusters, time limitation 5 s
AGGL20 145.7784 145.8113 145.7869 145.7847 0.0084

GH-VNS3 145.7721 146.1273 145.7932 145.7761 0.0664
Aggl-EA↑⇑ 145.7721 145.7752 145.7738 145.7739 0.0008

Mopsi-Joensuu dataset. 6014 data vectors in R2, k = 100 clusters, time limitation 5 s
AGGL75 43.6375 45.6856 44.1450 43.9860 0.4683
AGGL100 43.6054 44.9035 44.0472 43.9875 0.3061

Aggl-EA↑⇑ 43.5826 44.4452 43.7486 43.7560 0.1624
Mopsi-Joensuu dataset. 6014 data vectors in R2, k = 300 clusters, time limitation 5 s

AGGL250 15.0975 16.8500 15.7103 15.6757 0.3640
Aggl-EA↔⇔ 14.8354 19.4531 15.4576 15.3310 0.8131

IHEPC dataset. 2,075,259 data vectors in R7, k = 30 clusters, time limitation 5 min
j-means 87907.7813 95,055.2422 89,657.8895 88,702.9297 2442.1302

Aggl-EA↔⇔ 86147.6953 10,9817.7969 91,515.1658 86,393.3750 10,377.0956
IHEPC dataset. 2,075,259 data vectors in R7, k = 100 clusters, time limitation 5 min s

GA-1POINT 62,192.1719 64,413.2578 63,051.7500 63,028.9922 733.3966
Aggl-EA↔⇑ 57,594.0703 72,909.5000 65,782.6094 58,506.6484 3208.6879

IHEPC dataset. 2,075,259 data vectors in R7, k = 300 clusters, time limitation 5 min s
j-means 44,074.6445 47,562.4922 45,375.1657 44,608.1953 1505.4071

Aggl-EA↔⇔ 41,795.5078 65,057.9375 51,888.0642 42,525.5000 12,122.2332
Mopsi- Finland dataset.13,467 data vectors in R2, k = 30 clusters, time limitation 5 s

AGGL7 1.03013 × 107 1.03013 × 107 1.03013 × 107 1.03013 × 107 3.35641
Aggl-EA↔⇔ 1.03013 × 107 1.03013 × 107 1.03013 × 107 1.03013 × 107 2.42022

Mopsi-Finland dataset. 13,467 data vectors in R2, k = 100 clusters, time limitation 5 s
AGGL25 3.64354 × 106 3.66605 × 106 3.64913 × 106 3.64784 × 106 5184.35
AGGL30 3.64290 × 106 3.67201 × 106 3.65106 × 106 3.64702 × 106 7780.79

Aggl-EA↔⇔ 3.64285 × 106 3.65052 × 106 3.64473 × 106 3.64502 × 106 1467.87
Mopsi-Finland dataset. 13,467 data vectors in R2, k = 300 clusters, time limitation 5 s

GH-VNS3 1.36493 × 106 1.43665 × 106 1.38037 × 106 1.37633 × 106 14603.0
Aggl-EA↔⇔ 1.36496 × 106 1.40537 × 106 1.38311 × 106 1.38149 × 106 12302.2

S1 dataset. 5000 data vectors in R2, k = 15 clusters, time limitation 1 s
GH-VNS1 1.69034 × 108 1.69034 × 108 1.69034 × 108 1.69034 × 108 0.00000

Aggl-EA↔⇔ 1.69034 × 108 1.69034 × 108 1.69034 × 108 1.69034 × 108 0.00000
S1 dataset. 5000 data vectors in R2, k = 50 clusters, time limitation 1 s

AGGL3 1.12426 × 108 1.12548 × 108 1.12465 × 108 1.12457 × 108 2.92460 × 104

GH-VNS1 1.12419 × 108 1.12796 × 108 1.12467 × 108 1.12446 × 108 7.47785 × 104

Aggl-EA↔⇔ 1.12476 × 108 1.15978 × 108 1.14049 × 108 1.13985 × 108 1.05017 × 106

S4 dataset. 5000 data vectors in R2, k = 15 clusters, time limitation 1 s
GH-VNS1 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 0.00000

Aggl-EA↔⇔ 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 78.6011
S4 dataset. 5000 data vectors in R2, k = 50 clusters, time limitation 1 s

AGGL7 1.35232 × 108 1.35449 × 108 1.35306 × 108 1.35294 × 108 5.64815 × 104

Aggl-EA↔⇔ 1.35241 × 108 1.35438 × 108 1.35313 × 108 1.35304 × 108 5.26194 × 104

Note: “↑”, “⇑”: the advantage of the new algorithms over known algorithms is statistically significant (“↑” for t-test and “⇑” for Mann–
Whitney U test), “↓”, “⇓”: the disadvantage of the new algorithm over known algorithms is statistically significant; “↔”, “⇔”: the
advantage or disadvantage is statistically insignificant. Significance level is 0.05. The best results are underlined.

Algorithms 2021, 14, 130 17 of 30

The time limitation plays an important role: the fastest algorithms may stop their
convergence after several iterations and, vice versa, the slowest algorithms may continue
their slow convergence and outperform the fastest algorithms if we enlarge their time
limits. However, our new algorithms demonstrate their comparative advantage within
wide time intervals (see Figure 3).

Algorithms 2021, 14, x FOR PEER REVIEW 17 of 31

The best (minimum), worst (maximum), average, and median values of the achieved
objective function were averaged after 30 runs of each algorithm with fixed time limita-
tion. The best average and median values of the objective Function (1) are underlined. We
compared our new Aggl-EA () algorithm with known examined algorithm having the best
median or average results. The significance of advantage/disadvantage of Aggl-EA() al-
gorithm was estimated with the t-test [106,107] and non-parametric Wilcoxon rank sum
test [108,109].

In the analysis of algorithm efficiency, the researchers often estimate the computa-
tional expenses as the number of the objective function calculations. The ALA procedure
is the most computationally expensive part of all examined algorithms. In the ALA algo-
rithm, the objective Function (1) is never calculated directly. The program code profiling
results show that Step 2 of Algorithm 1 and Step 3 of Algorithm 2 occupy more than 99%
of computational resources (processor time). These steps were implemented on GPUs.
Moreover, we use the same implementation of the ALA procedure and BasicAggl() algo-
rithm for all examined algorithms. Thus, the consumed time could be proportional with
the number of iterations of the ALA algorithm (its Step 2) and the most time-consuming
iterations of Algorithm 2 (its Step 3). However, the time consumption of these iterations
depends on the number of centers which successively decreases during the work of the
BasicAggl () algorithm. Thus, for the p-median problems, we used the astronomical time
as the most informative unit for the computational expenses.

The time limitation plays an important role: the fastest algorithms may stop their
convergence after several iterations and, vice versa, the slowest algorithms may continue
their slow convergence and outperform the fastest algorithms if we enlarge their time lim-
its. However, our new algorithms demonstrate their comparative advantage within wide
time intervals (see Figure 3).

Figure 3. Comparative analysis of the convergence speed. Dependence of the median result on
computation time for: (a) Individual Household Electric Power Consumption (IHEPC) dataset,
50centers, 2,075,259 data vectors, time limitation 300 s; (b) Mopsi-Joensuu dataset, search for 300
centers, 6014 data vectors, time limitation 5 s. (c) Mopsi-Finland dataset, search for 300 centers,
13,467 data vectors, time limitation 5 s.

Figure 3. Comparative analysis of the convergence speed. Dependence of the median result on computation time for:
(a) Individual Household Electric Power Consumption (IHEPC) dataset, 50 centers, 2,075,259 data vectors, time limitation 300 s;
(b) Mopsi-Joensuu dataset, search for 300 centers, 6014 data vectors, time limitation 5 s. (c) Mopsi-Finland dataset, search
for 300 centers, 13,467 data vectors, time limitation 5 s.

4. Discussion

The genetic algorithms and Variable Neighborhood Search are algorithmic frameworks
useful for creating efficient solvers of various problems including location problems such
as p-median. The greedy agglomerative approach can be efficiently used as the crossover
genetic operator [58,70,71,102] as well as in the VNS [52]. However, as our experiments
show (Appendix A), the correct choice of parameter r in such procedures plays the most
important role and simple search algorithms with constant value of r may outperform
more complex VNS algorithms if r is tuned correctly.

Unlike the majority of evolutionary algorithms, the (1 + 1)-evolutionary algorithms as
well as local search algorithms focus on the successive improvement of a single intermedi-
ate solution. Successful application of various local search algorithms such as SWAP search,
j-means or various VNS algorithms including to the p-median problem shows that the cor-
rect choice of a neighborhood or an algorithmic procedure for the successive improvement

Algorithms 2021, 14, 130 18 of 30

of a single current solution can be a more profitable strategy for solving practical problems
than operating with a large population of solutions. In this work, we have increased the
efficiency of one of these procedures by adjusting its parameter. Nevertheless, adjusting
the parameters of greedy agglomerative procedures can also enhance the capabilities of
genetic algorithms with a greedy agglomerative crossing operator, which, in our opinion,
is an urgent area of further research. In addition, similar algorithms can be developed for a
wider range of problems, including k-means, k-medoid, and the problem of separating a
mixture of probability distributions.

Our new algorithm demands significant computational resources. Nevertheless, ob-
taining the most accurate results for solving problems, in addition to being of immediate
practical importance in the case of a high cost of error, solves the problem of obtaining ref-
erence solutions with which the results of other, less computationally expensive algorithms
can be compared.

