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Abstract: This study investigates the use of machine-learning approaches to interpret Dissolved Gas
Analysis (DGA) data to find incipient faults early in oil-impregnated transformers. Transformers are
critical pieces of equipment in transmitting and distributing electrical energy. The failure of a single
unit disturbs a huge number of consumers and suppresses economic activities in the vicinity. Because
of this, it is important that power utility companies accord high priority to condition monitoring
of critical assets. The analysis of dissolved gases is a technique popularly used for monitoring the
condition of transformers dipped in oil. The interpretation of DGA data is however inconclusive
as far as the determination of incipient faults is concerned and depends largely on the expertise
of technical personnel. To have a coherent, accurate, and clear interpretation of DGA, this study
proposes a novel multinomial classification model christened KosaNet that is based on decision
trees. Actual DGA data with 2912 entries was used to compute the performance of KosaNet against
other algorithms with multiclass classification ability namely the decision tree, k-NN, Random Forest,
Naïve Bayes, and Gradient Boost. Investigative results show that KosaNet demonstrated an improved
DGA classification ability particularly when classifying multinomial data.

Keywords: dissolved gas analysis; machine learning; multinomial classification; random forest

1. Introduction

The transformer is an indispensable piece of equipment in generating, transmitting,
and distributing electricity [1]. They are also expensive and account for massive capital
expenditure in the contemporary electrical network. Not only do they require huge fiscal
investments but the reliability and dependability of the entire electricity grid depends pri-
marily on their operational stability [2–5]. It is, therefore, imperative that utility companies
give priority to failure prevention and the sustenance of optimal operational status of their
electrical network. Maintaining these assets in an optimal and efficient state is a key priority
of many electric utilities globally. In fact, a huge portion of the annual budget of these
utility companies is allocated to condition monitoring and maintenance of these assets [6–8].
Condition monitoring and asset management is therefore a key concern in all electric utility
providers. With a typical electrical network deploying transformers in their thousands,
condition monitoring easily becomes a labor-intensive and time-consuming exercise.

The basic principle upon which a transformer works is that of mutually induced
magnetic flux that links the primary with the secondary windings. When an alternating
current flows through the primary windings, it induces a voltage that is greater than or
less than that across the secondary windings depending on whether the unit is a stepdown
or step-up transformer [1,9]. The frequency of the induced and inducing voltages however
remain unchanged. Figure 1 illustrates the basic manner of construction of a transformer.
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Figure 1. Arrangement of a Single-Phase Transformer Windings and Core. 
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primary windings produces a changing flux within the core. The flux in turn induces an 
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material thickness; Bm is the flux; f the rate of magnetic oscillations and V volume of in m3. 

As is seen from Equation (1), the heating up of a transformer during operation is 
anticipated. The concern therefore is how to prevent and manage the excessive build-up 
of heat to destructive levels. Several techniques have been used to accomplish this. One of 
these being to immerse the transformer core and winding in mineral oil. Oil not only acts 
as a coolant but also is itself also an insulating material [12]. 

Recent studies suggest that many transformers do not live up to their expected life-
time of between 25–35 years [2]. In Kenya for instance, as many as 10–12% of the popula-
tion of distribution transformers are prematurely retired against an international annually 
rate of between 1 and 2% in the more industrialized countries [2]. The failure of a single 
transformer disrupts economic activities for both the consumers and utility company [13]. 
For continued reliability and availability there must be continuous monitoring and 
maintenance of the transformer. However, with the huge number of transformers de-
ployed in an electrical network, monitoring, and maintenance is a daunting task that re-
quires massive labor and time. Kenya Power has reported that it owns about 70,000 trans-
formers countrywide deployed at various locations scattered all around the country [14]. 

Dissolved and free gas analysis is a widely used and highly regarded means of de-
tecting incipient faults in oil-immersed transformers. DGA reliably gauges a transformer’s 
operational status and is extensively used in routine maintenance [15,16]. It is an investi-
gative process in which oil samples collected from oil-immersed transformers are in-
spected for fault gases. The concentration, ratio, and type of the gases tell a tale about the 
internal condition of the transformer. Insulating oil not only performs functions such as 
cooling the unit and dousing arcs, but more significantly, it dissolves any gases produced 
as a result of cellulose deterioration or ambient moisture from the environment. A com-
mon cause of early failure of transformer units is the deterioration of insulating oil. It is 

Figure 1. Arrangement of a Single-Phase Transformer Windings and Core.

The transformer comprises of an intricate arrangement of a pair of coils wound on an
iron core. To prevent the iron core from acting as a conductor, it is assembled using thin
layers of varnish coated steel [10]. During normal operation, an alternating current on the
primary windings produces a changing flux within the core. The flux in turn induces an
electromotive force (emf) within the core that in turn sets up the circulating currents called
Eddy Currents. Eddy currents produces losses, which manifest as heat. The magnitude of
this loss can be calculated by Equation (1) [11].

