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Abstract: Compared with continuous elements, discontinuous elements advance in processing the 
discontinuity of physical variables at corner points and discretized models with complex bounda-
ries. However, the computational accuracy of discontinuous elements is sensitive to the positions of 
element nodes. To reduce the side effect of the node position on the results, this paper proposes 
employing partially discontinuous elements to compute the time-domain boundary integral equa-
tion of 3D elastodynamics. Using the partially discontinuous element, the nodes located at the cor-
ner points will be shrunk into the element, whereas the nodes at the non-corner points remain un-
changed. As such, a discrete model that is continuous on surfaces and discontinuous between adja-
cent surfaces can be generated. First, we present a numerical integration scheme of the partially 
discontinuous element. For the singular integral, an improved element subdivision method is pro-
posed to reduce the side effect of the time step on the integral accuracy. Then, the effectiveness of 
the proposed method is verified by two numerical examples. Meanwhile, we study the influence of 
the positions of the nodes on the stability and accuracy of the computation results by cases. Finally, 
the recommended value range of the inward shrink ratio of the element nodes is provided. 

Keywords: boundary element method; elastodynamics; partially discontinuous element; singular 
integral; stability 
 

1. Introduction 
Due to the advantages of dimensionality reduction, semi-analysis, and being suitable 

for dealing with stress concentration and infinite domain problems, the boundary element 
method (BEM) [1] has been successfully adopted in different environments, such as frac-
ture mechanics [2–4] and acoustics [5–8]. In contrast to the finite element method (FEM) 
[9,10], the BEM does not require the continuity of physical quantities between elements 
[11]. This point can be confirmed from the successful application of constant boundary 
elements. Therefore, the BEM is adopted to analyze the elastodynamic problem in this 
paper. 

According to the positions of the nodes, the boundary elements are classified as con-
tinuous (conforming) or discontinuous (non-conforming) elements. Continuous elements 
share common nodes with their neighbors, whereas discontinuous elements do not [12]. 
As discontinuous boundary elements have an advantage in processing the geometric cor-
ner and boundary conditions, they are widely employed in the BEM [13–15]. Moreover, 
the discontinuous element has good adaptability to the boundary shape of the analysis 
domain so that it is easy to realize the mesh discretization of complex models. However, 
the positions of nodes in the discontinuous element significantly affect the computational 
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accuracy. Xu and Brebbia [16] first discussed the problem through the computation of the 
two-dimensional elastostatic problem and made the conclusion that the optimal position 
of the element node is determined by the Gauss–Legendre integration point. The research 
of Parreira [17] and Marburg [18] reached similar conclusions to Xu and Brebbia [16]. Ma-
nolis and Banerjee [19] also discussed the node position problem. They claimed that the 
nodes should be distributed as uniformly as possible in the discontinuous element. A sim-
ilar conclusion can be found in [15]. 

Although the discontinuous element advances in processing the discontinuity of 
physical variables at corner points, the completely discontinuous element will signifi-
cantly increase the number of nodes in the computation model, which increases the com-
putational cost. Additionally, the computational accuracy of the completely discontinu-
ous element is sensitive to the positions of element nodes, making the numerical results 
unstable. A better way to deal with the corner problem is to use partially discontinuous 
elements [20], in which only the nodes at the corner points are moved into the element, 
and the nodes at the non-corner points remain unchanged. Therefore, a discrete model 
that is continuous on surfaces and discontinuous between adjacent surfaces can be gener-
ated. Subia and Ingber [21] studied the influence of the position of the element node in 
partially discontinuous elements on computational accuracy based on the Laplace equa-
tion. Their results demonstrated that the computational accuracy is insensitive to the po-
sition of the element node when the distance moved inward is equal to [0.05, 0.3] times 
the edge length of the element. A similar conclusion can be found in [22], that is, the com-
putational accuracy of the partially discontinuous element is less sensitive to the position 
of the element node. Moreover, the partially discontinuous element will not add too many 
nodes to the computation model, and the computational cost is comparable to that of the 
continuous element. Therefore, partially discontinuous boundary elements are employed 
to compute the 3D transient elastodynamic problems in this paper. 

The BEM for solving elastodynamic problems [23] mainly includes the time-domain 
BEM, the frequency-domain BEM, and the double reciprocity BEM. For transient prob-
lems, the time-domain BEM is the most natural, direct, and applicable method. However, 
compared with the other two methods, the numerical stability of the time-domain BEM is 
poor. The computation results are easily affected by discrete parameters such as the time 
step and the element size [24–26]. In this paper, the time-domain BEM with partially dis-
continuous elements is introduced to compute 3D elastodynamic problems. The numeri-
cal implementation and performance of the partially discontinuous elements are studied. 
The main contributions of this paper can be summarized as follows: 
(1) The numerical integral scheme of the partially discontinuous elements is studied, in 

which the calculation of a singular integral [27–29] is carefully examined. An im-
proved singular element subdivision method is proposed to reduce the side effect of 
the time step on the integral accuracy. 