As in the case of the k-means problem [74], the most complex dependence of the greedy
procedure efficiency on its parameter r and important advantage of our new algorithm
is detected for the largest tested problems (IHEPC dataset) as well as for the problems of
“geographic” location (Mopsi datasets) with the sets of demand points formed under the
influence of natural factors, as well as factors associated with the development of urban
infrastructure.

For the majority of test problems, our computational experiments demonstrate the
advantage of our new algorithm or its approximately equal effectiveness in comparison
with known algorithms. For large-scale problem, the effect of our new algorithm is more
significant. Nevertheless, even with equal results in comparison with known algorithms,
our new Aggl-EA algorithm is a more versatile tool due to its ability of adjusting its
parameter in accordance with its behavior. Sometimes, our new algorithm demonstrates
less stable results (higher standard deviation of the objective function) which may limit
its scope or demands running in multi-start mode. Thus, further study of the causes and
factors leading to the instability of the result is required.

We considered the use of the self-adjusted agglomerative procedures as the mutation
operator of the simplest evolutionary algorithm with no true population of solutions. The
efficiency of embedding similar mutation operators (without any self-adjustment) was
shown in the paper [96]. Thus, the investigation of the self-adjustment features of other
evolutionary operators (first of all, crossover operator of genetic algorithms) is a promising
direction for the further research.

5. Conclusions

In this article, we introduced the concept of the AGGLr neighborhood based on
the application of the agglomerative procedure, and investigate the search efficiency in
such a neighborhood depending on the parameter r. Using the similarities between local
search algorithms and (1 + 1)-evolutionary algorithms, as well as the ability of the latter
to adapt their search parameters, we introduced our new Aggl-EA () algorithm with an
embedded greedy agglomerative procedure with the automatically tuned parameter r. Our
computational experiments on large-scale and medium-scale problems demonstrate the
advantages of the new algorithm in comparison with known algorithms including the
algorithms based on greedy agglomerative procedures.

Our computational experiments confirmed the proposed working hypotheses and led
to the following conclusions:

The agglomerative mutation operator, when used as part of an evolutionary algorithm,
is not only able to improve its solutions, moreover, it can also be efficiently used as the only
evolutionary operator in the (1 + 1)-evolutionary algorithm with results outperforming
more complex genetic algorithms. Therefore, self-adjustment capability of other evolution-
ary operators based on agglomerative procedures is a promising direction for the further
research.

Algorithms 2021, 14, 130 19 of 30

The algorithm with the adjustment of the parameter r (the number of excess centers
to be removed) of the agglomerative procedure shows the most impressive results in the
case of solving large problems, as well as problems of a “geographic” nature, where many
points of demand have a complex structure, formed under the influence of natural factors.

Such algorithms, implemented for massively parallel systems, despite the high com-
putational complexity of the embedded agglomerative procedure, ALA-algorithm and
Weiszfeld procedure, are capable of solving problems with several million demand points
in a reasonable time.

Author Contributions: Conceptualization, L.K.; methodology, L.K. and I.R.; software, L.K.; vali-
dation, I.R.; formal analysis, L.K. and G.S.; investigation, I.R.; resources, L.K.; data curation, I.R.;
writing—original draft preparation, L.K. and G.S.; writing—review and editing, L.K.; visualization,
I.R.; supervision, L.K.; project administration, L.K.; funding acquisition, L.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by The Ministry of Science and Higher Education of the Russian
Federation, project No. FEFE-2020-0013.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: http://cs.joensuu.fi/sipu/datasets/ (accessed on 21 April 2020), https://archive.ics.
uci.edu/ml/index.php (accessed on 21 April 2020).

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. Detailed Results of Computational Experiments

Table A1. Comparative results for BIRCH3 dataset. 105 data vectors in R2, p = 30 centers, time limitation 10 s.

Algorithm or
Neighborhood

Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 4.38183 × 109 4.67540 × 109 4.52387 × 109 4.51929 × 109 7.82433 × 107

j-means (SWAP1 + Lloyd) 3.56107 × 109 5.25877 × 109 3.92248 × 109 3.88872 × 109 3.09203 × 108

AGGL1 3.45692 × 109 3.56599 × 109 3.46697 × 109 3.45692 × 109 2.40890 × 107

AGGL2 3.45057 × 109 3.45692 × 109 3.45650 × 109 3.45692 × 109 1.61204 × 106

AGGL3 3.45057 × 109 3.45692 × 109 3.45650 × 109 3.45692 × 109 1.61204 × 106

AGGL5–20 (equal results) 3.45692 × 109 3.45692 × 109 3.45692 × 109 3.45692 × 109 0.00000
AGGL25 3.45057 × 109 3.45057 × 109 3.45057 × 109 3.45057 × 109 46.7390
AGGL30 3.45057 × 109 3.45057 × 109 3.45057 × 109 3.45057 × 109 127.558

GH-VNS1-3 (equal results) 3.45057 × 109 3.45057 × 109 3.45057 × 109 3.45057 × 109 0.00000
SWAP1 (the best of SWAP) 3.70386 × 109 4.43612 × 109 3.89665 × 109 3.89201 × 109 1.24246 × 108

GA-1POINT 3.51505 × 109 3.63646 × 109 3.56546 × 109 3.56848 × 109 3.24395 × 107

GA-UNIFORM 3.45057 × 109 3.59155 × 109 3.49515 × 109 3.49778 × 109 3.07081 × 107

Aggl-EA 3.45057 × 109 3.45057 × 109 3.45057 × 109 3.45057 × 109 0.00000

Note (for all tables): the best results are underlined.

Table A2. Comparative results for BIRCH3 dataset. 105 data vectors in R2, p = 100 centers, time limitation 10 s.

Algorithm or
Neighborhood

Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 2.27163 × 109 2.54224 × 109 2.44280 × 109 2.46163 × 109 7.42330 × 107

j-means (SWAP1 + Lloyd) 1.52130 × 109 1.88212 × 109 1.69226 × 109 1.67712 × 109 8.03684 × 107

AGGL1 1.56737 × 109 2.14554 × 109 1.81181 × 109 1.80137 × 109 1.60897 × 108

AGGL2 1.49271 × 109 1.57474 × 109 1.49822 × 109 1.49445 × 109 1.51721 × 107

AGGL3 1.49232 × 109 1.59406 × 109 1.50429 × 109 1.49447 × 109 2.64626 × 107

AGGL5 1.49341 × 109 1.57503 × 109 1.50433 × 109 1.49439 × 109 2.44200 × 107

http://cs.joensuu.fi/sipu/datasets/
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php

Algorithms 2021, 14, 130 20 of 30

Table A2. Cont.

Algorithm or
Neighborhood

Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

AGGL7 1.49341 × 109 1.59630 × 109 1.51531 × 109 1.49515 × 109 3.58332 × 107

AGGL10 1.49261 × 109 1.60585 × 109 1.51345 × 109 1.50733 × 109 2.79785 × 107

AGGL12 1.49358 × 109 1.61554 × 109 1.51105 × 109 1.49754 × 109 3.16092 × 107

AGGL15 1.49414 × 109 1.57599 × 109 1.50791 × 109 1.49667 × 109 2.39108 × 107

AGGL20 1.49406 × 109 1.57432 × 109 1.51096 × 109 1.50880 × 109 1.83795 × 107

AGGL25 1.49386 × 109 1.53280 × 109 1.51017 × 109 1.51159 × 109 1.23389 × 107

AGGL30 1.49355 × 109 1.53113 × 109 1.50656 × 109 1.50311 × 109 1.12716 × 107

AGGL50 1.49380 × 109 1.52818 × 109 1.50495 × 109 1.50073 × 109 1.11666 × 107

AGGL75 1.49415 × 109 1.56935 × 109 1.51541 × 109 1.51203 × 109 1.95288 × 107

AGGL100 1.49413 × 109 1.56603 × 109 1.51133 × 109 1.49943 × 109 2.01570 × 107

GH-VNS1 1.49362 × 109 1.66273 × 109 1.54540 × 109 1.51469 × 109 5.07461 × 107

GH-VNS2 1.49413 × 109 1.59073 × 109 1.50692 × 109 1.50235 × 109 1.87495 × 107

GH-VNS3 1.49247 × 109 1.55423 × 109 1.50561 × 109 1.49497 × 109 1.84421 × 107

SWAP1 (the best of SWAP) 1.70412 × 109 2.00689 × 109 1.83218 × 109 1.83832 × 109 6.04418 × 107

GA-1POINT 1.61068 × 109 1.85786 × 109 1.69042 × 109 1.65346 × 109 7.23930 × 107

GA-UNIFORM 1.67990 × 109 1.92521 × 109 1.77471 × 109 1.76783 × 109 6.95451 × 107

Aggl-EA 1.49199 × 109 1.57449 × 109 1.50670 × 109 1.49495 × 109 2.46374 × 107

Table A3. Comparative results for BIRCH3 dataset. 105 data vectors in R2, p = 300 centers, time limitation 10 s.