Pe = Ke B2
mt2 f 2V Watts (1)

where Pe is the hysteresis loss in Watts, Ke is the stein Metz hysteresis coefficient; t is the
material thickness; Bm is the flux; f the rate of magnetic oscillations and V volume of in m3.

As is seen from Equation (1), the heating up of a transformer during operation is
anticipated. The concern therefore is how to prevent and manage the excessive build-up of
heat to destructive levels. Several techniques have been used to accomplish this. One of
these being to immerse the transformer core and winding in mineral oil. Oil not only acts
as a coolant but also is itself also an insulating material [12].

Recent studies suggest that many transformers do not live up to their expected lifetime
of between 25–35 years [2]. In Kenya for instance, as many as 10–12% of the population
of distribution transformers are prematurely retired against an international annually
rate of between 1 and 2% in the more industrialized countries [2]. The failure of a single
transformer disrupts economic activities for both the consumers and utility company [13].
For continued reliability and availability there must be continuous monitoring and main-
tenance of the transformer. However, with the huge number of transformers deployed
in an electrical network, monitoring, and maintenance is a daunting task that requires
massive labor and time. Kenya Power has reported that it owns about 70,000 transformers
countrywide deployed at various locations scattered all around the country [14].

Dissolved and free gas analysis is a widely used and highly regarded means of detect-
ing incipient faults in oil-immersed transformers. DGA reliably gauges a transformer’s
operational status and is extensively used in routine maintenance [15,16]. It is an investiga-
tive process in which oil samples collected from oil-immersed transformers are inspected
for fault gases. The concentration, ratio, and type of the gases tell a tale about the internal
condition of the transformer. Insulating oil not only performs functions such as cooling the
unit and dousing arcs, but more significantly, it dissolves any gases produced as a result of
cellulose deterioration or ambient moisture from the environment. A common cause of
early failure of transformer units is the deterioration of insulating oil. It is estimated that
about 70–80% of the faults in a transformer are incipient in nature which implies that any



Algorithms 2021, 14, 128 3 of 22

effort to detect these faults can potentially reduce the manifestation of faults on the grid by
a similar margin [15,17].

Classical methods of DGA interpretation include Key Gases, Duval and Nomog-
raphy [18]. The interpretation of DGA data has for decades relied on these classical
approaches. These classical approaches however tend to rely extensively on the experience,
judgment, and intuition of a human expert rather than technical formulation. This reliance
on a human benefactor has often led to an inconclusive assessment of the severity of the
faults or in the extreme case, a misidentification altogether [19]. Numerous studies have
been conducted that propose methods by which the severity of incipient power trans-
formers faults can be determined. In [20] for instance, Prasojo et al. studied fuzzy logic
to determine faults on power transformers created by using gas levels and gas rates as
well as interpreted DGA data. The Duval Pentagon Method (DPM) was assimilated with
the Support Vector Machine (SVM) algorithm being the chosen interpretation method.
The study resulted in an accuracy score of 97.5%. In [21] a study was conducted which
designed a smart fuzzy reinforcement learning-based fault classifier for transformers. DGA
data, collected from actual transformers and other credible secondary sources, were used.
The results showed that the suggested fuzzy reinforcement learning technique is supe-
rior as compared to other contemporary approaches attaining an accuracy score of 99.7%.
Fuzzy logic models however tend to perform poorly when subjected to new data. In [22]
a multilayer perceptron (MLP) network is discussed with boundaries defined using a
fuzzy class. The model is centered on the Duval Pentagon and gas ratio combination. A
multilayer perceptron network was trained on actual DGA records with fault conditions
specifically marked. The proposed method had a good region of certainty for some fault
conditions while for others the uncertainty was high. Generally, the method yielded an
overall accuracy of only 83%. In addition, the method has a low performance when dealing
with multinomial data. It is within this perspective that we propose to develop a model that
elegantly handles multinomial DGA data while simultaneously maintain high accuracy.
The proposed model shall be installed on a cloud-based server that will perform DGA data
interpretation. This cloud-based machine shall act as a data aggregator. Sensors installed
on the transformer shall send real-time DGA data readings which will then be analyzed
and displayed at the monitoring and control center as proposed in [23]. This solution is
designed to use low-cost devices and only requires the purchase of an inexpensive IoT
monitoring device that costs about $100 each. The installation of the monitoring device
physically on the transformer will be done by using an inlet and outlet valve fashioned as
a closed loop.

This article is hereafter structured in the following fashion: in Section 2, related
research is discussed; Section 3 offers an account of the methods and modeling used; in
Section 4 the setup used to simulate the model is explained; Section 5 gives the results and
discussion, where the outcomes are lengthily espoused; and, in Section 6, the conclusion is
explained, and future work is presented.