(2) The influence of the node position of the partially discontinuous elements on the 
computational accuracy and result stability is studied through two classical numeri-
cal examples. The recommended value range of the inward shift ratio of the element 
node is provided. 
The remainder of the paper is organized as follows: We introduce the boundary in-

tegral equation of 3D elastodynamics and its numerical implementation in Section 2. The 
numerical integral scheme of partially discontinuous elements together with the pro-
cessing of the singular integral is described in Section 3. The experiments and analysis are 
shown in Section 4. Finally, we summarize the paper in the last section. 

2. Time-Domain Boundary Integral Equation of Elastodynamics and Its Numerical 
Implementation 

In this section, the time-domain boundary integral equation of elastodynamics and 
its numerical implementation are presented. As the basis of the research in this paper, the 
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formulas shown in this section are well known and refer to the classic literature [23] in 
this field. 

2.1. Time-Domain Boundary Integral Equation 
The governing equation of the elastodynamic problem for homogeneous, isotropic, 

linear elastic materials [23] is 

, ,( ) ( , ) ( , ) ( , ) ( , )j ij i jj i iG u t Gu t b t u tλ ρ ρ+ + + =q q q q  (1)

with boundary conditions 

( , ) ( , ),
( , ) ( , ),

ui
i i

pi
i i

u t u t S
p t p t S

= ∀ ∈

= ∀ ∈

q q q
q q q

 (2)

and initial conditions 
0

0

( ,0) ( ),
( ,0) ( ),
i i

i i

u u V
u v V

= ∀ ∈

= ∀ ∈

q q q
q q q

 (3)

in which the symbols used are as follows: 
 i and j represent the three directions of the 3D space; 
 ui represents the displacement component; 
 pi represents the traction component in the i direction; 
 bi represents the body force per mass; 
 iu  is the first-order derivative of displacement ui versus time t; 
 iu  is the second-order derivative of displacement ui versus time t; 
 iu  and ip  represent the boundary displacement on uiS  and the boundary trac-

tion on piS , respectively, where the whole boundary ui piS S S=  ; 
 V represents the whole domain of the analysis object; 
 ρ is the medium density; 
 λ and G are the Lame constants given by 

(1 )(1 2 )
Eνλ

ν ν
=

+ −
, 

2(1 )
EG

ν
=

+
 (4)

where E and ν represent Young’s modulus and Poisson’s ratio, respectively. 
The time-domain boundary integral equation (BIE) corresponding to the governing 

Equation (1) can be expressed as 

0 0

0

0

0

( ) ( , ) ( , ; ) ( , )d d ( ) ( , ; ) ( , )d d ( )

( , ; ) ( , )d d ( ) ( , ; ) ( )d ( )

( , ; ) ( )d ( )

t t
s s

ij j ij j ij j
s s

t
s s
ij j ij i

V V

s
ij i

V

C u t u t p S p t u S

u t b V u t v V

u t u V

τ τ τ τ τ τ

ρ τ τ τ ρ

ρ

= − − −

+ − +

+

   

  



p p p q q q p q q q

p q q q p q q q

p q q q

 (5)

in which the meanings of the symbols used are as follows: 
 / 2ij ijC δ=  when the source point p is located on smooth surfaces, and ij ijC δ=  

when the source point p is located in the domain ( 1ijδ =  when i j= , otherwise 
0ijδ = ); 

 ( , ; )s
iju t τ−p q  and ( , ; )s

ijp t τ−p q  are the time-dependent displacement fundamental 
solution and the traction fundamental solution, respectively, whose expressions can 
be found in [23]; 
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 ( , ; )s
iju tp q  represents the velocity fundamental solution, which is the first-order de-

rivative of ( , ; )s
iju t τ−p q  versus time. 

Assuming that the body force and initial conditions are both zero, Equation (5) can 
be simplified to 

0 0

( ) ( , ) ( , ; ) ( , )d d ( ) ( , ; ) ( , )d d ( )
t t

s s
ij j ij j ij j

s s

C u t u t p S p t u Sτ τ τ τ τ τ= − − −   p p p q q q p q q q  (6)

2.2. Numerical Implementation of the BIE 
Equation (6) can be solved numerically by using the time step method to deal with 

the time integral and the collocation point method to process the space integral. If we 
discretize the time interval [0, t] into M time steps of duration Δt, the discretized time 
nodal Mt M t= Δ , where M = 1, 2, …, N. Lagrange interpolation is used to approximate the 
dynamic response at any time in the discrete time interval [tM−1, tM]. In this paper, both 
displacement and traction adopt linear interpolation in the time interval, that is, for a spe-
cific time step M, the time interpolation formulas of displacement and traction are as fol-
lows: 