Algorithm or Neighborhood
Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 1.54171 × 109 1.64834 × 109 1.59859 × 109 1.60045 × 109 2.62443 × 107

j-means (SWAP1 + Lloyd) 9.95926 × 108 1.15171 × 109 1.05927 × 109 1.04561 × 109 4.63788 × 107

AGGL1 1.14784 × 109 1.88404 × 109 1.47311 × 109 1.42352 × 109 1.94210 × 108

AGGL2 9.96893 × 108 1.23746 × 109 1.08456 × 109 1.07354 × 109 5.76487 × 107

AGGL3 9.87064 × 108 1.21980 × 109 1.07148 × 109 1.06503 × 109 4.84664 × 107

AGGL5 9.68357 × 108 1.13508 × 109 1.06002 × 109 1.06617 × 109 4.50726 × 107

AGGL7 1.00537 × 109 1.19050 × 109 1.07440 × 109 1.06799 × 109 4.73520 × 107

AGGL10 9.78925 × 108 1.17041 × 109 1.06123 × 109 1.05264 × 109 5.10834 × 107

AGGL12 9.94720 × 108 1.16133 × 109 1.05659 × 109 1.05930 × 109 3.59604 × 107

AGGL15 9.64129 × 108 1.18512 × 109 1.05884 × 109 1.04935 × 109 5.54774 × 107

AGGL20 9.53544 × 108 1.15383 × 109 1.03729 × 109 1.03124 × 109 4.58983 × 107

AGGL25 9.98103 × 108 1.13062 × 109 1.03990 × 109 1.02958 × 109 3.39141 × 107

AGGL30 9.59132 × 108 1.08646 × 109 1.02528 × 109 1.02102 × 109 3.48713 × 107

AGGL50 9.48152 × 108 1.07480 × 109 1.00313 × 109 9.97259 × 108 2.65919 × 107

AGGL75 9.44390 × 108 1.05320 × 109 9.90754 × 108 9.86511 × 108 3.04626 × 107

AGGL100 9.33977 × 108 1.02524 × 109 9.70365 × 108 9.63525 × 108 2.48207 × 107

AGGL150 9.20206 × 108 1.02162 × 109 9.61877 × 108 9.60465 × 108 2.42984 × 107

AGGL200 9.18310 × 108 1.01805 × 109 9.52666 × 108 9.42071 × 108 2.73422 × 107

AGGL250 9.08532 × 108 9.78792 × 108 9.36947 × 108 9.29497 × 108 1.97893 × 107

AGGL300 9.10975 × 108 9.77193 × 108 9.39030 × 108 9.39434 × 108 1.27907 × 107

GH-VNS1 1.00289 × 109 1.08471 × 109 1.03856 × 109 1.03485 × 109 2.20294 × 107

GH-VNS2 9.68045 × 108 1.11832 × 109 1.01461 × 109 1.00404 × 109 3.80607 × 107

GH-VNS3 9.12455 × 108 9.44414 × 108 9.31225 × 108 9.32001 × 108 8.25653 × 106

SWAP2 (the best of SWAP by
avg.) 1.23379 × 109 1.46395 × 109 1.33987 × 109 1.35305 × 109 5.64094 × 107

SWAP3 (the best of SWAP by
median) 1.25432 × 109 1.44136 × 109 1.34388 × 109 1.34424 × 109 5.01104 × 107

GA-1POINT 1.11630 × 109 1.38598 × 109 1.23404 × 109 1.22828 × 109 7.05936 × 107

GA-UNIFORM 1.17534 × 109 1.37190 × 109 1.26758 × 109 1.25424 × 109 5.20153 × 107

Aggl-EA 9.14179 × 108 9.71905 × 108 9.34535 × 108 9.33403 × 108 1.51920 × 107

Algorithms 2021, 14, 130 21 of 30

Table A4. Comparative results for S1 dataset. 5000 data vectors in R2, p = 15 centers, time limitation 1 s.

Algorithm or
Neighborhood

Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 1.69034 × 108 2.02847 × 108 1.79099 × 108 1.69034 × 108 1.56374 × 107

j-means (SWAP1 + Lloyd) 1.69034 × 108 2.18797 × 108 1.74375 × 108 1.69034 × 108 1.40223 × 107

AGGL1 1.69034 × 108 2.02619 × 108 1.71265 × 108 1.69034 × 108 8.49108 × 106

AGGL2-15 (equal results) 1.69034 × 108 1.69034 × 108 1.69034 × 108 1.69034 × 108 0.00000
SWAP1 (the best of SWAP) 1.69034 × 108 2.08453 × 108 1.70348 × 108 1.69034 × 108 7.19690 × 106

GA-1POINT 1.69034 × 108 2.02783 × 108 1.76877 × 108 1.69034 × 108 1.44603 × 107

GA-UNIFORM 1.69034 × 108 1.69034 × 108 1.69034 × 108 1.69034 × 108 2.92119
Aggl-EA 1.69034 × 108 1.69034 × 108 1.69034 × 108 1.69034 × 108 0.00000

Table A5. Comparative results for S1 dataset. 5000 data vectors in R2, p = 50 centers, time limitation 1 s.

Algorithm or Neighborhood
Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 1.14205 × 108 1.16737 × 108 1.15594 × 108 1.15666 × 108 6.33573 × 105

j-means (SWAP1 + Lloyd) 1.13500 × 108 1.17631 × 108 1.15035 × 108 1.14954 × 108 9.38353 × 105

AGGL1 1.13121 × 108 1.15265 × 108 1.14219 × 108 1.14035 × 108 6.23645 × 105

AGGL2 1.12430 × 108 1.12572 × 108 1.12475 × 108 1.12464 × 108 3.76180 × 104

AGGL3 1.12426 × 108 1.12548 × 108 1.12465 × 108 1.12457 × 108 2.92460 × 104

AGGL5 1.12446E × 108 1.12552 × 108 1.12487 × 108 1.12483 × 108 3.00588 × 104

AGGL7 1.12437 × 108 1.12591 × 108 1.12481 × 108 1.12478 × 108 3.26658 × 104

AGGL10 1.12462 × 108 1.12558 × 108 1.12500 × 108 1.12500 × 108 2.68212 × 104

AGGL15 1.12462 × 108 1.12579 × 108 1.12526 × 108 1.12528 × 108 2.83854 × 104

AGGL20 1.12461 × 108 1.12590 × 108 1.12535 × 108 1.12538 × 108 3.27419 × 104

AGGL25 1.12472 × 108 1.12632 × 108 1.12541 × 108 1.12543 × 108 4.34545 × 104

AGGL30 1.12523 × 108 1.12662 × 108 1.12572 × 108 1.12566 × 108 3.55121 × 104

AGGL50 1.12541 × 108 1.12848 × 108 1.12666 × 108 1.12651 × 108 7.48936 × 104

GH-VNS1 1.12419 × 108 1.12796 × 108 1.12467 × 108 1.12446 × 108 7.47785 × 104

GH-VNS2 1.12472 × 108 1.12601 × 108 1.12525 × 108 1.12519 × 108 3.37221 × 104

GH-VNS3 1.12531 × 108 1.12969 × 108 1.12712 × 108 1.12708 × 108 9.60927 × 104

SWAP1 (the best of SWAP) 1.13142 × 108 1.16627 × 108 1.14430 × 108 1.14412 × 108 8.48529 × 105

GA-1POINT 1.14271 × 108 1.16790 × 108 1.15443 × 108 1.15343 × 108 7.16204 × 105

GA-UNIFORM 1.13119 × 108 1.15805 × 108 1.14384 × 108 1.14405 × 108 6.75227 × 105

Aggl-EA 1.12476 × 108 1.15978 × 108 1.14049 × 108 1.13985 × 108 1.05017 × 106

Table A6. Comparative results for S4 dataset. 5000 data vectors in R2, p = 15 centers, time limitation 1 s.

Algorithm or Neighborhood
Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 25.4490
j-means (SWAP1 + Lloyd) 2.27694 × 108 2.60475 × 108 2.30812 × 108 2.27694 × 108 7.33507 × 106

AGGL1 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 26.4692
AGGL2 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 6.88293
AGGL3 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 7.84212
AGGL5 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 14.9936
AGGL7 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 26.1335
AGGL10 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 112.307
AGGL12 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 41.2754
AGGL15 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 81.9819

GH-VNS1 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 0.00000
GH-VNS2 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 35.8018
GH-VNS3 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 81.1213

SWAP1 (the best of SWAP) 2.27694 × 108 2.38720 × 108 2.28342 × 108 2.27694 × 108 2.48983 × 106

GA-1POINT 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 17.3669
GA-UNIFORM 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 8.55973

Aggl-EA 2.27694 × 108 2.27694 × 108 2.27694 × 108 2.27694 × 108 78.6011

Algorithms 2021, 14, 130 22 of 30

Table A7. Comparative results for S4 dataset. 5000 data vectors in R2, p = 50 centers, time limitation 1 s.

Algorithm or
Neighborhood

Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 1.35718 × 108 1.38141 × 108 1.37187 × 108 1.37299 × 108 4.98608 × 105

j-means (SWAP1 + Lloyd) 1.35353 × 108 1.38227 × 108 1.36673 × 108 1.36589 × 108 7.55140 × 105

AGGL1 1.35378 × 108 1.37459 × 108 1.36291 × 108 1.36286 × 108 5.78265 × 105

AGGL2 1.35237 × 108 1.35416 × 108 1.35353 × 108 1.35378 × 108 5.39798 × 104

AGGL3 1.35237 × 108 1.35450 × 108 1.35372 × 108 1.35384 × 108 5.64379 × 104

AGGL5 1.35229 × 108 1.35675 × 108 1.35388 × 108 1.35388 × 108 6.46057 × 104

AGGL7 1.35232 × 108 1.35449 × 108 1.35306 × 108 1.35294 × 108 5.64815 × 104

AGGL10 1.35248 × 108 1.35438 × 108 1.35325 × 108 1.35314 × 108 5.64928 × 104

AGGL12 1.35259 × 108 1.35422 × 108 1.35321 × 108 1.35312 × 108 4.98093 × 104

AGGL15 1.35267 × 108 1.35424 × 108 1.35323 × 108 1.35312 × 108 4.16267 × 104

AGGL20 1.35294 × 108 1.35448 × 108 1.35347 × 108 1.35331 × 108 4.45414 × 104

AGGL25 1.35264 × 108 1.35470 × 108 1.35348 × 108 1.35342 × 108 5.03965 × 104

AGGL30 1.35260 × 108 1.35453 × 108 1.35345 × 108 1.35336 × 108 4.55230 × 104

AGGL50 1.35254 × 108 1.35467 × 108 1.35354 × 108 1.35336 × 108 5.50925 × 104

GH-VNS1 1.35219 × 108 1.35758 × 108 1.35408 × 108 1.35383 × 108 1.27073 × 105

GH-VNS2 1.35239 × 108 1.35433 × 108 1.35327 × 108 1.35324 × 108 4.90352 × 104

GH-VNS3 1.35299 × 108 1.35469 × 108 1.35374 × 108 1.35382 × 108 5.29113 × 104

SWAP1 (the best of SWAP) 1.35930 × 108 1.39391 × 108 1.37402 × 108 1.37351 × 108 8.40302 × 105

GA-1POINT 1.35943 × 108 1.38086 × 108 1.36776 × 108 1.36723 × 108 4.96830 × 105

GA-UNIFORM 1.35260 × 108 1.36698 × 108 1.35917 × 108 1.35937 × 108 3.50731 × 105

Aggl-EA 1.35241 × 108 1.35438 × 108 1.35313 × 108 1.35304 × 108 5.26194 × 104

Table A8. Comparative results for Mopsi-Joensuu dataset. 6014 data vectors in R2, p = 100 centers, time limitation 5 s.