2. Related Works

Recent advancement in field-deplorable computer technology has revamped interest
in the deployment of computing technology for mundane tasks especially those that are
labor-intensive. In this regard, various research scholars have undertaken several studies
to explore novel approaches of automated faultfinding on the electrical grid. For instance
in [24], Benmahamed et al. evaluated the kNN algorithm and Naïve Bayes to diagnose
transformer oil insulation through the analysis of DGA data. Five input vectors namely the
Duval triangle reports, Dornrenberg ratios, Rogers ratios, DGA data (in percentages and
ppm) were used in the study to map to five output classes. The rate of accuracy for both
classifiers was determined using 155 samples. Results showed that the kNN algorithm
generally performed better than the Naïve Bayes technique with an accuracy score of 92%,
when Duval’s triangle reports were considered. Tanfilyeva et al. [25] undertook a study
that described the application of two fault determination techniques; k-Nearest Neighbor
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(kNN) and Bayesian classifier algorithms. A data set with 1340 entries of seven gases was
used to build the classifier. The study discovered that after k was set to 13 (k = 13), there
was no further improvement in the accuracy. Chatterjee et al. in [22] proposed a new DGA
procedure which works by combining the gas ratio method with the Duval’s Pentagon 1;
the two techniques that are known to have a high prediction accuracy. In essence, the
technique is a blend of the gains of the ratio and graphical methods. The faulty zones were
identified based on the level of confidence in the prediction. The study resulted in an overall
prediction accuracy of 83%. An interesting observation was made in [19] where it was noted
that interpretation methods based on ratios may fail to make accurate inferences when
multiple fault conditions exist in the data set. To correct this, [19] introduced an enhanced
approach to overcome the limitations of conservative DGA analysis practices, in addition to
automating and standardizing the DGA interpretation techniques. An expert system was
built using Gene Expression Programming. The results showed that the proposed approach
provided greater reliability than others that use individual conventional techniques that
are presently embraced in industrial practice.

Parejo et al. [26] made a proposition that entailed installing a network of sensors to
overlay the main power cables of the distribution network. The setup involved installing
a network node in each maintenance hole along the line. The node comprised a current
transformer that encircles every cable individually. The current transformer permits
simultaneous the continuous measurement and communication non-intrusively. This
kind of setup permits the system operator to monitor the currents of each phases of
the feeder system underground. A probable use-case was proposed whereby multiple
variables (particularly humidity and temperature) that are obtained can be used to model
the aging of the cables. In [27], swarm optimization techniques and artificial neural
networks are combined and used to predict incipient transformer faults. It was noted that
artificial neural networks are a good approach for modeling relationships that are difficult
to describe explicitly. Evolutionary Particle Swarm Optimization techniques mimic the
natural behavior of how birds flock or fish school together. Implementation of the ANN
and PSO algorithms was done in the MATLAB programming language. The efficacy of
several PSO techniques when combined with ANN were compared with the experimental
outcome from the real fault diagnosed. The results showed that evolutionary PSO yielded
the highest accuracy score at 98%. In yet another study Illias & Liang [28] modified
evolutionary particle swarm optimization then combined it with Support Vector Machine.
This proposed hybrid algorithm was proposed to identify incipient faults. Dissimilar
arrangements of PSO factors were tested and evaluated to identify values with the highest
accuracy. Results showed that SVM-MEPSO-TVAC method offered the best precision
averaging at 99.5%. The SVM-MEPSO-TVAC technique was therefore proposed as a
substitute technique for incipient diagnosis of DGA results.

3. Methods and Modeling

Distribution and power transformers operate in multifarious environments that makes
them susceptible to generic failures whose consequence is prolonged episodes of power
outages and disrupted economic activity [29]. Unlike overhead conductors that are easy
to troubleshoot and repair, transformers are factory sealed thus depriving engineers and
technicians the opportunity to inspect their internal components. The onset of failures
of in-service transformers occasion substantial loss of returns to power utility companies
apart from the costly reparation or replacement expenses, and the risk of explosion or
fire. Dissolved gas analysis is the only technique available that makes it possible to
detect incipient transformer failures [30]. Although the measurement accuracy of DGA
techniques is relatively high, the techniques used to interpret DGA results remains reliant
on the expertise of technical personnel rather than on systematic formulation [19,21,27].
This study therefore seeks to propose and implement a new machine-learning-based DGA
interpretation technique that interprets DGA results accurately particularly when dealing
with multinomial data.
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3.1. Materials and Methods

The data used in this work was obtained from Kenya Power Ltd., the sole power
utility company in the East African Republic of Kenya. It had 2912 records organized into
seven columns, six of which are input variables representing gases levels in ppm (parts per
million) and the seventh is the label indicating the fault that was observed. Six categories of
faults were observed from the dataset with an additional label indicating a normal working
condition. A simulation approach in the Python programing language was used using
the following packages, dependencies and libraries: Pandas, Numpy, Matplotlib, SciPy,
and Scikit-Learn. After the data was obtained, an exhaustive exploration of the data was
carried out as outlined in Section 3.3. The aim of the explorative exercise was to profile
the data so that anomalies may be unearth and patterns detected. With Exploratory Data
Analysis (EDA), one can handle missing values, deal appropriately with outlying data
points, normalize and scale numeric values, and encode categorical features. EDA also
makes it possible to obtain a descriptive and visual representations of the data [31].