1 1

1

1 1

1

( , ) [ ( )]

( , ) [ ( )]

M
m m m m

i i i
m
M

m m m m
i i i

m

u u u

p p p

τ ϕ ϕ

τ ϕ ϕ

− −

=

− −

=

= +

= +





q q q

q q q

（ ）

（ ）

 (7)

in which 

1 ( 1)( ), ( )m m
m m

m t m t
t t

τ τϕ τ ϕ τ− Δ − − − Δ= Φ = Φ
Δ Δ

 (8)

with 

( ) ( ( 1) ) ( )m H m t H m tτ τ τΦ = − − Δ − − Δ  (9)

Substituting Equation (7) into Equation (6), the BIE of the time-discrete format can be 
obtained as follows: 

1

( 1)
1

1

( 1)
1

( 1)( ) ( ) ( , ; )( ( ) ( ))d d ( )

( 1)( , ; )( ( ) ( ))d d ( )

M m tM s m m
ij j ij j jS m t

m
M m t s m m

ij j jS m t
m

m t m tC u u M t p p S
t t

m t m tp M t u u S
t t

τ ττ τ

τ ττ τ

Δ −

− Δ
=

Δ −

− Δ
=

Δ − − − Δ= Δ − +
Δ Δ

Δ − − − Δ− Δ − +
Δ Δ

 

 

p p p q q q q

p q q q q
 (10)

The time integral in Equation (10) can be calculated analytically. After time integra-
tion, the BIE without the time variable τ can be obtained, as shown below: 

1 1

1 1

0 0 0 0

( ) ( ) ( )d ( ) ( )d ( )

( )d ( ) ( )d ( )

( )d ( ) ( )d ( )

M MM M MM M
ij j ij j ij jS S

M M
Mm m Mm m
ij j ij jS S

m m

M M
ij j ij jS S

C u U p S P u S

U p S P u S

U p S P u S

− −

= =

= −

+ −

+ −

 

  

 

p p q q q q

q q q q

q q q q

 (11)

in which Mm
ijU  and Mm

ijP  represent the displacement and traction kernel functions after 
time integration, respectively, and 0 ( )ju q  and 0 ( )jp q  represent the displacement and 
traction at the initial moment, respectively. Under zero initial conditions, 0 ( )ju q = 0 ( )jp q

=0. 
After discretizing the boundary S into L elements, we use the K-th Lagrange interpo-

lation function to formulate the BIE of the spatial discretization: 
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1 1 1 1
1 1

1 1 1 1 1 1

( ) ( ) ( )d ( ) ( )d ( )

( )d ( ) ( )d ( )

l l

l l

L K L K
M Mlk MM Mlk MM

ij j j ij k l j ij k lS S
l k l k

M L K M L K
mlk Mm mlk Mm
j ij k l j ij k lS S

m l k m l k

C u p U N S u P N S

p U N S u P N S

= = = =

− −

= = = = = =

= −

+ −

  

  

p p q q q q

q q q q
 (12)

in which m lk
ju  and m lk

jp , respectively, represent the displacement and traction at the k-
th node in the l-th element at t = mΔt, and ( )kN q  represents the shape function at the 
integration point q. Equation (12) can use the Gauss–Legendre quadrature method to per-
form numerical integration on each element. Then, the physical variables at all element 
nodes can be obtained by solving the linear equations derived from Equation (12). 

In this paper, the spatial discretization of Equation (12) adopts partially discontinu-
ous elements. As shown in Figure 1, the blue lines represent the boundary of the surface, 
the black lines represent the edges of the mesh elements, the hollow dots represent the 
original element nodes, and the red solid dots represent the element collocation points 
which are moved inward. The nodes located on the surface but not on the edges (such as 
black solid dots in Figure 1) remain unchanged. It can be seen that in the partially discon-
tinuous element, only the nodes located at the corner points are shrunk to the surface, and 
other nodes remain unchanged. Therefore, the partially discontinuous element can avoid 
the discontinuity problem of physical variables at the corner points without adding too 
many nodes. It is a compromise between the continuous element and the completely dis-
continuous element. 

 
Figure 1. Sketch map of the partially discontinuous element. 

3. Numerical Integration Scheme of the Partially Discontinuous Element and the 
Treatment of the Singular Integral 

In this section, the numerical integration scheme of the partially discontinuous ele-
ment is presented according to [20–22]. To reduce the side effect of the time step on the 
singular integral accuracy, an improved singular element subdivision method is proposed 
in this section.  

3.1. Numerical Integration Scheme 
For convenience, we take the numerical integration of an element in Equation (12) as 

an example. The integral of the l-th element for the source point p is as follows: 

*( , ) ( ) ( )
l

ijk ij k l
S

f F Q dS=  p q q q  (13)

in which * ( , )= Mm
ij ijF Up q  or Mm

ijP , ( )kQ q  represents the shape function of the partially dis-
continuous element. Equation (13) is usually numerically calculated by the Gauss–Legen-
dre quadrature method. Before applying the Gauss–Legendre quadrature method to 
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Equation (13), the coordinate system should be transformed from the real 3D space xyz to 
the regular space ξηw, as shown in Figure 2.  

