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Abstract: We propose and validate a method to find an implicit representation of a surface placed
at a distance h from another implicit surface. With two such surfaces on either side of the original
surface, a volumetric shell of predefined thickness can be obtained. The usability of the proposed
method is demonstrated through providing solid models of triply periodic minimal surface (TPMS)
geometries with a predefined constant and variable thickness. The method has an adjustable order of
convergence. If applied to surfaces with spatially varying thickness, the convergence order is limited
to second order. This accuracy is still substantially higher than the accuracy of any contemporary 3D
printer that could benefit from the function as an infill volume for shells with predefined thicknesses.
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updates 1. Introduction
Citation: Geier, M.; Alihussein, H. Implicit surfaces are of considerable interest in engineering as they provide an efficient
Computation of Implicit means for the modeling of complex shapes. However, if transferred to the physical world
Representation of Volumetric Shells by any means of production, any surface must have a finite thickness and hence, becomes
with Predefined Thickness. a volume. This can be done by tools for computer aided design by finding surface points
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and extruding them in the normal direction. For example, Payne and Toga [1] proposed
an algorithm to compute a distance field for a discretized surface such that the offset
surface could be extracted as an isosurface of the distance field. Venkatesh applied the
marching cube algorithm to generate volume models from triply periodic minimal sur-
faces [2]. Held et al. [3] used generalized Voronoi diagrams to compute offset functions of
variable thickness. Pham presented an overview on offsetting methods [4], which was later
extended by Maekawa [5]. However, these reviews do not address the analytic offsetting
of implicit surfaces.

Fayolle et al. [6] proposed a method for offsetting implicit functions by computing
level sets of the distance function. The distance function is obtained by normalizing the
original implicit surface by Rvachev’s normalization [7]. Fayolle’s method is based on
published maps and institutional afl-  MMerical procedures that require sampling of the initial implicit surface. They apply the
{ations. Euler forward method to propagate the offset into the direction of the normal to the surface.

Sethian [8] provides a good overview over fast marching methods used for offsetting

implicit surfaces. He also discusses how the accuracy of the the fast marching method

can be improved by discretizing the required normal derivatives with finite differences of

higher order. However, this by itself does not guarantee an improvement of the order of
convergence of the method.

In the mentioned methods, the resulting new surface is either a discretized surface
with an explicit surface description or a discretized form of the implicit surface. In both
cases, many of the appealing properties of the original implicit surface are lost.
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surfaces are currently the state of the art. However, simulation software can suffer from
artifacts when curved surfaces are approximated by triangles. For example, the accurate
simulation of flow around a sphere at a high Reynolds number can be qualitatively wrong
if the sphere is approximated by triangles due to spurious flow separation at the edges
of triangles, while accurate results can be obtained with the sphere defined as geometric
primitive [12], which also requires less memory.

The purpose of the current paper is to propose a method to obtain a new implicit
surface at a predefined distance to a given implicit surface.

The reminder of the paper is organized as follows. In Section 2, we introduce a low-
order approximation of the offset function to the implicit surface. In Section 3, it is shown
how the approximation of the low-order scheme can be improved by Richardson extrap-
olation in order to obtain a second-order convergent method. In Section 4, it is shown
how this methodology is extended to obtain offset functions at any order of convergence.
Section 5 demonstrates empirically that the predicted convergence orders are in fact ob-
tained by computing the error norm for offset functions for three different triply periodic
minimal surfaces. In Section 6, we discuss the case of a variable thickness of the shell and
demonstrate second-order of convergence. Conclusions are given in Section 7.

2. First-Order Offset Function

Let f(X¥) = 0 be an implicit surface I'. Our aim is to find an implicit surface I'; as
the solution of the offset function ¢(¥, ) = 0 such that the minimal Euclidean distance
between any point on I to I', is h. Further, we require that the distance between I'y and I'_,
is 2h. An exact solution to this problem is difficult to find in general and might not even
exist, but we can start from a low-order approximation by computing the Taylor expansion

of f(X):
¢(X,h) = f(¥) — hdnf(¥) + O(h?), )

where the index n denotes the normal to I', which is approximated to lowest order by the
direction of the gradient of f(X) such that Equation (1) becomes

¢(%,h) = f(%) —h\/(Vf(f)) (VF(@) +O(1?). @

Omitting the error term and rewriting (V£ (%)) - (Vf(¥)) = (Vf(%))? gives us the
first-order offset function ¢(!) (¥, 1), which can be interpreted as an eikonal equation:

oW (F,h) = (%) — b/ (VF(2))2 ®)

From ¢(1) (X, h) = 0, a first-order accurate approximation of the offset surface denoted

by 1";11) can be computed.