After data quality and confirmation issues were addressed, the interpretation of the
DGA data commenced and a model was developed using the steps illustrated in Figure 2.
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3.2. Main Notations

Table 1 expands the main abbreviations that have been used here.

Table 1. Expansion of Key Abbreviations.

Symbol Meaning

C2H2 Acetylene
C2H4 Ethylene
C2H6 Ethane
CD Cellulose Decomposition
CH4 Methane
D1/DLE Discharge of Low Energy
D2/ DHE Discharge of High Energy
DPM Duval Pentagon Method
DT Mix of Thermal and Electrical Faults
H2 Hydrogen
N2 Nitrogen
O2 Oxygen
PD Partial Discharge
T1/ TF1 Thermal Fault 1 (temp < 300 ◦C)
T2/ TF2 Thermal Fault 2 (300 ◦C < temp < 700 ◦C)
T3/ TF3 Thermal Fault 3 (temp > 700)
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3.3. Analysis of Dissolved Gases

One of the most prevalent technique for detecting progressing faults in transformers
immersed in oil is gas analysis. DGA became an established art following the discovery in
1928 by Buchholz [32] that by extracting and studying dissolved gases generated during a
progressively deteriorating condition in oil-filled transformers, one is be able to detect the
problem with adequate precision. Since the gases formed in the course of a slow evolution
of faults are dissolved in oil, extracting and analyzing these dissolved gases can foretell the
onset of incipient fault condition [7,8,19]. Faults that are identifiable through DGA include
corona discharge, heating of the core, arcing, and partial discharge. This early detection of
emergent faults not only results in appreciable cost savings but also in intangible benefits
such the timely decommissioning of faulty transformer units whose continued use may
be risky. Additionally, early detection of emergent faults allows personnel to create a
maintenance outage schedule for units in a precautionary state and document anomalies
for newly purchased units under warranty. Cost saving is attained by preventing or
alleviating damage to the transformer [12].

DGA, which discriminates against normal and abnormal conditions, is founded on
the premise that an oil-immersed transformer in proper working conditions generates
little or no fault gases. The DGA process begins with the collection oil samples from the
transformer. The samples are then subjected to tests and procedures to determine the
identity and quantity of liquefied gases [8]. Gases of interest for DGA analysis that are
typically found dissolved in oil comprise ethane (C2H6), ethylene (C2H4), oxygen (O2),
methane (CH4), acetylene (C2H2), nitrogen (N2) and hydrogen (H2). Fault gases can be
categorized into three [7,8,33–38] namely;

1. Hydrogen gas and hydrocarbons: H2, CH4, C2H2, C2H4
2. Carbon oxides: CO2 and CO
3. Non-fault gases: N2 and O2

The quantity and ratios of these gases will vary depending on whether a fault is
developing in the transformer or not. A critical evaluation of the variation of gases
present can precisely determine the underlying condition and the extent to which internal
damages have been occasioned [39]. The leading causes of gas formation within an in-
service transformer are either of thermal or electrical origins. DGA not only detects and
identifies possible faults, but also improves the safety and reliability of the equipment while
minimizing maintenance cost [23]. Typical faults that manifest in in-service transformers
have been identified in [12,40,41] as follows;

1. Partial Discharge (PD)—A partial discharge occurs when a confined section of a solid
or fluid insulation material under high voltage stress experiences a partial collapse
but does not entirely seal the space in between two conducting materials. In our
context, the term PD refers only to corona PDs occurring in gas bubbles or voids as
explained in [40].

2. Energy Discharges—Energy discharge is the creation of a local conducting path or
short circuit between capacitive stress grading foils that creates sparking around
loose connections.

3. Thermal Faults—refers to the circulation of electric current in insulating paper that
result from excessive dielectric losses. These losses are themselves associated with
moisture or an improperly selected insulating material that result in excessive dielec-
tric temperatures.

The faults described above may manifest themselves in different ways as described in
Table 2.

When mineral oil heats up to between 150–500 ◦C, methane, ethane, ethylene, and
hydrogen are formed in varying quantities. As the temperature rises to exceed 500 ◦C,
acetylene is generated in large quantities [16,17]. In the presence of high temperatures, pa-
per insulation, and other solid insulating materials are known to produce carbon monoxide.
At temperatures lower than 300 ◦C, carbon dioxide is produced.
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Table 2. Fault Code for Classic faults in oil-immersed transformers [12,40,41].

Type Fault

PTD Partial Discharge
DLE Discharge of Low Energy
DHE Discharge of High Energy
TF1 Thermal Fault 1 (for t < 300 ◦C)
TF2 Thermal Fault 2 (for 300 ◦C < t < 700 ◦C)
TF3 Thermal Fault 3 (t > 700)

Gas chromatography isolates each dissolved gas from all others making it possible to
analyze and measure their individual concentrations. [41] provides standard procedures
for collecting samples of oil from transformers and [42] details the analytical laboratory
processes that separate and measure gas concentrations.