 
Figure 2. Transformation of the coordinate system. 

The transformation formula is formulated as follows: 

*

*

1 1
*

1 1

( , ) ( ) ( )

( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( ) ( )

l

l

ijk ij k l
S

ij k local
S

ij k local element

f F Q dS

F Q du dv

F Q d dξ η
− −

=

=

=





 

p q q q

p q q J q q q

p q q J q J q q q

 (14)

where ( )
local

J q  is the determinant of the Jacobian matrix of the transformation from the 
xyz space to the uvw space, and ( )

element
J q  is the determinant of the Jacobian matrix of the 

transformation from the uvw space to the ξηw space. The calculation method of ( )
local

J q  
and ( )

element
J q  in the partially discontinuous element is the same as that in the continuous 

element [1]. 
Since the interpolation points in partially discontinuous elements are the element 

nodes after inward shifting, the shape function ( )kQ q  is different from the standard 
shape function ( )kN q . As shown in Figure 3, dk is the position of node k after moving 
inside the element.  

 
Figure 3. Sketch map of interpolation points. 

The physical variable at any point in the element can be calculated by the standard 
shape function as 

( ) ( ) ( ) ( ) ( ) ( )

1

24

1 2 3 4 3
1

4

, , [ , , , , , , , ]k
k

k

u
u

u N u N N N N
u
u

ξ η ξ η ξ η ξ η ξ η ξ η
=

 
 
 = =  
  
 

  (15)

The u at the interpolation point dk can be calculated by 
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( )
4

1
,k

k k

d k
k d d

k
u N uξ η

=

=  (16)

which can be rewritten in a matrix form as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1 1 1 11

2
2 2 2 2 2 2 2 2

3

3 3 3 3 3 3 3 3
4

4 4 4 4 4 4 4 4

1 2 3 4 1

21 2 3 4

3
1 2 3 4

4

1 2 3 4

, , , ,

, , , ,

, , , ,

, , , ,

d d d d d d d dd

d d d d d d d d d

d
d d d d d d d d

d

d d d d d d d d

N N N N
uu

N N N N uu
uu N N N N
uu

N N N N

ξ η ξ η ξ η ξ η

ξ η ξ η ξ η ξ η

ξ η ξ η ξ η ξ η

ξ η ξ η ξ η ξ η

 
   

   
   =   
         

 




 
 
  



 (17)

We can reverse Equation (17) to obtain 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1 1

2
2 2 2 2 2 2 2 2

3

3 3 3 3 3 3 3 3
4

4 4 4 4 4 4 4 4

-1

1 2 3 41

2 1 2 3 4

3
1 2 3 4

4

1 2 3 4

, , , ,

, , , ,

, , , ,

, , , ,

d d d d d d d d d

dd d d d d d d d

d
d d d d d d d d

d

d d d d d d d d

N N N N
u u

N N N Nu u
u uN N N N
u u

N N N N

ξ η ξ η ξ η ξ η

ξ η ξ η ξ η ξ η

ξ η ξ η ξ η ξ η

ξ η ξ η ξ η ξ η

 
   

   
   =   
         

 


 
 
 
  
 

 (18)

Let 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

-1

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

, , , ,

, , , ,

, , , ,

, , , ,

d d d d d d d d

d d d d d d d d

d d d d d d d d

d d d d d d d d

N N N N

N N N N

N N N N

N N N N

ξ η ξ η ξ η ξ η

ξ η ξ η ξ η ξ η

ξ η ξ η ξ η ξ η

ξ η ξ η ξ η ξ η

 
 
 
 =  
 
  
 

A  (19)

and substituting Equation (18) into Equation (15), we can obtain 

( ) ( ) ( ) ( ) ( ) ( )

1

2

3

4

4

1 2 3 4
1

, , =[ , , , , , , , ]k

d

d
d

k d
k

d

u
u

u Q u Q Q Q Q
u
u

ξ η ξ η ξ η ξ η ξ η ξ η
=

 
 
 =  
  
 

  (20)

where 

( )
( )
( )
( )

( )
( )
( )
( )

1 1

2 2

3 3

4 4

, ,
, ,

=
, ,
, ,

T T
Q N
Q N
Q N
Q N

ξ η ξ η
ξ η ξ η
ξ η ξ η
ξ η ξ η

   
   
   
   
   
      

A  (21)

The calculation formula of the new shape function ( )kQ q  can be obtained as shown 
in Equation (21). For the interpolation point dk that does not move inward, just take 

( ),
k kd dξ η  as the original node coordinates. 