Algorithm or
Neighborhood

Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 99.7279 123.1325 110.4963 109.9706 5.6551
j-means (SWAP1 + Lloyd) 48.3311 57.1689 51.6673 51.1146 2.0749

AGGL1 51.9696 81.9848 64.2454 62.4350 8.3403
AGGL2 44.4866 50.0924 46.1544 46.0973 1.0708
AGGL3 43.8615 46.3881 45.1735 45.3303 0.7306
AGGL5 43.7373 46.0294 44.8369 44.7245 0.6888
AGGL7 44.0820 48.4483 45.2256 45.0851 0.9135
AGGL10 43.8603 45.7149 44.6455 44.6387 0.5400
AGGL15 43.7995 45.5927 44.7005 44.7173 0.5203
AGGL20 43.6629 46.0316 44.4626 44.3353 0.5953
AGGL25 43.6357 46.5550 44.5179 44.3408 0.6543
AGGL30 43.6728 44.5830 44.1677 44.1137 0.2945
AGGL50 43.6202 45.0433 44.2257 44.3137 0.3590
AGGL75 43.6375 45.6856 44.1450 43.9860 0.4683
AGGL100 43.6054 44.9035 44.0472 43.9875 0.3061
GH-VNS1 47.7171 59.6970 53.4896 53.1948 3.4123
GH-VNS2 43.7781 46.0085 44.8602 44.9149 0.5772
GH-VNS3 43.8585 46.4490 44.7263 44.6593 0.6018

SWAP1 (the best of SWAP) 47.8800 52.4030 49.8287 49.5523 1.1239
GA-1POINT 61.2677 76.9114 67.2297 66.9182 3.8341

GA-UNIFORM 68.6276 102.0867 84.8705 83.8152 7.4129
Aggl-EA 43.5826 44.4452 43.7486 43.7560 0.1624

Algorithms 2021, 14, 130 23 of 30

Table A9. Comparative results for Mopsi-Joensuu dataset. 6014 data vectors in R2, p = 30 centers, time limitation 5 s.

Algorithm or
Neighborhood

Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 190.1025 229.0199 218.3214 219.6611 8.1825
j-means (SWAP1 + Lloyd) 146.3243 158.0798 151.0530 150.6979 2.7908

AGGL1 145.7872 163.1270 152.6856 153.2432 5.6803
AGGL2 145.7738 146.2262 145.8728 145.7798 0.1532
AGGL3 145.7745 146.2161 145.9185 145.7841 0.1744
AGGL5 145.7742 146.1392 145.8211 145.7830 0.1088
AGGL7 145.7738 146.1416 145.8188 145.7829 0.1084
AGGL10 145.7770 146.1370 145.8295 145.7831 0.1209
AGGL15 145.7742 146.1392 145.8211 145.7830 0.1088
AGGL20 145.7784 145.8113 145.7869 145.7847 0.0084
AGGL25 145.7753 146.1479 145.8043 145.7893 0.0680
AGGL30 145.7791 146.1466 145.8022 145.7877 0.0670

GH-VNS1 145.7738 146.2193 145.8769 145.7789 0.1537
GH-VNS2 145.7729 146.1506 145.8323 145.7780 0.1243
GH-VNS3 145.7721 146.1273 145.7932 145.7761 0.0664

SWAP1 (the best of SWAP) 145.9265 155.8482 148.4986 148.0995 1.8866
GA-1POINT 148.2359 164.0893 154.9963 154.6930 3.4858

GA-UNIFORM 153.8591 201.7184 175.8969 174.2682 10.9540
Aggl-EA 145.7721 145.7752 145.7738 145.7739 0.0008

Table A10. Comparative results for Mopsi-Joensuu dataset. 6014 data vectors in R2, p = 300 centers, time limitation 5 s.

Algorithm or
Neighborhood

Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 47.8874 54.4850 51.6395 51.1162 1.6453
j-means (SWAP1 + Lloyd) 23.6798 35.3805 31.2554 31.8670 2.7425

AGGL1 34.3990 54.5291 42.5890 41.8879 5.0023
AGGL2 18.6255 22.8995 20.4858 20.3853 1.0785
AGGL3 16.7389 19.8415 18.5376 18.6063 0.7018
AGGL5 16.5944 19.4305 17.7512 17.5557 0.7611
AGGL7 16.1609 20.0563 17.8918 17.8397 0.8182
AGGL10 16.4099 19.0087 17.3922 17.2220 0.6228
AGGL15 16.0706 17.4835 16.7584 16.7537 0.4276
AGGL20 15.7783 17.6122 16.6852 16.7338 0.4712
AGGL25 15.6854 18.3011 16.7847 16.6473 0.5885
AGGL50 15.7963 17.7948 16.2860 16.2920 0.4237
AGGL100 15.1942 16.3370 15.6951 15.6738 0.3081
AGGL150 15.2025 16.4996 15.7898 15.7990 0.2939
AGGL200 15.1805 16.2245 15.7252 15.7801 0.2843
AGGL250 15.0975 16.8500 15.7103 15.6757 0.3640
AGGL300 15.2509 16.2803 15.7108 15.7224 0.2694
GH-VNS1 21.5583 31.4467 27.7853 27.9011 2.5876
GH-VNS2 15.5928 17.6197 16.6424 16.6345 0.5166
GH-VNS3 15.3488 16.8864 15.9644 15.8850 0.4229

SWAP5 (the best of SWAP
by avg.) 22.3193 30.7398 27.5174 27.9711 1.9760

SWAP7 (the best of SWAP
by median) 24.0243 30.9356 27.6329 27.8934 1.9714

GA-1POINT 34.4429 45.0868 40.1539 39.6896 2.3970
GA-UNIFORM 37.4806 53.3750 43.8100 43.7275 3.7585

Aggl-EA 14.8354 19.4531 15.4576 15.3310 0.8131

Algorithms 2021, 14, 130 24 of 30

Table A11. Comparative results for Individual Household Electric Power Consumption (IHEPC) dataset. 2,075,259 data
vectors in R7, p = 30 centers, time limitation 5 min.

Algorithm or
Neighborhood

Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 88,145.6484 93,677.3281 90,681.1663 89,967.9297 1818.1249
j-means (SWAP1 + Lloyd) 87,907.7813 95,055.2422 89,657.8895 88,702.9297 2442.1302

AGGL1 91,021.6016 110,467.5625 104,694.9900 109,976.7266 9278.2649
AGGL2 86,291.1406 109,972.0781 99,788.2522 109,817.8125 12,557.4381
AGGL3 109,817.8125 109,999.1328 109,913.6953 109,972.0781 90.3626
AGGL5 86,240.7344 109,999.1328 103,145.4487 109,817.8281 11,519.4208
AGGL7 86,345.9297 109,817.8359 99,781.6283 109,817.8203 12,517.3778
AGGL10 86,414.0938 109,999.1563 106,500.3449 109,817.8281 8857.4620
AGGL15 87,253.8281 109,817.8438 103,391.2009 109,817.8359 10,975.6502
AGGL20 87,616.3984 109,999.1563 106,677.1384 109,817.8438 8405.2571
AGGL25 87,409.8203 109,817.8438 106,616.6953 109,817.8438 8469.4358
AGGL30 87,852.5938 109,878.0156 106,707.1674 109,853.0547 8314.1220

GH-VNS1 86,228.4844 109,999.1250 99,811.1853 109,817.7734 12,593.8724
GH-VNS2 86,368.7891 109,817.8281 99,807.6674 109,817.8125 12,485.0346
GH-VNS3 86,304.9141 109,817.8281 96,518.5525 86,865.2813 12,441.4202

SWAP1 (the best of SWAP) 86,672.6250 112,683.0469 100,566.9531 109,979.8594 12,666.0305
GA-1POINT 88,170.4141 100,368.3438 92,664.3739 92,332.9922 4102.0677

GA-UNIFORM 87,650.1016 110,271.6172 96,631.6763 92,752.2813 9762.9279
Aggl-EA 86,147.6953 109,817.7969 91,515.1658 86,393.3750 10,377.0956

Table A12. Comparative results for Individual Household Electric Power Consumption (IHEPC) dataset. 2,075,259 data
vectors in R7, p = 300 centers, time limitation 5 min.