We note here that computing an offset function via the propagation of a level set is far
from new [13]. In the following, we demonstrate that this simple method can be improved
to any specified order of accuracy.

3. Second-Order Offset Function

A first-order accurate solution to the offset problem is only acceptable if ) is very
small. In what follows, we present a systematic approach to rise the order of accuracy
starting from ¢(1) (¥, 1) = 0.

Let us first note that since ¢(1) (¥, 1) is an implicit surface itself, we are able to apply the
same methodology again in order to obtain an offset function of ¢() (%, ). In the following

recursive computation of the offset function ¢£,m) (%, h), we will indicate the level of the
recursion by subscript n and the order of approximation by superscript (m). With this, it
is, for example, possible to cover the distance / in two steps of equal size. To achieve this,
we recursively apply Equation (3) in itself to obtain
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h
pEn = oD@ - 2 (Ve /)2, @

This second iteration (pél) (¥,h) has the same order of accuracy as ¢)(%, 1), as can
be seen by substituting ¢>£1) (¥,h/2) = ¢(X,h/h) + O(h?) and applying the triangle in-
equality while realizing that & is not a function of ¥, i.e., \/(V(¢(Z, h/h) + O(h?)))? <
V(V(¢(E h/h)> + O(h?).

While qbél) (X, h) has the same order of accuracy as ¢(1) (X, 1), it is expected to be more
accurate as it uses half the step size. Adding more steps would raise the accuracy further
but the methodology would quickly become unpractical as the algebraic complexity of
the implicit surface function grows with each step. Instead, it appears more promising to
combine the obtained solutions through Richardson extrapolation [14]. Richardson extrapo-
lation is a convergence acceleration method for sequences of approximations obtained with
different smallness parameters (e.g., step sizes). It is applicable if the order of convergence
with respect to the smallness parameter is either known or can be obtained directly from
the series of solutions. For this, it must be possible to express the error of the method
as a Taylor series in the smallness parameter. It is also necessary that the error does not
depend on terms not related to the smallness parameter. Therefore, only results obtained
by the same deterministic method can be combined in a Richardson extrapolation.

We recall the general equation for Richardson extrapolation given a solution g\ (n)
obtained with smallness parameter & and a solution g7 (k) obtained with a smallness
parameter Sh, both with the same method of order g:

(g+1) _ 8 (h) — B9\ (Bh)
g 1— ,Biq
In the current case, the refinement factor is § = 1/2 and the convergence order is
g = 1. Note that both methods have to be evaluated at the same final location, which in the

. ©)

current case, is after a distance 1. However, the solution g7 (h) = (/ng) (%, h) is obtained

using a single step while the second solution g(?) (1/2) = (pél) (X, h) uses two steps of size
h/2. After some algebra, this yields

o0 (1) = 208 () - 9" (&) = FD) -/ (Vo@D @
A second-order approximation of the surface 1";12) is obtained from ¢ (¥,h) = 0.

4. Arbitrary-Order Offset Function

There are various systematic ways to rise the convergence order further. We propose
here using an extended Richardson extrapolation strategy. For this, we briefly return to
the theory behind the Richardson extrapolation and explain how the same method can be
used to obtain results at arbitrary order.

The general assumption behind the Richardson extrapolation is that the approximating

function <p,(11) (X, h) can be written as

o =+ Y e (). 7)
i=1

Here, n is the number of equidistant steps or iterations to reach a distance & such
that the step size is i/n. The constants &; are independent of the step size. Richardson
extrapolation ignores all but the leading-order error to get a better approximation of ¢ (X, h)
from the weighted combination:

¢ (Z,h) = w1} (F,h) + w9y (%, h). ®)
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The weights have to be recovered by inserting Equation (7) into Equation (8) and
equating coefficients with regards to ¢ (X, 1) and &, where ¢ (%, h) is to be recovered while
the error term is to be eliminated, i.e.,

(P(f,]/l) 1= w+w

1 1
E: 0= wi— +wr—. 9)

n 13
Solving this set of equations gives rise to the usual Richardson extrapolation formula.
While Richardson extrapolation usually only considers the elimination of the leading
order error term, the formula can be extended to cover several error terms at the same time.