3.2. Singular Integral 
In this paper, the coordinate transformation method combined [29] with an improved 

element subdivision method is adopted to deal with weakly singular integrals (f(1/r)), 
while the rigid body displacement method [23] is used to compute strongly singular inte-
grals (f(1/r2)) indirectly. In the traditional element subdivision method, the integral ele-
ment is divided into several triangular patches according to the position of the source 
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point p, as shown in Figure 4. Then, the α–β transformation method [29] is used to elimi-
nate the weak singularity in each patch. 

   
(a) (b) (c) 

Figure 4. The traditional element subdivision method: (a) p is located at the corner; (b) p is located 
on the edge; (c) p is located in the element. 

However, the value of the fundamental solutions of elastodynamics is related to the 
time step. As shown in Figure 5, the curves of the displacement kernel function MM

ijU  are 
different under different time steps. In Figure 5, r represents the distance between the 
source point p and the field point q. It can be seen that the function value changes rapidly 
when r < c2Δt , in which c2 represents the shear wave velocity and Δt represents the time 
step. The smaller the time step Δt, the more drastically the function value changes.  

 
Figure 5. The curve graph of the displacement kernel function under different time steps. 

Therefore, this paper proposes an improved element subdivision scheme related to 
the time step as follows: 
(1) Create a square with the source point p as the center and 2 c2Δt as the side length. If 

the square exceeds the boundary of the element (as shown by the red dashed lines in 
Figure 6), the boundary of the element is taken as the boundary of the square; 

(2) According to the position of the source point p and the square area established, the 
element is subdivided into several triangular patches containing p and quadrilateral 
patches without p, as shown by the black dashed lines in Figure 6; 

(3) The α–β transformation method is used for integrals on the triangular patches, and 
the standard Gauss–Legendre quadrature method is used on the quadrilateral 
patches. 
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(a) (b) (c) 

Figure 6. The improved element subdivision method: (a) p is located at the corner; (b) p is located 
on the edge; (c) p is located in the element. 

Compared with the traditional element subdivision method, the improved element 
subdivision method related to the time step proposed in this paper can cause the Gauss 
points to be mainly distributed in the region of r < c2Δt (the region where the kernel func-
tion value changes drastically). Therefore, in the case of the same number of Gauss points, 
the improved subdivision method can significantly improve the accuracy of the singular 
integral. To verify the computational accuracy of the improved element subdivision 
method, a numerical example is given next to compare the computational accuracy before 
and after the improvement. 

As shown in Figure 7, the coordinate of the source point p is (0, 0), and the coordi-
nates of the quadrilateral element are shown in the figure. The dotted circles represent the 
boundaries of the wavefronts. The radius of the oscillation area changes with the time step 
Δt. Consider the following integral function: 

( , ) ( )MM
ij ij

S

I U dS=  p q q  (22)

where ( , )MM
ijU p q  is the displacement kernel function after time integration. The material 

parameters in the function ( , )MM
ijU p q  are defined as follows: Young’s modulus 

5 21.1 10 N/mE = × , density 32.0kg/mρ = , and Poisson’s ratio 0.0ν = . The average relative 
error of the integration result is defined as follows: 

*

*33

*
1 1 0

1error
ij

ji
ij ij

i j ij I

I I
n I

==

= = ≠

−
=   (23)

in which *
i jI  represents the reference result. In this example, the integration results of 

50*50 Gauss points for each triangle patch and 25*25 Gauss points for each quadrilateral 
patch are used as reference results. 
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Figure 7. Coordinates of the integration element and the source point. 

With different time steps and different numbers of Gauss points, the errors of the 
integral results before and after the improvement are shown in Table 1. It can be seen that 
when the number of Gauss points used is the same, the computation error of the tradi-
tional element subdivision method becomes larger and larger as the time step Δt de-
creases. However, the computation error of the improved method can be kept at the same 
order of magnitude. In the case of the same time step, whether it is improved or not, the 
computation error will decrease as the number of Gauss points increases. In general, the 
computation error of the improved method is an order of magnitude less than that of the 
traditional method. Therefore, in the following computation examples of elastodynamic 
problems, we will use the improved element subdivision method to deal with singular 
integrals. 

Table 1. Computation errors of the element singular integral results. 

 

The Number of Gauss Points N = 50 The Number of Gauss Points N = 200 

Computation Error of the 
Traditional Method 

Computation Error 
of the Improved 

Method 

Computation Error 
of the Traditional 

Method 

Computation Error 
of the Improved 

Method 
Δt = 0.00356 0.0125 0.0028 0.0024 3.03e−4 
Δt = 0.00178 0.0314 0.0042 0.0044 6.25e−4 
Δt = 0.00089 0.1298 0.0053 0.0078 2.01e−4 
Δt = 0.000356 0.5405 0.0012 0.0461 5.56e−4 

4. Numerical Examples 
In this section, two classical elastodynamic problems will be examined to verify the 

effectiveness of the proposed method. For the first example, the dynamic response of a 
cantilever beam under a longitudinal load is computed. The influence of the positions of 
element nodes on the computational stability and accuracy of the result is studied by 
cases. For the second example, the response of the plate with a square hole under a dy-
namic load is computed. The results under different inward shrink ratios are compared. 
According to the results of the two examples, the recommended value range of the inward 
shrink ratios of element nodes when using partially discontinuous elements is given. 