The IEEE [12], Conseil International des Grands Réseaux Électriques (CIGRÉ) [43]
and The International Electrotechnical Commission (IEC) [40] are reputable international
organizations that have separately drawn technical guidelines used to interpret DGA
results. As seen in [12,40,41] each fault has a distinct signature in terms of the quantity
and combination of the various fault gases. This distinction makes it possible to detect
impending or active faults. Further to this, the particular combination of gases generated
depends on the energy level and temperature at the location of the fault. High energy levels
tend to produce higher temperatures. High temperatures in turn result in an accelerated
rate of production of gases.

Figure 3 shows how the temperature influences the production of gases at various
temperatures and the faults they are likely to suggest.
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3.4. The Data Set

An exhaustive analysis of the data was carried through data exploration. Exploratory
Data Analysis (EDA) is a preprocessing procedure used on raw data to obtain additional
insight about the data before engaging in model building and training. During the EDA,
the investigator is interested in knowing the shape of the data, the number of features it
contains and the types of variables therein. EDA techniques are ran on raw data to extract
its essential characteristics, define feature variables and obtain guidance on the selection of
machine-learning algorithms [44–46]. To understand the data fully, multiple exploratory
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techniques are used, and the results aggregated. Figure 4 shows the contemporary methods
employed in EDA and which have been used in this work.
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Univariate visualization provides statistics for each parameter and is visualized in
a one-dimensional space. Bivariate visualization determines the relationship that exist
between each variable in the dataset and the dependent variable. Multivariate visualization
aids in the identification of existing interactions between different fields in the dataset and
examines the variables for correlation. Dimensionality reduction is a technique used to
identify the most critical predictors so that the model is built using the minimum number
of predictors required to maintain high accuracy [44–46].

Figure 5 shows the type and number of variables in the dataset. The variable “Status”
is the dependent variable and is of a categorical type while the rest are integers. The total
number of observations for each were 2912 entries.
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Primarily, the data was investigated for missing values. Figure 6 shows that there
are no missing values. Whenever missing values exist, the columns affected show dis-
continuous gaps. In this case, the columns are continuous indicating that there are no
missing values. Next, a box-and-whisker plot was created as shown in Figure 7. It suggests
that the variables, acetylene and ethylene, have several outlying points above the outer
whisker while hydrogen (H2), and carbon monoxide (CO) have no outliers. Outliers are
normally handled by prediction or imputation (using the mean, mode and median) but
by looking at the data, it is difficult to conclude that the outliers are as a result of human
or mechanical error [47–49]. Therefore, the outliers were left as they were. It becomes
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imperative to handle outliers when it is evident that they result from errors committed
during data collection or entry.
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The correlation matrix or heat-map shown in Figure 8 establishes the correlation
between the various pairs of variables from where it is determined that the correlation
between the two variables, acetylene and ethylene, is high. A keen consideration of Figure 3
reveals that this correlation occurs in a coincidental manner because as the temperature
rises there is a parallel increased production of both gases in slightly differing quantities. It
is, therefore, concluded that this correlation does not imply causality [50].

Figure 9 investigates the probability distribution of the variables. The variables hydro-
gen, methane, ethylene, ethane, and carbon monoxide appear to have a Gaussian distribution.
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Figure 10 gives the pairs plot that visualizes the distribution of solitary input vectors
and relationships between them. From Figure 10, we see that the variables pairs methane
and ethane, and methane and hydrogen, are positively correlated. The same can be said
about the variables methane and carbon monoxide.
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3.5. Decision Trees (DT)

The DT algorithm is a machine learning method that estimates likelihood by develop-
ing a tree-like structure that repeatedly splits into smaller and smaller segments until it
terminates in nodes called leaf nodes. The classification of data items in a decision tree is
done through an iterative process of repeatedly questioning the features associated with
the items [51–53]. The questions are enclosed in the nodes with each interior node pointing
to a child node for every probable answer to its queries. In this manner, the queries create
a hierarchically encoded tree structure.

The selection of the node on which the decision tree splits is done by examining its
impurity. The impurity measures the similarity of the markers on a node and is imple-
mented as the Gini Index or information gain. By definition, the Gini Index is a measure
of the differences between the probability distributions of the dependent attribute values
and divides the node in a manner that gives the smallest amount of impurity while the
impurity measure used by the information gain is the entropy quantity. The node upon
which a split is caused must result in the most amount of information gain. Equation (2)
gives the formula for information gain while Equation (3) gives the formula for Gini Index.

Gini : Gini (E) = 1−
c

∑
j=1

P2 (2)
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Entropy : H(E) = −
c

∑
j=1

P2logPj (3)

where P prediction models constructed on tree-based algorithms are stable, accurate, and
easy to interpret. In addition, they map well to non-linear interactions and are highly
adaptive in solving a diverse range of problems unlike linear models [52].