The conditions for the extended Richardson extrapolation can be written simply by

0= I
&: 0 L) (10)

where i < m. By solving Equation (10), the weights for an extended Richardson extrapola-
tion at arbitrary order can be determined. Table 1 lists the weight coefficients for extended
Richardson extrapolations up to order four.

Table 1. Table of the weights for extended Richardson extrapolation up to order four.

1), 1), = 1) /= 1) =
Order Mz n) (& n) SAEA)) (& n)
1 1 - - _
2 -1 2 - _
3 %l - %27 3_2
4 % 4 -3 3

As higher derivatives are successively eliminated from the Taylor expansion through
the extended Richardson extrapolation, our method can also be interpreted as a way to
obtain successively accurate approximations of /(V f(¥))%:

Jr@r=1L &)= ";lw(z’h) +O(H"). (11)

In this way, our method can be seen as a semianalytic way to construct successively
more accurate approximations to the eikonal equation.

4.1. Implicit Infill Volumes

An implicit function for the infill volume can be derived from the implicit offset
functions in positive and negative directions indicated by & < 0 and I > 0. We define the
implicit volume ® (X, h) as the shell of the zero contour of f(X) with thickness h by

(X, h) = (X, h/2)p(X, —h/2). (12)
The point ¥ is said to be inside the shell if ®(¥,h) < 0 and outside the shell if
®(x,h) > 0.
4.2. Limitations

The problem to supply an arbitrary surface with a finite thickness is not well posed
in general. In particular, it is difficult to unambiguously define what is meant by thickness
of a curved surface. For example, if the local radius of curvature of a surface is small
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compared to the desired thickness of the shell, the resulting body could be self-intersecting.
In the proposed method, the thickness is defined through Equation (1) as the path length
of a curve following the normal of the implicit function f(X). For shells with local radii
much larger than the thickness £, this path is approximately straight, but for increasing
thicknesses, the path itself can be curved and the distance of the end points of a curved
path is always shorter than the length of the path. Hence, the method proposed here is
only valid for shells with a thickness much smaller than their local radii of curvature. It is
important to note that this limitation is intrinsic to the definition of thickness in the method
and this limitation is not affected by the order of the Richardson extrapolation chosen.
Further, we note that the method does not check for self-intersection.

5. Examples

In this section, we will investigate the performance of the proposed methodology
considering some examples of varying complexity.

5.1. Circle
A circle can be defined in a Cartesian coordinate system by the implicit function

flx,y) =x*+y*—R?, (13)

with R being the radius. For the zero contour of f(x,y), it is straightforward to
compute the two contours with offset 1 by replacing the radius with (R — /) and (R + h),
respectively.

In order to validate the proposed method, we compute the first- and second-order
offset functions from Equation (13):

<p(l)(x, yh) = X%+ yz —RZ—2h\/x2+ y? (14)

12
) 2,2 2 2.2 a2 2
¢\ (x,y,h) = x*+y"—R 2h\/x Tyt hy/ x> 4 y%. (15)

Rewriting Equations (14) and (15) in terms of polar coordinates gives

M (p,0,n) = p*—R>—2hp (16)

h2
9P (p,0,h) = P~ RE—2m\[p2+ " —hp. (17)

At the specified location of the new surface, the offset functions are

¢V(R+h,0,h) = —h? (18)
¢ (R+10,k) = 0, (19)

which means that the second-order offset function provides the exact solution while the
error of the first-order offset function is within the predicted range.

5.2. Triply Periodic Minimal Surfaces (TPMSs)

Periodic minimal surfaces have many potential applications in engineering. There are
several ways to define a minimal surface [15]. It can be defined as the surface that locally has
the smallest area. Another definition is that a minimal surface has a zero mean curvature.
In the following examples, we assume that the TPMS is given by the zero contour of the
function §(¥). Without loss of generality, we assume the TPMS to be periodic in a cubic
box with side length L.
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The offset functions up to fourth order of convergence for a TPMS are obtained
following the proposed procedure.