4.1. Longitudinal Forced Vibration of a Cantilevered Beam 
The geometric model used in this example is shown in Figure 8. The left end of the 

beam is fixed, and the right end is subjected to a Heaviside-type load p(t) = 1000 H(t)Pa. 
The material parameters of the beam are Young’s modulus 5 21.1 10 N/mE = × , density 

32.0kg/mρ = , and Poisson’s ratio 0.0ν = . 

  
(a) (b) 

Figure 8. The geometric model and the boundary conditions of the beam: (a) geometric model; (b) 
load curve. 

By setting 0.0ν = , the problem in this example can be regarded as the longitudinal 
forced vibration of a one-dimensional rod. The analytical solutions to the problem are 
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available. The displacement solution and the internal force solution can be calculated by 
the formulas 

( 1) / 2

2 2 2
1,3,5,...

8 ( 1)( , ) (1 cos ) sin
2 2

n

n

pL n ct n xu x t
L Lc n

π π
π ρ

−∞

=

−= −  (24)

and 
( 1) / 2
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1,3,5,...

4 ( 1)( , ) (1 cos ) cos
2 2

n

n

pE n ct n xp x t
n L Lc

π π
π ρ

−∞

=

−= − −  (25)

respectively, where /c E ρ=  is the wave speed. 
The discretized mesh model is shown in Figure 9a, which includes 72 linear quadri-

lateral elements and 126 nodes. In this model, the nodes located at the corner points are 
shrunk to the surfaces in proportion ( )/ 0 0 .5a bλ λ= < <  (as shown in Figure 9b), where 
a represents the moving distance of the node and b represents the edge length of the ele-
ment. 

 

(a) (b) 

Figure 9. The mesh model of the beam: (a) mesh model; (b) inward shrink ratio λ. 

The computation results of the time-domain BEM are sensitive to the time step. An 
improper time step length will cause the results to diverge, which is unstable. Therefore, 
in many papers [24–26], the time step is selected according to the dimensionless parame-
ters 1 /c t dβ = Δ , where 1c  is the pressure wave velocity, tΔ  is the time step, and d is the 
element edge length. The smaller the value of β is, the more unstable the result will be. 
The larger the value of β is, the lower the computational accuracy. In general, acceptable 
results can be obtained when 1β ≈ . In this experiment, we choose the time step that can 
obtain stable results for computation. On this basis, the influence of the inward shrink 
ratio of the element node on the computation result is investigated. 

When ( )=0.00445s 1t βΔ ≈ , the displacement response at the free end and the traction 
response at the fixed end under different λ values are shown in Figures 10 and 11, respec-
tively. In these two figures, the left picture and the right picture show unstable results and 
stable results, respectively. It can be seen that the results are unstable when 0.05λ =  and 
0.45λ = . The results are stable when 0.1 0.4λ≤ ≤ , and the result curves overlap each other 

in these cases. Therefore, the value of λ should avoid being too large or too small, and 
the computational accuracy is insensitive to the value of λ if the results converge. 
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(a) (b) 

Figure 10. Displacement response at the free end computed by using partially discontinuous ele-
ments in terms of (a) the cases of unstable results and (b) the cases of stable results. 

 
(a) (b) 

Figure 11. Traction response at the fixed end computed by using partially discontinuous elements 
in terms of (a) the cases of unstable results and (b) the cases of stable results. 

Under the same conditions, if completely discontinuous elements are used for dis-
cretization, the mesh model contains 72 linear quadrilateral elements and 288 nodes, 
which are greater values than those using partially discontinuous elements. The displace-
ment response at the free end and the traction response at the fixed end under different λ 
values are shown in Figures 12 and 13, respectively. It can be seen that the results tend to 
be stable only when 0.1λ= , and the results are unstable in other cases. This demonstrates 
that the performance of the completely discontinuous element is very sensitive to the po-
sition of the element node. An inappropriate node inward shrink ratio can easily cause 
unstable results, so it is not suitable for the time-domain BEM. 

  
(a) (b) 

Figure 12. Displacement response at the free end computed by using completely discontinuous 
elements in terms of (a) the cases of unstable results and (b) the cases of stable results. 
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(a) (b) 

Figure 13. Traction response at the fixed end computed by using completely discontinuous ele-
ments in terms of (a) the cases of unstable results and (b) the cases of stable results. 