3.6. Naïve Bayes

Naïve Bayes is a principle used in classification algorithms based on the Bayes theorem
that states that

P(Φ|Ψ) =
P(Φ|Ψ)·P(Ψ)

P(Φ)
(4)

Naïve Bayes works on the assumption that every feature is independent of all others
hence its name, “Naïve Bayes”. One strength of the Naïve Bayes algorithm, however, is
that it can be trained on very small datasets.

3.7. Gradient Boosting

The gradient boosting, invented by Jerome Friedman, is used for both regression and
classification tasks. It operates by creating a model that comprises an ensemble of frail
prediction models from decision trees. As with all other supervised learning algorithm,
gradient boosting defines a loss function as shown in Equation (5) and attempts to lessen
its effect.

Loss = MSE = ∑
(

βi − β
p
i

)2
(5)

where βi = ith target value, β
p
i = ith prediction, L

(
βi, β

p
i

)
is a Loss function.

3.8. The k–Near Neighbors (k-NN)

k-NN is a pre-trained ML process that works by first learning on a labelled dataset and
then classifying new objects by recalling the examples on which it was trained [25], [54–56].
k-NN hinges on the assumption that data points that are similar most often lie close to each
other. The k in k-NN signifies the number of adjacent neighbors that are retrieved by the
classifier and used to predict a new data point. A value for k must be chosen iteratively such
that it is just right for the data. It must be seen to reduce the number of errors encountered
while maintaining the algorithms ability to make accurate predictions [25].

The k-Nearest Neighbors classifier algorithm works in the following manner. If xtrain
is a training set with labels ytrain, and given that a new instance xtest is to be classified:

1. First look for the most related occurrences (say XNN) to xtest that are in Xtrain.
2. Obtain the labels yNN for all the occurrences in XNN.
3. Predict the label for xtest by relating the labels yNN.

A sample is categorized by determining the majority vote cast by its k-neighbors, with
the sample being assigned to the most popular vote. The metric that is traditionally used is
the Euclidean distance, which is calculated as shown in Equation (6).

Dm,n =

√√√√ k

∑
i=1

(mi − ni)
2 (6)

where m, n are two observations in the Euclidean space.
The k-NN algorithm is easy to implement but performs poorly as the number of

predictor variables increase [24].

3.9. Random Forests

The Random Forest, also known as Random Decision Forest, presents a powerful way
of exploring and analyzing data with the potential to perform predictive modeling. The
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Random Forest is made up numerous discrete decision trees that create a forest and hence
the name Random Forest. The fundamental principle underlying the Random Forest is that
individual constituent models cannot outperform numerous delinked trees working as a
group. To make a prediction, each classifier in the assembly submits a prediction [57–59].
The votes are then tallied and the class that garners the highest ballots is presumed to be
the prediction of the overall model as shown in Figure 11. Some of the reasons why the
Random Forest is a powerful algorithm is that it does not suffer from overfitting and it is
highly accurate, maintaining this accuracy even when some of the data is missing.
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A Random Forest is defined as a class predictor made up of an ensemble of au-
tonomous tree structures {t(x, θn), n = 1, 2, . . .} where {θn} are random vectors and x is
the input vector [58]. A distinctive phenomenon of the Random Forest is that each tree {θn}
is independent of all past random vectors {θ1, . . . θn−1} but have a similar distribution. In
creating the tree structures, a random attribute is selected upon which the split takes effect.
The pool of potential attributes to split on is kept limited by calculating the first integer
less than log2 B + 1 [59].

In growing its trees, the Random Forest begins by first selecting randomly at each
node a small group of input vectors on which to split then secondly it calculates a suitable
split point. The best feature to split on is determined randomly.

The Random Forest algorithm works by executing the following three steps [60]:

1. Selection of the set used for training. Using an indiscriminate sampling technique,
several training sets are selected from the first dataset such that the magnitude of
each is equal to that of the original.

2. Construction a Random Forest model. For each of the bootstrap training set, a forest
of classification trees is created to produce a similar number of decision trees.

3. Form a simple voting. The training of the Random Forest can proceed simultaneously
because the process of training its members is independent of each other, thus consid-
erably enhancing its efficiency. To decide on some sample input, every decision tree
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submits a vote. The Random Forest algorithm decides the ultimate category of the
submitted sample in accordance to the voting pattern.

3.10. KosaNet

KosaNet is designed as an ensemble-based machine-learning technique that improves
upon the decision tree algorithm by creating a semblance of an electoral college where
decisions are made by a majority vote. KosaNet hinges on the notion that when many
separate and independent entities vote in a particular direction, they are highly likely to
be correct [61]. The electoral college operates like a democracy where the minority have
their say and the majority their way. The vote of the majority constitutes the prediction
of the model. To minimize the variance of our predictions, several classifiers modeled on
separate sub-samples of the same data set were built. The results of the vote by the separate
classifiers are tallied and the majority vote determined which then constitute the prediction
of the model.

4. Experiments and Model Evaluation

To implement the KosaNet model, Python programming environment is used. After
the model was implemented, its performance was evaluated. Several metrics were consid-
ered for this purpose. This section outlines how the model was implemented and explains
the evaluation metrics used in its assessment.