We compute four different first-order approximations of the offset function accord-
ing to

o) (®h) = §(®)—h[VEE) 20)
K@) = O /2) 8 [V (E /) 1)
W @h3) = g Eh3) el (7 h/3) @
o (T,h/4) = ¢§1><f,h/4>—§\w;%,mn. (23)

From this, we obtain different orders of approximation using the extended Richard-
son extrapolation:

oD (Fn) = §E) —h|VEE) (24)
9@ E ) = 20 (%1/2) — ¢V (% 1) (25)
pOEH) = 2ol @ h/3) — 49 (2 /2) + 6D (D) 26)
PO = o wn/a) - Tl @ n/3) +4gl) (5 0/2) - 2o (). @)

The derivation of ¢(") (X, ) is easily automated in a computer algebra system such
like Mathematica, Maple, or SymPy.

Mathematica source code for the generation of offset functions at different orders of
convergence is presented in the Supplementary Material published alongside this paper.

5.2.1. Error Measurement Procedure

To measure the accuracy of the proposed method, we employ a sampling technique.
We want to measure the distance between the surface of the TPMS and the zero contour
of its offset function. The computer algebra software Mathematica is used to find a large
sample of points N on one of the surfaces. The sampled points are uniformly distributed
in x and y directions. The z coordinate is determined by solving for z given x and y on the
surfaces. The procedure for collecting the points is described in Algorithm 1.

Algorithm 1: Points sampling from an implicit surface F (x,y,2) =0

input :implicit surface function F(x,y,z)

output:list of 3-tuple SampledPoints

// create two list of coordinates in x and y directions
A:={a |a€]0,0.050.1,...,0951]}
B:={b|be]0,0050.1,...,0951] }

// substitute each 4 and b into F and solve for the ¢
SampledPoints := { (a,b,Solve(F(a,b,c) =0,c)) |a€a and b € B}

From each point, a ray is shot in the normal direction to the surface. Then, the inter-

(n)

section distance h;,” with the other surface is measured and compared to the predefined
distance . The error is measured in the following norm:

1Y (@) —n\’
Error = ||h") — k||, = N ) <mh> , (28)
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where N is the number of points used and # is the order of the approximation used
to represent the offset surface. The procedure for calculating the error is described in
Algorithm 2. The error measurement procedure, including sampling of the points from the
surface and finding the intersection distance to the next surface, is done on both surfaces,
i.e., the original zero contour of the TPMS and the offset function.

Algorithm 2: Calculation of the L? error in distance / from points in the surface
F1(¥) = 0to a distanced surface F,(X¥) =0

input :list of 3-tuple SampledPoints
input :implicit surface functions Fy (x,y,z) and F(x,y,z)
input :prescribed distance h
output:real Error
list pointError := {}
foreach 3-tuple p in SampledPoints do
// calculate the normal i at j
jom YD
IVE(p)]
// shoot a ray from p a distance h, and calculate the position
vector 7(hy)
P(hy) := P+ hmfl
// solve for the distance hy,
hy := Solve(F(?(hy)) = 0, hy,)
// calculate the L? error

j ; I —h'\
pointError := Append(pointError, ( L ) )

end
// calculate the error mean
Error := Mean(pointError)

5.2.2. Gyroid
A Gyroid is a TPMS that is described by the implicit equation

-~ . f2mnx 27y . (2my 27z
Fc(¥) = sin (L )cos (L >—|—s1n (L )COS(L )
. (2nz 27Tx\
+ sin (L) cos (L) =0, (29)

where L is the edge length of a cube circumscribing a unit cell of the Gyroid shown in
Figure 1 together with the other surfaces investigated in this paper. With the emergence of
3D printing, Gyroids are of great interest since Gyroid-based patterns can be used to fill
space while providing sufficient strength and low weight to the 3D-printed parts. Figure 2
shows the bodies generated with the third-order offset function of the Gyroid for various
thicknesses.

We employ the error measurement from Section 5.2.1 to validate the proposed method.
Figure 3 shows the convergence of the different offset functions for varying thickness. It
is observed that the predicted order of convergence is recovered. The first-order offset
function appears to be converging with second-order for large enough thicknesses but
approaches the predicted asymptote for thin shells.
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%G(f} =0 ?)'Sch(x)) =0 %Neo()?) =0

1.0 1.0 1.0

1.0,, 1.0‘/ 1‘0”
Gyroid Schwarz P Neovius

FNeo(¥) = 0. Only one cell is considered here: ¥ € [0,1] x [0,1] x [0,1].