In order to verify the effectiveness of the improved singular element subdivision 
method proposed in Sub-Section 3.2, we compared the accuracy of the results before and 
after the improvement. It should be mentioned that the partially discontinuous element is 
adopted in the following study. Since the singular integral only appears in the first anal-
ysis step, we select the results of the first ten analysis steps to clearly observe the difference 
between the results before and after the improvement. The comparison results under the 
time steps ( )=0.00356s 0.8t βΔ ≈ , ( )=0.00178s 0.4t βΔ ≈ , and ( )=0.00089s 0.2t βΔ ≈  are 
shown in Figure 14a–c, respectively. In the figures, the “Exact” curve represents the exact 
solution, the “Traditional” curve represents the results before the improvement, and the 
“Improved” curve represents the results after the improvement. It can be seen that the 
improved results are in better agreement with the exact solutions. The results before the 
improvement become unstable as the time step decreases. This demonstrates that the im-
proved singular element subdivision method can reduce the side effect of the time step 
on the stability of the result and effectively improve the accuracy of the singular integra-
tion. However, it should be noted that although the proposed subdivision method has 
improved the result accuracy in the first ten steps, the computational error becomes larger 
and larger with the accumulation of time steps, and instability results may still appear. 
The subdivision method proposed in this paper cannot completely solve the stability 
problem of the time-domain BEM but can improve the stability of the result. 

  
(a) (b) (c) 

Figure 14. The comparison results before and after the improvement of the singular element subdivision method under 
the time steps of (a) ( )=0.00356s 0.8t βΔ ≈ , (b) ( )=0.00178s 0.4t βΔ ≈ , and (c) ( )=0.00089s 0.2t βΔ ≈ . 

Finally, the condition number of matrix A in Equation (21) with a different inward 
shrink ratio λ is studied. The condition number of matrix A is computed by 
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1
2 2

( )cond −= ⋅A A A  (26)

in which 2A  represents the two-norm of matrix A. 
Three common types of discontinuous element are considered, as shown in Figure 

15. In the figure, case 1 shows that four nodes are shrunk into the element, case 2 shows 
that three nodes are shrunk into the element, and case 3 shows that two nodes are shrunk 
into the element. Case 1 corresponds to the completely discontinuous element, and cases 
2 and 3 correspond to the partially discontinuous element. Through computing the con-
dition number of matrix A in Equation (21) with a different inward shrink ratio λ, Figure 
16 is plotted for a results comparison. From Figure 16, the following can be seen: 

(1) When the λ = 0, the condition number is equal to 1. The condition number of A 
becomes larger as the value of λ increases. In case 1, the matrix A becomes singular when 
λ = 0.5. The result verifies the conclusion that the value of λ should not be too large.  

(2) The condition numbers of A in case 1 are larger than those in the other two cases. 
This verifies the conclusion that the result stability of the completely discontinuous ele-
ment (corresponding to case 1) is poorer than that of the partially discontinuous element 
(corresponding to case 2 and case 3). 

   
(a) (b)  (c) 

Figure 15. Three types of discontinuous element: (a) case 1; (b) case 2; (c) case 3. 

 
Figure 16. The condition numbers of matrix A under a different inward shrink ratio λ. 

Figures 10 and 11 show that when the value of λ is too small, the result will also be 
unstable. However, from the point of view of the condition number of A, the smaller the 
value of λ, the smaller the condition number, which is inconsistent with the experimental 
results. The reason may be that a too small value of λ will reduce the accuracy of the nearly 
singular integration. In fact, many discrete parameters other than the value of λ, such as 
the element size, interpolation type, and time step, will affect the stability of the result. 
Further in-depth research is needed to solve the instability problem of the time-domain 
BEM. 
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4.2. Response of a Plate with a Square Hole under Dynamic Load 
In this example, a more realistic problem, which is the dynamic response of a plate 

with a square hole under an impact load, is computed. The geometric model used in this 
example is shown in Figure 17. The bottom of the plate is fixed, and the top is subjected 
to an impact loading 10 2 6( ) 8.4 10 6.3 10p t t t= − × + × Pa. The material parameters of the plate 
are Young’s modulus 4 26.9 10 N/mmE = × , density -9 32.7 10 t/mmρ = × , and Poisson’s ratio 
0.3ν = . The dynamic responses at points S1 and S2 in Figure 17a are computed in this 

example. 

 
 

(a) (b) 

Figure 17. The geometric model and the boundary conditions of the plate: (a) geometric model; (b) 
load curve. 

The discretized mesh model with an element size of 5 mm is shown in Figure 18a. 
The exact solution of this example cannot be derived, so we adopt the results computed 
by FEM software to be the reference solution. The FEM mesh model is shown in Figure 
18b, which uses a finer mesh model to ensure the reliability of the results. 

  
(a) (b) 

Figure 18. The mesh model of the plate: (a) BEM mesh model; (b) FEM mesh model. 