Algorithm or
Neighborhood

Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 49,901.8086 58,872.1094 53,113.4275 52,599.0273 2781.6693
j-means (SWAP1 + Lloyd) 44,074.6445 47,562.4922 45,375.1657 44,608.1953 1505.4071

AGGL1 67,508.2344 69,943.5000 69,070.9118 69,328.3750 845.3473
AGGL2 43,966.8594 67,854.2500 60,923.9386 67,576.6875 11,525.2718
AGGL3 43,867.1211 68,638.1953 58,670.0921 67,070.9375 11,658.5487
AGGL5 44,337.6641 68,679.3125 61,875.6590 67,577.0625 10,517.0718
AGGL7 43,688.3750 68,976.5469 64,480.6272 67,636.7188 9192.1896
AGGL10 66,566.2969 68,004.2500 67,175.4855 67,188.0938 510.9257
AGGL15 43,160.3125 67,295.1797 57,406.8198 66,625.8047 12,069.9982
AGGL20 43,819.1289 67,265.2188 60,462.2919 66,883.5938 11,234.3160
AGGL25 43,324.3203 67,231.0859 60,237.4286 66,842.1719 11,452.1535
AGGL50 42,628.9141 66,279.0781 62,340.2411 65,467.8828 8700.5474
AGGL100 64,635.6055 65,408.7891 65,055.4102 65,155.6328 284.9207
AGGL150 64,458.3047 65,008.1641 64,682.8622 64,706.7969 188.7753
AGGL200 41,754.1680 64,694.6328 58,240.8147 64,582.5625 10,883.6398
AGGL250 64,385.2461 64,646.9141 64,538.0787 64,547.0820 82.7326
AGGL300 41,373.4453 65,051.3594 61,283.1027 64,492.8828 8781.8445
GH-VNS1 67,290.1406 68,655.8125 67,645.6563 67,467.4375 478.1909
GH-VNS2 43,395.0273 67,046.0234 63,081.6233 66,222.0313 8689.9374
GH-VNS3 42,124.9375 64,425.2734 61,204.4487 64,358.4844 8413.3478

SWAP3 (the best of SWAP
by avg.) 46,137.9570 70,000.2813 63,618.6362 68,361.8672 9467.2699

SWAP100 (the best of SWAP
by median) 51,026.5859 70,514.3359 65,787.6618 67,617.5781 6667.2423

GA-1POINT 45,618.3828 52,858.6875 49,198.6964 47,304.4453 3129.2994
GA-UNIFORM 46,171.7148 62,034.5273 52,218.1077 50,642.4961 5712.0544

Aggl-EA 41,795.5078 65,057.9375 51,888.0642 42,525.5000 12,122.2332

Algorithms 2021, 14, 130 25 of 30

Table A13. Comparative results for Individual Household Electric Power Consumption (IHEPC) dataset. 2,075,259 data
vectors in R7, p = 100 centers, time limitation 5 min.

Algorithm or
Neighborhood

Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 61,803.3047 65,997.1406 64,612.3371 65,037.8281 1431.8760
j-means (SWAP1 + Lloyd) 61,374.5742 70,854.6953 63,433.8962 62,227.1172 3308.9649

AGGL1 60,709.2500 88,798.9453 82,890.4255 86,253.2539 9221.4664
AGGL2 58,098.7578 85,587.0938 78,612.5859 84,406.7891 11,517.2424
AGGL3 58,508.1367 84,416.4219 75,654.4905 83,573.3906 11,916.7366
AGGL5 58,326.4648 83,891.5781 69,386.2210 59,046.0703 13,415.1144
AGGL7 58,623.8203 84,465.2500 69,618.7757 59,477.0938 13,118.7602
AGGL10 58,665.4414 84,494.0938 72,985.3951 82,966.5156 13,078.1135
AGGL15 58,306.4961 83,287.7891 69,407.9023 59,881.0156 12,347.6134
AGGL20 58,666.2383 83,110.8438 76,161.1618 82,986.7578 11,757.2349
AGGL25 58,533.1406 83,046.0703 69,305.3025 59,392.3672 12,821.3261
AGGL50 58,768.5430 82,938.1797 69,450.1853 60,540.5391 12,428.4255
AGGL75 58,538.9922 82,544.6875 75,635.4358 82,477.6172 11,673.3413
AGGL100 58,460.1914 82,531.0000 78,951.6490 82,422.8125 9036.9781
GH-VNS1 59,228.6055 85,246.7969 73,899.8482 83,708.7031 13,239.8092
GH-VNS2 82,966.8750 83,334.9688 83,061.5056 83,033.9844 128.9717
GH-VNS3 59,417.9375 82,291.0391 78,905.5815 82,124.6094 8593.7433

SWAP10 (the best of SWAP) 61,196.4414 84,698.2109 70,051.5938 62,676.3125 10,652.0083
GA-1POINT 62,192.1719 64,413.2578 63,051.7500 63,028.9922 733.3966

GA-UNIFORM 60,873.5859 66,829.2969 63,656.8555 64,155.6875 2084.6202
Aggl-EA 57,594.0703 72,909.5000 65,782.6094 58,506.6484 3208.6879

Table A14. Comparative results for Mopsi-Finland dataset. 13,467 data vectors in R2, p = 100 centers, time limitation 5 s.

Algorithm or
Neighborhood

Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 6.28454 × 106 7.25139 × 106 6.92349 × 106 6.95864 × 106 198,384
j-means (SWAP1 + Lloyd) 3.76240 × 106 4.00651 × 106 3.85266 × 106 3.84859 × 106 59,481.8

AGGL1 4.17611 × 106 5.71925 × 106 4.87105 × 106 4.79499 × 106 417,612
AGGL2 3.64502 × 106 3.67299 × 106 3.65556 × 106 3.65350 × 106 7644.61
AGGL3 3.64508 × 106 3.77758 × 106 3.66037 × 106 3.65225 × 106 28,242.8
AGGL5 3.64502 × 106 3.77520 × 106 3.65956 × 106 3.65221 × 106 31,464.1
AGGL7 3.64352 × 106 3.77238 × 106 3.66457 × 106 3.65259 × 106 36,374.3
AGGL10 3.64503 × 106 3.74222 × 106 3.65639 × 106 3.65191 × 106 18,087.8
AGGL12 3.64508 × 106 3.77121 × 106 3.65745 × 106 3.65299 × 106 22,688.4
AGGL15 3.64351 × 106 3.78305 × 106 3.66115 × 106 3.65050 × 106 32,121.2
AGGL20 3.64289 × 106 3.74971 × 106 3.65333 × 106 3.64965 × 106 19,010.0
AGGL25 3.64354 × 106 3.66605 × 106 3.64913 × 106 3.64784 × 106 5184.35
AGGL30 3.64290 × 106 3.67201 × 106 3.65106 × 106 3.64702 × 106 7780.79
AGGL50 3.64511 × 106 3.67594 × 106 3.65120 × 106 3.64940 × 106 6920.69
AGGL75 3.64510 × 106 3.68136 × 106 3.65552 × 106 3.65355 × 106 7722.98
AGGL100 3.64508 × 106 3.67524 × 106 3.65651 × 106 3.65395 × 106 9106.84
GH-VNS1 3.69265 × 106 5.20291 × 106 4.05038 × 106 3.93463 × 106 336,130
GH-VNS2 3.64503 × 106 3.66884 × 106 3.65123 × 106 3.65015 × 106 6284.54
GH-VNS3 3.64503 × 106 3.67655 × 106 3.65735 × 106 3.65370 × 106 9247.64

SWAP1 (the best of SWAP) 3.68260 × 106 3.79031 × 106 3.74321 × 106 3.74447 × 106 25,846.1
GA-1POINT 4.38348 × 106 5.29721 × 106 4.83383 × 106 4.82569 × 106 198,278

GA-UNIFORM 5.00518 × 106 6.29115 × 106 5.62017 × 106 5.60439 × 106 347,120
Aggl-EA 3.64285 × 106 3.65052 × 106 3.64473 × 106 3.64502 × 106 1467.87

Algorithms 2021, 14, 130 26 of 30

Table A15. Comparative results for Mopsi-Finland dataset. 13,467 data vectors in R2, p = 300 centers, time limitation 5 s.

Algorithm or
Neighborhood

Achieved Objective Function Values (1) Summarized after 30 Runs

Min (Record) Max (Worst) Average Median Std. Dev

Lloyd (multistart) 3.28826 × 106 3.58614 × 106 3.46203 × 106 3.47443 × 106 80,996.0
j-means (SWAP1 + Lloyd) 1.59039 × 106 2.13796 × 106 1.74473 × 106 1.71790 × 106 120,717