# (X, +0.00125) (X, +0.0025) #P(X, +0.005)
#3(%,-0.00125) #P(%,-0.0025) ¢ (X, —0.005)

Figure 2. Infill volume enclosed between two offset contours from the original Gyroid interface §g(¥) = 0. For a unit cell,
the offset distance is 0.00125 in (a), 0.0025 in (b), and 0.005 in (c). The third-order offset function was used.

5.2.3. Schwarz P
The next example is the Schwarz P TPMS, defined as

o ZE 27y 2z
35Ch(x)—cos< 7 >+C0s< T >+cos< T >—O. (30)

The resulting bodies obtained from the third-order offset function are shown in
Figure 4. Again, we measure the convergence of the proposed method following
Section 5.2.1 and display them in Figure 5. In this case, the asymptotic behavior of the four
tested variants follows the theoretical prediction very closely.
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. Fo — ¢ . " — T
10 T T 10° T T
1072 | o102 1
1074} 10t 1
S 10| | g0 ]
=3 M
107%) IO —hlp ) 107 =D —hl |
=R = Al =117 = hlly
—-101- . —101- .
10 1 ——[|A® — i, 10 : = [|A® — hl;
10-12 =D —hlb || o2 = ||h — il ||
0.001 0.01 0.1 0.001 0.01 0.1
h h
L L

Figure 3. Gyroid convergence study. In both panels, the error in the measured offset h;;, is plotted against different
predefined normalized offsets. In the left figure, the offsets were measured starting from points on §5(¥) = 0 to points on
each surface ¢(") (¥, ) = 0, respectively. In the right figure, the measurement direction is reversed. The triangles represent
the corresponding slope for each order n.

#P(%,+0.00125) ¢ (X, +0.0025) #P(, +0.005)
¢ (%, -0.00125) ¢ (%, -0.0025) ¢ (X, —0.005)

Figure 4. Infill volume enclosed between two offset contours from the original Schwarz P interface §s., (¥) = 0. For a unit
cell, the offset distance is 0.00125 in (a), 0.0025 in (b), and 0.005 in (c). The third-order offset function was used.

5.3. Neovius

The previous examples had very homogeneous curvatures. For the next example, we
chose a surface for which the curvature changes. The Neovius surface is defined as

SNeo(X) = 3[cos (27L1x> + cos (275/) + cos (27”
+4 {cos (2723() cos (27Zy> cos (27£Z>} =0. (31)
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Error

10710
10—12

Fsen — " ¢ > Fsen
i 107 e
/ | 102 / |
B 10—4 L B
i g 10—6 L il
i3
|| — Al || 1078} || — Al ||
—|h® — hll, | Lo-10 —|h® — hll, |
1 ~[|h® — hl| ] —~—||h® — hl|,
= || = Rl || 10-12 = ||A = hll, | |
0.001 0.01 0.1 0.001 0.01 0.1
h h
L L

Figure 5. Schwarz P convergence study. In both panels, the error in the measured offset 1, is plotted against different

predefined normalized offsets. In the left figure, the offsets were measured starting from points on §s,(X¥) = 0 to points on

each surface ¢(") (¥, 1) = 0, respectively. In the right figure, the measurement direction is reversed. The triangles represent

the corresponding slope for each order n.

The bodies generated from the third-order offset function are depicted in Figure 6. It
is seen that the intersection of the Neovius surface with the axes plains has an elliptical
shape. Figure 6¢ shows how the hollow connections between unit cells are filled up. It is
obviously difficult to guarantee a constant thickness of the shell in these connections once
the thickness approaches the width of the openings. This is evident from the convergence
analysis, executed in the same way as for the other two bodies and displayed in Figure 7.
For small enough thicknesses, the theoretically predicted convergence is well captured.
However, for thicknesses of 0.1 L, the error deteriorates as the resulting shape can no longer
be described as a shell of the Neovius surface. One observation is that this deterioration is
less severe when the thickness is measured from the offset function to the Neovius surface
than when it is measured the other way around. The reason for this is most likely seen in
the fact that the proportion of the offset function contour with inaccurate distance towards
the Neovius surfaces shrinks when the connections are closed as these closed areas are no
longer part of the offset function.