4.1. Implementation Environment, Cost, and Complexity

KosaNet has been implement in the Python programming environment. Apart from
being completely open source, Python boasts of a rich set of libraries that support data
analytic and analysis [62]. In addition, Python has a comfortable learning curve for pro-
gramming novices [63]. The specific libraries that were used in conjunction with Python are
Matplotlib, Numpy, Pandas, Seaborn, Keras, Tensorflow and Scikit-Learn [44,45,62,64,65].

The proposed framework is a cloud-based solution. The proposed algorithm shall
reside on a cloud-based server machine. This server shall not only perform DGA data
interpretation but shall also aggregate the data received from the sensors. The computa-
tional complexity of the proposed framework is O

(
n2 p

)
during training and O(p) during

prediction as suggested in [66].

4.2. Classification Evaluation Metrics

Multiple methods exist for the performance evaluation of classifier algorithms. Subse-
quent sections present a detailed discourse on the evaluation metrics that were employed
in this study.

4.2.1. Confusion Matrix (CM)

The CM is an arithmetically derived means of quantifying how well a model performs
during classification. It gives a comprehensive and complete picture of how the classifier
performed, where it went wrong and offers guidance on how to correct the situation. It is
basically an N by N-dimensional table that compares the “Actual” versus the “Predicted”
entries [67–69]. In this case, N = 7 representing the various classes available in the data set
and it shows the definite positives, definite negatives, projected positives, and projected
negatives. The running diagonal represents the values of the correctly predicted instances
and is also known as true positive (TP). The values in the off diagonal represents the
incorrectly classified instances and manifest as falsely positive or falsely negative. The
falsely positive are referred to as the Type I errors while the falsely negative instances are
Type II errors.

Figure 12 shows a confusion matrix for DGA multiclass classification. The confusion
matrix allows us to deduce several other evaluation parameters such as the classification
accuracy, classification error, sensitivity, precision and the f1-score [70–75].
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4.2.2. Classification Accuracy

The classification accuracy gives us a measure of how often the classifier is cor-
rect [70–76]. Equation (7) gives the formula for calculating the classification accuracy.

Classi f ication Accuracy =
∑

y
x trpx

∑
y
x trpx + ∑

y
x trnx

(7)

where trp and trn are the true positive and true negative values for every class x such that
x∈{x:y}.

4.2.3. Classification Error

The classification error provides an indication of how often the classifier is incor-
rect [70–76] and is calculated using Equation (8).

Classi f ication Error = ∑
y
x f apx + ∑

y
x f anx

∑
y
x trpx + ∑

y
x trnx

(8)

where trp, trn, fap, and fan denotes the factual positive, factual negative, erroneous positive,
erroneous negative respectively, for every class x such that x∈{x:y}.

4.2.4. Averaged Instance Sensitivity

The sensitivity, also referred to as the recall, is an intuitive measure of how sensitive
the classifier is to detecting faults whenever they occur [70–76]. The averaged sensitivity is
obtained as shown in Equation (9)

Averaged Sensitivity =

{
j

∑
i=1

(
trnj

trpj + ∑
y
x ej,x

)}
÷ j (9)

where trnj refers to the true negative rate for class j, trpj is true positive rate for class j while
ej,x represents the classification error where class j is incorrectly classified as class x.
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4.2.5. Averaged Precision

Average precision answers the question of how often a prediction is correct when a pos-
itive value is foretold from the aggregate prediction patterns in an affirmative class. [70–76].
The precision is calculated per class then averaged as shown in Equation (10).

Averaged Sensitivity =

{
j

∑
i=1

(
trpj

trpj + ∑
y
x ej,x

)}
÷ j (10)

where trpj is the true positive rate for class j while ej,x represents the classification error
where class j is incorrectly classified as class x.

4.2.6. Averaged F1 Score

The F1 score measures how accurate a model is on a dataset. It provides an improved
measure of the wrongly classified cases [70–76]. The formula for the F1 score is given in
Equation (11).

Averaged F1 Score =

{
j

∑
i=1

(
2× Pi × Ri

Pi + Ri

)}
÷ j (11)

where Pi and Ri represents a precision and recall for a class i respectively.

5. Evaluation and Results

The results of the evaluation of KosaNet vis-à-vis other multinomial classifiers models
are presented and discussed based on the metrics discussed previously in Section 4.2.

Figure 13 shows the confusion matrix that was obtained from the KosaNet model.
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The label encoder assigned the columns in the following order: DLE, DHE, NOF,
PDH, PDL, THF, and TH3. To facilitate further discussion, the confusion matrix has been
decomposed as shown in Figure 14.

In Figure 14, an additional row and column for tabulating the total has been included
to allow us to compute evaluation metrics discussed in Section 4.2. The confusion matrix
enables us to calculate the classification accuracy, classification error, sensitivity, precision
and the f1-score [70–77]. Table 3 is an extract of the DGA data in ppm that was used to
evaluate the model.
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Table 3. DGA data extract.