AGGL1 2.34524 × 106 3.59085 × 106 3.03226 × 106 2.97788 × 106 300,773
AGGL2 1.47203 × 106 1.68652 × 106 1.53552 × 106 1.52156 × 106 55,909.7
AGGL3 1.41824 × 106 1.65971 × 106 1.49980 × 106 1.49186 × 106 50,351.7
AGGL5 1.41376 × 106 1.69573 × 106 1.48142 × 106 1.47572 × 106 53,828.0
AGGL7 1.42594 × 106 1.67197 × 106 1.49188 × 106 1.47882 × 106 50,893.8
AGGL10 1.42666 × 106 1.61224 × 106 1.48780 × 106 1.48111 × 106 37,416.1
AGGL15 1.38648 × 106 1.68429 × 106 1.51728 × 106 1.50331 × 106 61,906.0
AGGL20 1.43027 × 106 1.67186 × 106 1.51494 × 106 1.49912 × 106 63,635.8
AGGL25 1.42352 × 106 1.74796 × 106 1.51280 × 106 1.49324 × 106 75,237.2
AGGL30 1.42871 × 106 1.66177 × 106 1.49960 × 106 1.48752 × 106 51,468.1
AGGL50 1.40068 × 106 1.47648 × 106 1.44410 × 106 1.44245 × 106 17,875.2
AGGL75 1.38586 × 106 1.48921 × 106 1.42238 × 106 1.42229 × 106 23,714.1
AGGL100 1.37383 × 106 1.43596 × 106 1.40575 × 106 1.41181 × 106 17,442.5
AGGL150 1.36240 × 106 1.40877 × 106 1.38853 × 106 1.38929 × 106 11,719.5
AGGL200 1.35686 × 106 1.42109 × 106 1.38415 × 106 1.38600 × 106 17,504.0
AGGL250 1.35268 × 106 1.40887 × 106 1.38198 × 106 1.38182 × 106 13,577.4
AGGL300 1.35163 × 106 1.41077 × 106 1.38198 × 106 1.37998 × 106 15,384.2
GH-VNS1 1.70022 × 106 2.04728 × 106 1.87817 × 106 1.88773 × 106 101,777
GH-VNS2 1.43218 × 106 1.78314 × 106 1.51093 × 106 1.49528 × 106 70,431.8
GH-VNS3 1.36493 × 106 1.43665 × 106 1.38037 × 106 1.37633 × 106 14,603.0

SWAP1 (the best of SWAP) 1.49832 × 106 1.72366 × 106 1.57134 × 106 1.56292 × 106 47,997.3
GA-1POINT 2.69754 × 106 3.29563 × 106 2.91834 × 106 2.88716 × 106 144,687

GA-UNIFORM 2.55194 × 106 3.53833 × 106 2.91604 × 106 2.89257 × 106 205,946
Aggl-EA 1.36496 × 106 1.40537 × 106 1.38311 × 106 1.38149 × 106 12,302.2

References
1. Drezner, Z.; Hamacher, H. Facility Location: Applications and Theory; Springer: Berlin, Germany, 2004.
2. Khachumov, M.V. Distances, metrics and data clustering. Sci. Tech. Inf. Proc. 2012, 39, 310–316. [CrossRef]
3. Çolakoglu, H.B. A Generalization of the Minkowski Distance and a New Definition of the Ellipse. Available online:

https://arxiv.org/abs/1903.09657v1 (accessed on 12 March 2021).
4. France, S.; Carroll, J.D.; Xiong, H. Distance metrics for high dimensional nearest neighborhood recovery: Compression and

normalization. Inform. Sci. 2012, 184, 92–110. [CrossRef]
5. Weiszfeld, E.; Plastria, F. On the point for which the sum of the distances to n given points is minimum. Ann. Oper. Res. 2009, 167, 7–41.

[CrossRef]
6. Kuhn, H.W. A note on Fermat’s problem. Math. Program. 1973, 4, 98–107. [CrossRef]
7. Weiszfeld, E. Sur le point sur lequel la somme des distances de n points donnes est minimum. Tohoku Math. J. 1937, 43, 335–386.
8. Sturm, R. Ueber den Punkt kleinster Entfernungssumme von gegebenen Punkten. J. Rein. Angew. Math. 1884, 97, 49–61.
9. Beck, A. Weiszfeld’s Method: Old and New Results. J. Optim. Theory Appl. 2015, 164, 1–40. [CrossRef]
10. Garey, M.; Johnson, D.; Witsenhausen, H. The complexity of the generalized Lloyd—Max problem (Corresp.). IEEE Trans. Inf. Theory

1982, 28, 255–256. [CrossRef]
11. Farahani, R.Z.; Hekmatfar, M. Facility Location Concepts, Models, Algorithms and Case Studies; Springer: Berlin/Heidelberg,

Germany, 2009. [CrossRef]
12. Hakimi, S.L. Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 1964, 12,

450–459. [CrossRef]
13. Masuyama, S.; Ibaraki, T.; Hasegawa, T. The computational complexity of the m center problems on the plane. Trans. Inst. Electron.

Commun. Eng. Jpn. 1981, 64E, 57–64.
14. Kariv, O.; Hakimi, S.L. An algorithmic approach to network location problems. The p-medians. SIAM J. Appl. Math 1979, 37,

539–560. [CrossRef]
15. Cooper, L. The weber problem revisited. Comput. Math. Appl. 1981, 7, 225–234. [CrossRef]
16. Lawrence, M. Ostresh. On the convergence of a class of iterative methods for solving the weber location problem. Oper. Res. 1978,

26, 597–609.

http://doi.org/10.3103/S0147688212060020
https://arxiv.org/abs/1903.09657v1
http://doi.org/10.1016/j.ins.2011.07.048
http://doi.org/10.1007/s10479-008-0352-z
http://doi.org/10.1007/BF01584648
http://doi.org/10.1007/s10957-014-0586-7
http://doi.org/10.1109/TIT.1982.1056488
http://doi.org/10.1007/978-3-7908-2151-2
http://doi.org/10.1287/opre.12.3.450
http://doi.org/10.1137/0137041
http://doi.org/10.1016/0898-1221(81)90082-1

Algorithms 2021, 14, 130 27 of 30

17. Plastria, F.; Elosmani, M. On the convergence of the Weiszfeld algorithm for continuous single facility location allocation problems.
TOP 2008, 16, 388–406. [CrossRef]

18. Vardi, Y. The multivariate L1-median and associated data depth. Proc. Natl. Acad. Sci. USA 2000, 97, 1423–1426. [CrossRef]
[PubMed]

19. Badoiu, M. Approximate clustering via core-sets. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing,
Montréal, QC, Canada, 19–21 May 2002; pp. 250–257.

20. Kuhn, H.W. An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economics. J. Reg. Sci.
1962, 4, 21–34.

21. Mladenovic, N.; Brimberg, J.; Hansen, P.; Moreno-Perez, J.A. The p-median problem: A survey of metaheuristic approaches.
Eur. J. Oper. Res. 2007, 179, 927–939. [CrossRef]

22. Reese, J. Solution methods for the p-median problem: An annotated bibliography. Networks 2006, 48, 125–142. [CrossRef]
23. Hakimi, S.L. Optimum distribution of switching centers in a communication network and some related graph theoretic problems.

Oper. Res. 1965, 13, 462–475. [CrossRef]
24. Kuenne, R.E.; Soland, R.M. Exact and approximate solutions to the multisource Weber problem. Math. Program. 1972, 3, 193–209.

[CrossRef]
25. Ostresh, L.M.J. The stepwise location-allocation problem: Exact solutions in continuous and discrete spaces. Geogr. Anal. 1978, 10,

174–185. [CrossRef]
26. Rosing, K.E. An optimal method for solving the (generalized) multi-weber problem. Eur. J. Oper. Res. 1992, 58, 414–426. [CrossRef]
27. Rabbani, M. A novel approach for solving a constrained location allocation problem. Int. J. Ind. Eng. Comput. 2013, 4, 203–214.

[CrossRef]
28. Fathali, J.; Rad, N.J.; Sherbaf, S.R. The p-median and p-center problems on bipartite graphs. Iran. J. Math. Sci. Inf. 2014, 9, 37–43.

[CrossRef]
29. Avella, P.; Sassano, A.; Vasil’ev, I. Computational study of large-scale p-median problems. Math. Program. 2007, 109, 89–114.

[CrossRef]
30. Avella, P.; Boccia, M.; Salerno, S.; Vasilyev, I. An aggregation heuristic for large-scale p-median problem. Comput. Oper. Res. 2012,

39, 1625–1632. [CrossRef]
31. Resende, M.G.C. Metaheuristic hybridization with greedy randomized adaptive search procedures. Inf. TutORials Oper. Res. 2008,

295–319. [CrossRef]
32. Resende, M.G.C.; Ribeiro, C.C.; Glover, F.; Marti, R. Scatter search and path relinking: Fundamentals, advances, and applications.

In Handbook of Metaheuristics; Gendreau, M., Potvin, J.-Y., Eds.; Springer: Boston, MA, USA, 2010; pp. 87–107. [CrossRef]
33. Brimberg, J.; Drezner, Z.; Mladenovic, N.; Salhi, S. A New Local Search for Continuous Location Problems. Eur. J. Oper. Res. 2014,

232, 256–265. [CrossRef]
34. Drezner, Z.; Brimberg, J.; Mladenovic, N.; Salhi, S. New heuristic algorithms for solving the planar p-median problem.

Comput. Oper. Res. 2015, 62, 296–304. [CrossRef]
35. Drezner, Z.; Brimberg, J.; Mladenovic, N.; Salhi, S. Solving the planar p-median problem by variable neighborhood and concentric

searches. J. Glob. Optim. 2015, 63, 501–514. [CrossRef]
36. Mladenovic, N.; Alkandari, A.; Pei, J.; Todosijevic, R.; Pardalos, P.M. Less is more approach: Basic variable neighborhood search

for the obnoxious p -median problem. Int. Trans. Oper. Res. 2019, 27, 480–493. [CrossRef]
37. Bernábe-Loranca, M.; González-Velázquez, R.; Granillo-Martinez, E.; Romero-Montoya, M.; Barrera-Cámara, R. P-median

problem: A real case application. In Intelligent Systems Design and Applications. ISDA 2019. Advances in Intelligent Systems and
Computing; Springer: Cham, Switherlands, 2021; Volume 1181. [CrossRef]

38. Arthur, D.; Vassilvitskii, S. k-Means++: The Advantages of Careful Seeding. In Proceedings of the SODA’07, SIAM, New Orleans,
LA, USA, 7–9 January 2007; pp. 1027–1035.

39. Hromkovic, J. Algorithmics for Hard Problems: Introduction to Combinatorial Optimization, Randomization, Approximation, and
Heuristics; Springer: Berlin/Heidelberg, Germany, 2011.