¢ (%, +0.00125) ¢ (%, +0.0025) ¢ (%, +0.005)
¢P(%,-0.00125) #P(%,-0.0025) #P(%,-0.005)

Figure 6. Infill volume enclosed between two offset contours from the original Neovius interface §n.,(¥) = 0. For a unit
cell, the offset distance is 0.00125 in (a), 0.0025 in (b), and 0.005 in (c). The third-order offset function was used.
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C&'Neo - ¢(n) ¢(n) - C(7’)'Neo
10°
100 L
10_2 i / |
10—2 I
1074 107 7
S 6 § 1076 | 1
g 1071 TS @
108 | 5D~k | 107 o[l = hlly ||
) )

0 —+[|h'¥ — hll» 10-10 : —||h"Y = hll> | |
10710 —~—||A® = A, | —=[|h® — Al
10712 = ||A — hll> | 10-12 = ||A — hll> |

0.001 0.01 0.1 0.001 0.01 0.1
h h
I I

Figure 7. Neovius convergence study. In both panels, the error in the measured offset h;; is plotted against different

predefined normalized offsets. In the left figure, the offsets were measured starting from points on Fne, (¥) = 0 to points on

each surface 4)(") (X, h) = 0, respectively. In the right figure, the measurement direction is reversed. The triangles represent

the corresponding slope for each order n. The nonasymptotic behavior shown at offsets of larger values (e.g., h/L = 0.1) is

attributed to the high curvature of the original surface.

6. Shells with Variable Thickness

It can sometimes be of interest to allow for a variable thickness of the shell [16,17].
Applying the method outlined in this paper to shells with variable thickness would imply
substituting / by the function h(¥) in all stages of ¢(") (X, h(¥)) before taking the deriva-
tive. The implicit dependence of # on ¥ would then automatically be taken into account.
However, this approach would not produce the desired result, which can be explained as
follows: The proposed method approximates the thickness of the shell by moving a pre-
defined distance along the normal of ¢(¥, 1) = 0 for increasing h. This procedure is only
accurate under the assumption that the normal of ¢ (¥, ) = 0 does not deviate substantially
from the normal of f(¥) = 0, such that the procedure follows a straight line. However, if h
is not constant, the normal becomes, through the chain rule of differentiation:

VoE () VEh) + L pz)

% h(%
VO R |V, n) + 25N gh(z))

ﬁ:

(32)

The direction of the normal will therefore be governed by how & changes with %,
which is another way of saying that if / is not constant, ¢(¥, h(X)) = 0 is naturally not
parallel to f(¥) = 0.

Another and more straightforward approach to obtain variable thickness is to assume
h to be constant in the derivation of ¢(X, 1) and only replace it when evaluating ¢ (¥, h) = 0.
This also has limited accuracy because if /i is a function of ¥, it changes by a value ~ hd,h
over the thickness k. For smooth variations of the thickness, it is reasonable to assume
that 9,h = O(h) such that hd,h = O(h?). Hence, the accuracy of the proposed method
for variable thickness is bound to second order. This is still sufficiently accurate for
many applications.

Figure 8 shows the convergence for shells with a linearly increasing thickness along
the x axis for the different TPMS. It is observed that the first-order method remains to
be first-order accurate, albeit it performs better than expected for the Gyroid at larger
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thicknesses. The third-order method typically shows better results than the second-order
method but it too converges only with second order. Since the intrinsic error in the thickness
is already of order O (h?), further increasing the order of ¢ (%, ) would not improve the
asymptotic nature of the result. For a shell thickness of 0.01 L, the second-order method
already obtains errors smaller than 0.03% of the target thickness in all three cases. Figure 9
shows the resulting bodies with variable thickness.
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Figure 8. Convergence study for varied offset in the x direction. In each figure, the error in the measured offset h;;, is plotted
against different predefined normalized offsets governed by a linear function h(x). The offsets at x = 0 are set to zero,
while the offsets at x = L vary from zero to a maximal value of 0.1 L. The offsets were measured starting from points on
different offset surfaces ¢(") (X, h) = 0 obtained with approximations up to order three. No further improvement is observed
when using an approximation method with an order higher than two.
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Figure 9. Infill volume enclosed between two offset contours from the original interface §(¥) = 0 of the Gyroid, Schwarz P,

and Neovius, respectively. For a unit cell, the offset distance linearly increases from 0 up to 0.1 in the x direction. In the above
figures, the method used to obtain the implicit representation for each of the offset interfaces is the second-order method.