Gases Concentration (ppm)

SN Hydrogen Methane Acetylene Ethylene Ethane CO CO2

0 112 29 62 27 20 672 1441
1 1 23 1 141 90 255 3864
2 59 609 0.3 1649 731 99 1315
3 7 147 0.2 15 240 557 1648
4 131 77 50 21 32 881 3523
5 243 39 222 61 21 839 5164
6 374 900 55 5759 932 327 2689
7 59 29 1.6 9 18 867 3124
8 653 47 333 50 0.6 211 3009
9 2 605 59 1593 439 156 3221

10 1446 3902 111 599 1111 939 15,653
11 2 7 3 24 15 243 3543
12 1073 2813 1 319 673 679 7798
13 75 281 0.8 631 291 55 59
14 109 27 66 30 9 297 2208
15 0.3 113 0.9 15 149 472 3473
16 19 17 33 80 20 297 7056
17 9 11 0.4 10 4 23 289
18 2 114 0.1 6 233 357 1978
19 12 103 0.9 0.7 113 600 1964

Table 4 shows how classical techniques compare against the proposed model. The
incorrectly labelled classes are marked in red.
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Table 4. Comparison of classification results using Key Gases, Duval Triangle, Nomography and KosaNet.

SN Key Gases Duval Nomography KosaNet Actual Fault

0 ARC D1 TH and PD DLE ARC
1 TH T3 TH TH3 TH > 700 ◦C + CD
2 TH T3 TH TH3 TH > 700 ◦C
3 TH T1 TH and PD THF TH < 300 ◦C
4 ARC D1 ARC DHE ARC + CD
5 ARC D1 ARC DHE ARC + CD
6 TH T3 TH and PD TH3 TH > 700 ◦C
7 NR DT TH NOF NR
8 TH D1 ARC DLE ARC
9 TH T2 TH TH3 TH > 700 ◦C

10 TH T1 TH and PD TH3 TH > 700 ◦C + CD
11 NR T3 TH NR NR
12 TH + ARC T3 TH THF TH
13 TH T3 TH THF TH
14 ARC D2 TH NOF DP
15 TH T1 TH TH3 TH < 300 ◦C
16 ARC DT DP et TH DHE ARC + CD
17 ARC T3 ARC THF TH
18 TH T1 TH TH3 TH < 300 ◦C
19 ARC T1 ARC TH3 TH > 700 ◦C + CD

In Table 4, a comparison of classification results using Key Gases, Duval Triangle,
Nomography, and KosaNet is made. These results show that the Key Gases method
correctly classified 18 out of 20 or 90%. This performance was replicated by the Duval
triangle method that also correctly classified 90%. The Nomography technique had the
least accuracy attaining only 85%. In comparison, KosaNet attained an accuracy of 95% of
accurately classified instances. Table 5 provides the results obtained when the model is
compared against other algorithms with multiclass classification ability.

Table 5. Average performance rate for each model.

Decision
Tree

Naïve
Bayes

Gradient
Boosting k-NN Random

Forest KosaNet

Accuracy 0.685 0.70 0.83 0.8967 0.9241 0.9998
Precision 0.685 0.67 0.83 0.8967 0.9241 0.9998

Recall 0.685 0.80 0.83 0.8967 0.9241 0.9998
F1 Score 0.685 0.73 0.82 0.8851 0.9241 0.9998

Error 0.315 0.30 0.17 0.1033 0.0759 0.0002

As seen in Table 5, the decision tree, Naïve Bayes, gradient boosting, k-NN, random
Forest, and KosaNet realized an accuracy of 68.5%, 70%, 83%, 89.7% 92.4% and 99.9%
respectively. This implies that with KosaNet, less than 1 out of 10 labels are incorrectly
labelled. With KosaNet, the precision value was high with an implication that more than 9
out of 10 labels are incorrectly classified. Similarly, the recall value of 99.9% means that less
than 1 out of 10 DGA readings are incorrectly labelled. The f1 score, which helps preserve
a balance between precision and recall, tends towards one, which is an excellent value for
this metric [14].

6. Conclusions and Future Work

This manuscript endorses an intuitive DGA interpretation algorithm christened
KosaNet is proposed. Actual DGA data was obtained from Kenya Power Ltd., the sole
utility power company in Kenya. The dataset was used to build and evaluate the per-
formance of KosaNet vis-à-vis other algorithms with multinomial classification abilities.
Experimental results have shown that KosaNet has superior classification ability particu-
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larly for multiclass DGA data. With a classification accuracy of 99.98%, KosaNet would
greatly enhance the detection of incipient power transformer faults hence giving techni-
cians and managers the opportunity to plan for reparative maintenance. The deployment
of KosaNet has the potential to increase network uptime by more than 75%, resulting in
fewer disruptions to the supply of electrical energy. We advocate for the use of KosaNet in
the analysis and classification of DGA data to enhance the early discovery of silently active
fault s in transformers units.

In a future study, the authors will explore the use of KosaNet for time series data where
IoT-enabled smart sensors will be deployed for real-time observation of transformers.
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