40. Ng, T. Expanding Neighborhood Tabu Search for facility location problems in water infrastructure planning. In Proceedings
of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 5–8 October 2014;
pp. 3851–3854. [CrossRef]

41. Kochetov, Y.; Mladenovic, N.; Hansen, P. Local search with alternating neighborhoods. Discret. Anal. Oper. Res. 2003, 10, 11–43.
(In Russian)

42. Hansen, P. Variable neighborhood search: Principles and applications. Eur. J. Oper. Res 2001, 130, 449–467. [CrossRef]
43. Hansen, P.; Mladenovic, N. Development of Variable Neighborhood Search. In Essays and Surveys in Metaheuristics; Ribeiro, C.C.,

Hansen, P., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 415–440.
44. Mladenovic, N. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [CrossRef]
45. Kochetov, Y.A. Local Search Methods for Discrete Location Problems. Ph.D. Thesis, Sobolev Institute of Mathematics SB RAS,

Novosibirsk, Russia, 19 January 2010. (In Russian).
46. Hansen, P. Variable Neighborhood Search. In Search Methodology; Bruke, E.K., Kendall, G., Eds.; Springer: Berlin/Heidelberg,

Germany, 2005; pp. 211–238. [CrossRef]

http://doi.org/10.1007/s11750-008-0056-1
http://doi.org/10.1073/pnas.97.4.1423
http://www.ncbi.nlm.nih.gov/pubmed/10677477
http://doi.org/10.1016/j.ejor.2005.05.034
http://doi.org/10.1002/net.20128
http://doi.org/10.1287/opre.13.3.462
http://doi.org/10.1007/BF01584989
http://doi.org/10.1111/j.1538-4632.1978.tb00006.x
http://doi.org/10.1016/0377-2217(92)90072-H
http://doi.org/10.5267/j.ijiec.2013.02.003
http://doi.org/10.7508/ijmsi.2014.02.004
http://doi.org/10.1007/s10107-005-0700-6
http://doi.org/10.1016/j.cor.2011.09.016
http://doi.org/10.1287/educ.1080.0045
http://doi.org/10.1007/0-306-48056-51
http://doi.org/10.1016/j.ejor.2013.06.022
http://doi.org/10.1016/j.cor.2014.05.010
http://doi.org/10.1007/s10898-014-0183-1
http://doi.org/10.1111/itor.12646
http://doi.org/10.1007/978-3-030-49342-4_18
http://doi.org/10.1109/smc.2014.6974531
http://doi.org/10.1016/S0377-2217(00)00100-4
http://doi.org/10.1016/S0305-0548(97)00031-2
http://doi.org/10.1007/0-387-28356-08

Algorithms 2021, 14, 130 28 of 30

47. Brimberg, J.; Mladenovic, N. A variable neighborhood algorithm for solving the continuous location-allocation problem.
Stud. Locat. Anal. 1996, 10, 1–12.

48. Hansen, P.; Mladenovic, N.; Perez-Brito, D. Variable neighborhood decomposition search. J. Heuristics 2001, 7, 335–350. [CrossRef]
49. Brimberg, J.; Hansen, P.; Mladenovic, N.; Taillard, E. Improvements and comparison of heuristics for solving the uncapacitated

multisource Weber problem. Oper. Res. 2000, 48, 444–460. [CrossRef]
50. Kochetov, Y.; Alekseeva, E.; Levanova, T.; Loresh, M. Large neighborhood local search for the p-median problem. Yugosl. J.

Oper. Res. 2005, 15, 53–63. [CrossRef]
51. Lopez, F.G.; Batista, B.M.; Moreno-Perez, J.; Moreno-Vega, M. The parallel variable neighborhood search for the p-median

problem. J. Heuristics 2002, 8, 375–388. [CrossRef]
52. Rozhnov, I.P.; Orlov, V.I.; Kazakovtsev, L.A. VNS-Based algorithms for the centroid-based clustering problem. FACTA Univ. Ser.

Math. Inform. 2019, 34, 957–972.
53. Still, S.; Bialek, W.; Bottou, L. Geometric clustering using the information bottleneck method, Advances. In Neural Information

Processing Systems. 16; MIT Press: Cambridge, UK, 2004.
54. Sun, Z.; Fox, G.; Gu, W.; Li, Z. A parallel clustering method combined information bottleneck theory and centroid-based clustering.

J. Supercomput. 2014, 69, 452–467. [CrossRef]
55. Houck, C.R.; Joines, J.A.; Kay, M.G. Comparison of genetic algorithms, random restart and two-opt switching for solving large

location-allocation problems. Comput. Oper. Res. 1996, 23, 587–596. [CrossRef]
56. Maulik, U.; Bandyopadhyay, S. Genetic algorithm-based clustering technique. Pattern Recognit. 2000, 33, 1455–1465. [CrossRef]
57. Krishna, K.; Murty, M.M. Genetic k-means algorithm. IEEE Trans. Syst. Man Cybernetics. Part B 1999, 29, 433–439. [CrossRef]

[PubMed]
58. Neema, M.N.; Maniruzzaman, K.M.; Ohgai, A. New genetic algorithms based approaches to continuous p-median problem.

Netw. Spat. Econ. 2011, 11, 83–99. [CrossRef]
59. Tuba, E.; Strumberger, I.; Tuba, I.; Bacanin, N.; Tuba, M. Water cycle algorithm for solving continuous p-median problem. In

Proceedings of the SACI 2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics,
Timiuoara, Romania, 17–19 May 2018; pp. 351–354. [CrossRef]

60. Levanova, T.V.; Gnusarev, A.Y. Simulated annealing for competitive p–median facility location problem. J. Phys. Conf. Ser. 2018,
1050, 012044. [CrossRef]

61. Zhao, H.; Zhang, C. An online-learning-based evolutionary many-objective algorithm. Inf. Sci. 2020, 509, 1–21. [CrossRef]
62. Dulebenets, M.A. An adaptive island evolutionary algorithm for the berth scheduling problem. Memetic Comp. 2020, 12, 51–72.

[CrossRef]
63. Liu, Z.Z.; Wang, Y.; Huang, P.Q. AnD: A many-objective evolutionary algorithm with angle-based selection and shift-based

density estimation. Inf. Sci. 2020, 509, 400–419. [CrossRef]
64. Ruiz, E.; Soto-Mendoza, V.; Barbosa, A.E.R.; Reyes, R. Solving the open vehicle routing problem with capacity and distance

constraints with a biased random key genetic algorithm. Comput. Ind. Eng. 2019, 133, 207–219. [CrossRef]
65. Bae, H.; Moon, I. Multi-depot vehicle routing problem with time windows considering delivery and installation vehicles.

Appl. Math. Model. 2016, 40, 6536–6549. [CrossRef]
66. Pasha, J.; Dulebenets, M.A.; Kavoosi, M.; Abioye, O.F.; Wang, H.; Guo, W. An optimization model and solution algorithms for the

vehicle routing problem with a “factory-in-a-box”. IEEE Access 2020, 8, 134743–134763. [CrossRef]
67. D’Angelo, G.; Pilla, R.; Tascini, C.; Rampone, S. A proposal for distinguishing between bacterial and viral meningitis using

genetic programming and decision trees. Soft Comput. 2019, 23, 11775–11791. [CrossRef]
68. Panda, N.; Majhi, S.K. How Effective is the Salp Swarm Algorithm in Data Classification. In Computational Intelligence in Pattern

Recognition. Advances in Intelligent Systems and Computing; Das, A., Nayak, J., Naik, B., Pati, S., Pelusi, D., Eds.; Springer: Singapore,
2020; Volume 999. [CrossRef]

69. Falkenauer, E. Genetic Algorithms and Grouping Problems; Wiley: New York, NY, USA, 1998.
70. Alp, O.; Erkut, E.; Drezner, Z. An efficient genetic algorithm for the p-median problem. Ann. Oper. Res. 2003, 122, 21–42.

[CrossRef]
71. Kazakovtsev, L.A.; Antamoshkin, A.N. Genetic algorithm with fast greedy heuristic for clustering and location problems.

Informatica 2014, 38, 229–240.
72. Hosage, C.M.; Goodchild, M.F. Discrete space location-allocation solutions from genetic algorithms. Ann. Oper. Res. 1986, 6,

35–46. [CrossRef]
73. Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. Acm Comput. Surv. 2001,

35, 268–308. [CrossRef]
74. Kazakovtsev, L.; Rozhnov, I.; Popov, A.; Tovbis, E.M. Self-adjusting variable neighborhood search algorithm for near-optimal

k-means clustering. Computation 2020, 8, 90. [CrossRef]
75. Lloyd, S.P. Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
76. MacQueen, J.B. Some methods of classification and analysis of multivariate observations. In Proceedings of the 5th Berkley

Symposium on Mathematical Statistics and Probability, California, CA, USA, 21 June–18 July 1965; Volume 1, pp. 281–297.

http://doi.org/10.1023/A:1011336210885
http://doi.org/10.1287/opre.48.3.444.12431
http://doi.org/10.2298/YJOR0501053K
http://doi.org/10.1023/A:1015013919497
http://doi.org/10.1007/s11227-014-1174-1
http://doi.org/10.1016/0305-0548(95)00063-1
http://doi.org/10.1016/S0031-3203(99)00137-5
http://doi.org/10.1109/3477.764879
http://www.ncbi.nlm.nih.gov/pubmed/18252317
http://doi.org/10.1007/s11067-008-9084-5
http://doi.org/10.1109/SACI.2018.8441019
http://doi.org/10.1088/1742-6596/1050/1/012044
http://doi.org/10.1016/j.ins.2019.08.069
http://doi.org/10.1007/s12293-019-00292-3
http://doi.org/10.1016/j.ins.2018.06.063
http://doi.org/10.1016/j.cie.2019.05.002
http://doi.org/10.1016/j.apm.2016.01.059
http://doi.org/10.1109/ACCESS.2020.3010176
http://doi.org/10.1007/s00500-018-03729-y
http://doi.org/10.1007/978-981-13-9042-5_49
http://doi.org/10.1023/A:1026130003508
http://doi.org/10.1007/BF02027381
http://doi.org/10.1145/937503.937505
http://doi.org/10.3390/computation8040090
http://doi.org/10.1109/TIT.1982.1056489