When ( )=1.2 6s 1.4t e βΔ − ≈ , the displacement response and the traction response at 
point S1, which is next to the hole and denoted in Figure 17a, under different λ values are 
shown in Figures 19 and 20, respectively. It can be seen from these figures that the results 
are stable when 0.15 0.35λ≤ ≤ , and the result curves overlap each other in these cases. In 
other cases, the results are unstable. Therefore, a conclusion similar to the previous 
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example can be obtained: the value of λ should avoid being too large or too small, and the 
computational accuracy is insensitive to the value of λ if the results converge. In this ex-
ample, the value range of λ for stable results is smaller than that in the previous example. 
The reason is that the boundary of the geometric model in this example is more compli-
cated than that in the previous example. Therefore, instability is more likely to occur in 
this example, and it is more stringent for the selection of the value of λ. 

  
(a) (b) 

Figure 19. Displacement response at point S1 computed by using partially discontinuous elements 
in terms of (a) the cases of unstable results and (b) the cases of stable results. 

  
(a) (b) 

Figure 20. Traction response at point S1 computed by using partially discontinuous elements in 
terms of (a) the cases of unstable results and (b) the cases of stable results. 

Similarly, the displacement and traction responses at point S2, which is next to the 
corner of the square hole, are shown in Figures 21 and 22, respectively. It can be seen that 
the results are stable when 0.15 0.35λ≤ ≤ , and the result curves overlap each other in 
these cases. In other cases, the results are unstable. The results of point S2 are similar to 
the results of point S1. 
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(a) (b) 

Figure 21. Displacement response at point S2 computed by using partially discontinuous elements 
in terms of (a) the cases of unstable results and (b) the cases of stable results. 

 
(a) (b) 

Figure 22. Traction response at point S2 computed by using partially discontinuous elements in 
terms of (a) the cases of unstable results and (b) the cases of stable results. 

From the figures of the results comparison in this section, it can be seen that the time-
domain BEM can achieve high computational accuracy in the initial stage of computation. 
However, the numerical damping becomes larger and larger as the number of analysis 
steps increases, that is, the computational accuracy becomes lower and lower. There are 
two main reasons for this phenomenon: one is that the large time step adopted in the time-
domain BEM computation leads to a lower accuracy of the result, while the result may 
not converge when the time step is small; the other is that the fundamental solutions of 
the time-domain BEM for elastodynamic problems are discontinuous piecewise functions, 
which leads to the element integral accuracy being low. The result error accumulates con-
tinuously as the number of analysis steps increases, resulting in lower and lower compu-
tational accuracy. The above two points are the difficulties to be overcome when using the 
time-domain BEM. They are also the reasons why the time-domain BEM is more suitable 
for calculating short-term dynamic responses such as explosions and shocks rather than 
long-term dynamic responses. The algorithm proposed in this paper can improve the 
computational stability and accuracy of the time-domain BEM to a certain extent. How-
ever, further research is needed to thoroughly solve the above two problems. 

5. Conclusions 
To treat the corners of body surfaces in a simple manner while restricting the number 

of nodes, we adopted partially discontinuous elements, which are continuous on surfaces 
and discontinuous between adjacent surfaces, to discretize the boundary of the model for 
solving the elastodynamic problems. The effects of the numerical integration scheme of 
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the partially discontinuous element and the positions of collocation points on the stability 
and accuracy of the computational results were studied. We found the following: 

(1) The computational accuracy of the singular integral is sensitive to the time step. 
For instance, the traditional singular integration scheme cannot obtain reliable results in 
the case where the value of the time step adopted is small. The proposed improved sin-
gular element subdivision method takes the time step into consideration, which signifi-
cantly reduces the side effect of the time step on the accuracy of the singular integral. 
Meanwhile, it will not introduce too many Gauss points’ numbers. The proposed singular 
element subdivision method can improve the stability and accuracy of the dynamic re-
sponse results in a short time. However, the accumulated error becomes larger and larger 
as the number of analysis steps increases, which leads to the rapid damping of the ampli-
tude of the result. 

(2) The effects of the node position in the completely discontinuous element and the 
partially discontinuous element on the results were compared. In terms of the stability of 
the computation results, the partially discontinuous element has obvious advantages over 
the completely discontinuous element. In terms of computational accuracy, the accuracy 
of the results of the partially discontinuous elements is more stable than that of the com-
pletely discontinuous elements and insensitive to the node position. 

(3) When using the discontinuous element, the inward shrink ratio of the element 
node should be carefully determined. Otherwise, it may cause unstable results. For par-
tially discontinuous elements, the recommended value range of the inward shrink ratio is 
[0.15, 0.3] in the case of adopting linear quadrilateral elements. It should be noted that the 
more complex the model boundary, the smaller the available range of the inward shrink 
ratio. 
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