7. Conclusions

In this paper, we proposed a systematic methodology for deriving analytic implicit
body shells of predefined thickness from implicit surfaces. The convergence order and
thereby the accuracy of the thickness of the shell can be freely adjusted trough the extended
Richardson extrapolation. The motivation for our method comes from engineering appli-
cations of additive manufacturing, where such infill volumes are required for the actual
3D-printing process on the one hand and for numerical simulations of such structures
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on the other hand. For constant thicknesses, our method reaches a precision of smaller
than 10~° for wall thicknesses measuring 1% of the wave length of the periodic structure.
This precision by far exceeds the accuracy of contemporary 3D-printing technology. By opt-
ing for offset functions of lower-order computational time can be reduced. The memory
requirements for storing the offset function of a TPMS is negligible compared to a dis-
cretized surface mesh. Being analytic, the offset function does not lose any quality when
scaled. At the time of this writing, it is not straightforward to use the offset function
directly as input for commercial 3D printers as they typically expect a tessellated mesh
representation of the surface, which can, of course, easily be obtained from discretizing the
zero contour of the offset function. Our method can be used to identify, for any point in
the domain, whether it lies in the shell or outside the shell. As the shell can be expressed
as a solid body in this way, the question of water tightness of the surface never arises.
However, the slicing of the object for G-code generation and 3D printing was not addressed
in this theoretical work. In the presented semianalytic form, our method can only be
applied to surfaces provided as differentiable implicit functions. Such surfaces are always
closed as they provide an inner and an outer side. In 3D printing, it is often of interest to
include open surfaces [18]. In our approach, this is possible by cutting the resultant shell
with an additional solid in a postprocessing step.

Besides being useful for the definition of infill volumes for the printing process itself,
the proposed method has other applications, for example, in the analysis and simulation
of 3D-printed objects. In general, methods of adaptive manufacturing come with a finite
smallest line width. In many applications, the line width of the printer is designed to
coincide with the thickness of the shell structure under construction. This is, for example,
common for 3D printing of slender concrete structures in applications of civil engineering
and architecture [19,20]. But the same is also true for wire arc additive manufacturing [21]
and the various types of powder bed methods like selective laser melting [22] and selective
binding processes [23,24]. For structures built with these technologies, the thickness of the
shell is often a simple result of the line width of the printer and is hence not specified as
an infill volume. Here, the designer is interested in the resulting shell geometry actually
manufactured by the printer which can be predicted with our method provided that the line
width is known. Such knowledge is of particular interest for the modeling and simulation
of 3D-printed structures as the simulation software requires accurate volume geometries.
In simulation software, the substantial reduction of the memory requirements due to the use
of an analytic function instead of a high-resolution surface mesh is a substantial advantage
as simulation software is typically memory bound and preprocessing the geometry often
takes more time than the actual simulation. This is actually the authors’ main motivation
as we are concerned with the simulation of air flow through 3D-printed TPMS with our
lattice Boltzmann solver VirtualFluids [25-28]. Surface meshes are particularly ill-suited for
large-scale periodic structures such that the search for a more economical representation of
such structures was inevitable.

We note here that the proposed method is markedly different from discretized numer-
ical methods for solving the eikonal equation such as the fast marching method described
by Sethian [8]. The fast marching method depends on numerical differentiation, which
is done on a grid. Even though Sethian points out that the fast marching method can be
improved by using finite differences of higher order, this does not necessarily enhance the
convergence order of the method. In fact, the convergence order is not directly related to
the quality of the normal derivative as is seen from the fact that our method always builds
on exact analytic derivations. Due to this utilization of exact derivatives, no discretization
and hence no grid is required in the proposed method. This does not mean that our method
is generally more efficient than a fast marching method, as discretization on a grid has its
advantages. The analytically derived offset function can become extremely complicated.
The proposed method is hence not to be seen as a replacement for the fast marching method
but rather, as an additional, very precise tool for cases where the original implicit surface is
efficiently expressed as an analytic function.
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When the thickness of the structure is not constant but varies in space, our method
reduces to second-order accuracy, which is still much more accurate than required by any
perceivable application in additive manufacturing at the time.

Finally, we note that the extended Richardson extrapolation is by no means restricted
to the method derived in this paper. The extended Richardson extrapolation provides
a systematic procedure to derive methods of arbitrary accuracy starting from a poor
approximation, provided that this approximation fulfills the requirement that the error can
be expanded in series.
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