Algorithms 2021, 14, 130 29 of 30

77. Kazakovtsev, L.A.; Rozhnov, I.P. Comparative study of local search in SWAP and agglomerative neighbourhoods for the continuous
p-median problem. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Volume 1047, III International
Conference MIST: Aerospace 2020: Advanced Technologies in Aerospace, Mechanical and Automation Engineering (Aerospace
2020), Krasnoyarsk, Russia, 20–21 November 2020; Volume 1047. [CrossRef]

78. Droste, S.; Jansen, T.; Wegener, I. On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 2002, 276, 51–81.
[CrossRef]

79. Borisovsky, P.A.; Eremeev, A.V. A study on performance of the (1+1)-Evolutionary Algorithm. In Foundations of Genetic Algorithms;
De Jong, K., Poli, R., Rowe, J., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 2003; pp. 271–287.

80. Eremeev, A.V.; Borisovsky, P.A. Comparing evolutionary algorithms to the (1+1)–EA. Theor. Comput. Sci. 2008, 403, 33–41.
[CrossRef]

81. Sung, C.W.; Yuen, S.Y. Analysis of (1+1) evolutionary algorithm and randomized local search with memory. Evol. Comput. 2011,
19, 287–323. [CrossRef]

82. Doerr, B.; Johannsen, D.; Schmidt, M. Runtime analysis of the (1+1) evolutionary algorithm on strings over finite alphabets.
In Proceedings of the 11th Workshop on Foundations of Genetic Algorithms (FOGA’11), Schwarzenberg, Austria, 5–9 January
2011; pp. 119–126. [CrossRef]

83. Peng, X. Performance analysis of (1+1)EA on the maximum independent set problem. In Lecture Notes in Computer Science;
Springer: Cham, Switherlands, 2015; Volume 9483. [CrossRef]

84. Xia, X.; Zhou, Y. Approximation performance of the (1+1) evolutionary algorithm for the minimum degree spanning tree problem.
In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2015; Volume 562. [CrossRef]

85. Bian, C.; Qian, C.; Tang, K.; Yu, Y. Running time analysis of the (1+1)-EA for robust linear optimization. Theor. Comput. Sci.
2020, 843, 57–72. [CrossRef]

86. Doerr, B.; Le, H.P.; Makhmara, R.; Nguyen, T.D. Fast genetic algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2017; Bosman, P.A.N., Ed.; Spriger: Berlin, Germany, 2017; pp. 777–784. [CrossRef]

87. Cooper, L. Heuristic methods for location-allocation problems. SIAM Rev. 1964, 6, 37–53. [CrossRef]
88. Jiang, J.L.; Yuan, X.M. A heuristic algorithm for constrained multi-source Weber problem. The variational inequality approach.

Eur. J. Oper. Res. 2007, 187, 357–370. [CrossRef]
89. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B

1977, 39, 1–38. [CrossRef]
90. O’Callaghan, L.; Mishra, N.; Meyerson, A.; Guha, S.; Motwani, R. Streaming-data algorithms for high-quality clustering.

In Proceedings of the 18th International Conference on Data Engineering, San Jose, CA, USA, 26 February–1 March 2002;
pp. 685–694. [CrossRef]

91. Ackermann, M.R.; Martens, M.; Raupach, C.; Swierkot, K.; Lammersen, C.; Sohler, C. Streamkm: A clustering algorithm for data
streams. J. Exp. Algorithms 2010, 17, art.2.4. [CrossRef]

92. Kazakovtsev, L.; Stashkov, D.; Gudyma, M.; Kazakovtsev, V. Algorithms with Greedy Heuristic Procedures for Mixture Probability
Distribution Separation. Yugosl. J. Oper. Res. 2018, 29, 51–67. [CrossRef]

93. Nikolaev, A.; Mladenovic, N.; Todosijevic, R. J-means and I-means for minimum sum-of-squares clustering on networks.
Optim. Lett. 2017, 11, 359–376. [CrossRef]

94. Clustering Basic Benchmark. Available online: http://cs.joensuu.fi/sipu/datasets/ (accessed on 25 September 2020).
95. Dua, D.; Graff, C. UCI Machine Learning Repository 2019. Available online: http://archive.ics.uci.edu/ml (accessed on 30

September 2020).
96. Kazakovtsev, L.; Rozhnov, I.; Shkaberina, G.; Orlov, V. K-Means genetic algorithms with greedy genetic operators. Math. Probl.

Eng. 2020, 2020, 8839763. [CrossRef]
97. Kazakovtsev, L.; Rozhnov, I. Application of algorithms with variable greedy heuristics for k-medoids problems. Informatica 2020,

44, 55–61. [CrossRef]
98. Luebke, D.; Humphreys, G. How GPUs work. Computer 2007, 40, 96–100. [CrossRef]
99. Lim, G.; Ma, L. GPU-based parallel vertex substitution algorithm for the p-median problem. Comput. Ind. Eng. 2013, 64, 381–388.

[CrossRef]
100. AlBdaiwi, B.F.; AboElFotoh, H.M.F. A GPU-based genetic algorithm for the p-median problem. J. Supercomput. 2017, 73, 4221–4244.

[CrossRef]
101. Herda, M. Parallel genetic algorithm for capacitated p-median problem. Procedia Eng. 2017, 192, 313–317. [CrossRef]
102. Zechner, M.; Granitzer, M. Accelerating K-Means on the Graphics Processor via CUDA. In Proceedings of the International

Conference on Intensive Applications and Services, Valencia, Spain, 20–25 April 2009; pp. 7–15. [CrossRef]
103. Charikar, M.; Guha, S.; Tardos, E.; Shmoys, D.B. A constant-factor approximation algorithm for the k-median problem.

In Proceedings of the 31st Annual ACM Symposium on Theory of Computing, Atlanta, GA, USA, 1–4 May 1999; pp. 1–10.
104. Jain, K.; Vazirani, V. Approximation algorithms for metric facility location and k-median problems using the primal-dual schema

and lagrangian relaxation. J. ACM 2001, 48, 274–296. [CrossRef]
105. Fränti, P.; Sieranoja, S. K-means properties on six clustering benchmark datasets. Appl. Intell. 2018, 48, 4743–4759. [CrossRef]

http://doi.org/10.1088/1757-899X/1047/1/012079
http://doi.org/10.1016/S0304-3975(01)00182-7
http://doi.org/10.1016/j.tcs.2008.03.008
http://doi.org/10.1162/EVCO_a_00029
http://doi.org/10.1145/1967654.1967665
http://doi.org/10.1007/978-3-319-27051-7_38
http://doi.org/10.1007/978-3-662-49014-3_45
http://doi.org/10.1016/j.tcs.2020.07.001
http://doi.org/10.1145/3071178.3071301
http://doi.org/10.1137/1006005
http://doi.org/10.1016/j.ejor.2007.02.043
http://doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://doi.org/10.1109/ICDE.2002.994785
http://doi.org/10.1145/2133803.2184450
http://doi.org/10.2298/YJOR171107030K
http://doi.org/10.1007/s11590-015-0974-4
http://cs.joensuu.fi/sipu/datasets/
http://archive.ics.uci.edu/ml
http://doi.org/10.1155/2020/8839763
http://doi.org/10.31449/inf.v44i1.2737
http://doi.org/10.1109/MC.2007.59
http://doi.org/10.1016/j.cie.2012.10.008
http://doi.org/10.1007/s11227-017-2006-x
http://doi.org/10.1016/j.proeng.2017.06.054
http://doi.org/10.1109/INTENSIVE.2009.19
http://doi.org/10.1145/375827.375845
http://doi.org/10.1007/s10489-018-1238-7

Algorithms 2021, 14, 130 30 of 30

106. Smucker, M.D.; Allan, J.; Carterette, B.A. Comparison of Statistical Significance Tests for Information Retrieval. In Proceedings
of the Sixteenth ACM Conference on Conference on Information and Knowledge Management (CIKM’07), Lisbon, Portugal,
6−10 November 2007; pp. 623–632.

107. Park, H.M. Comparing Group Means: The t-Test and One-Way ANOVA Using STATA, SAS, and SPSS; Indiana University: Bloomington,
IN, USA, 2009.

108. Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other.
Ann. Math. Stat. 1947, 18, 50–60. [CrossRef]

109. Fay, M.P.; Proschan, M.A. Wilcoxon-Mann-Whitney or t-Test? On Assumptions for Hypothesis Tests and Multiple Interpretations
of Decision Rules. Stat. Surv. 2010, 4, 1–39. [CrossRef]

http://doi.org/10.1214/aoms/1177730491
http://doi.org/10.1214/09-SS051

	Introduction
	Problem Statement
	State-of-the-Art
	Research Gap and Our Contribution

	Methods
	The Basic Algorithmic Approaches
	Greedy Agglomerative Procedures
	CUDA Implementation of Greedy Agglomerative Procedures
	New Algorithm

	Results of Computational Experiments
	Discussion
	Conclusions
	Detailed Results of Computational Experiments
	References

