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Abstract: Quantitative Structure–Activity Relationship (QSAR) aims to correlate molecular structure
properties with corresponding bioactivity. Chance correlations and multicollinearity are two major
problems often encountered when generating QSAR models. Feature selection can significantly
improve the accuracy and interpretability of QSAR by removing redundant or irrelevant molecular
descriptors. An artificial bee colony algorithm (ABC) that mimics the foraging behaviors of honey
bee colony was originally proposed for continuous optimization problems. It has been applied to
feature selection for classification but seldom for regression analysis and prediction. In this paper,
a binary ABC algorithm is used to select features (molecular descriptors) in QSAR. Furthermore,
we propose an improved ABC-based algorithm for feature selection in QSAR, namely ABC-PLS-1.
Crossover and mutation operators are introduced to employed bee and onlooker bee phase to modify
several dimensions of each solution, which not only saves the process of converting continuous
values into discrete values, but also reduces the computational resources. In addition, a novel greedy
selection strategy which selects the feature subsets with higher accuracy and fewer features helps
the algorithm to converge fast. Three QSAR datasets are used for the evaluation of the proposed
algorithm. Experimental results show that ABC-PLS-1 outperforms PSO-PLS, WS-PSO-PLS, and
BFDE-PLS in accuracy, root mean square error, and the number of selected features. Moreover, we
also study whether to implement scout bee phase when tracking regression problems and drawing
such an interesting conclusion that the scout bee phase is redundant when dealing with the feature
selection in low-dimensional and medium-dimensional regression problems.

Keywords: artificial bee colony algorithm; feature selection; quantitative structure–activity relationship

1. Introduction

Quantitative structure–activity relationship (QSAR) plays a vital role in drug design
and discovery [1]. It aims to build the relationship between molecular structure properties
of chemical compounds and their corresponding biological activities [2]. In QSAR modeling,
the structure properties of the chemical compounds are encoded by a variety of features
(molecular descriptors) such as topological, constitutional, thermodynamic parameters.
QSAR models can be defined as regression or classification models by using different
computational strategies [3]. The features are related with biological activities by using
statistical methods or artificial intelligence approaches, such as Multiple Linear Regression
(MLR) [4], Support Vector Regression (SVR) [5], Boosted Tree [6], and Partial Least Squares
(PLS) regression [7], etc. In particular, machine learning methods have become extensively
used in this field during the last few years [8–15]. These methods effectively improve the
accuracy of QSAR modeling to a certain extent.

However, several computational issues must be addressed when QSAR models are
inferred by machine learning methods. One of these problems is to address the complex-
ity of data sets for selection of appropriate features important for defining a particular
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QSAR model. Specifically, not all features are related to the activity, and the redundant
or irrelevant features may cause over-fitting or weak correlation [16]. The optimal feature
subset with only related and non-redundant features increases the accuracy of prediction
and the interpretability of the QSAR model. Thus, feature selection (FS) which selects an
optimal subset of all features is a vital pre-processing step in QSAR studies to increase the
interpretability and improve the prediction accuracy [17].

In principle, feature selection is an NP-hard combination problem. For a search space
with D dimensions, the number of subsets to search is 2D. In other words, the search space
increases exponentially as the dimension of the given problem grows, hence it is intractable
for limited computational resources.

Evolutionary Computation (EC) techniques are optimization methods inspired by
scientific understanding of natural or social behavior, which can be regarded as search
procedures at some abstraction level [18]. In general, these algorithms can be classified as
either Evolutionary Algorithms (EAs) or Swarm Intelligence (SI) algorithms [19]. EAs start
by randomly generating a set of candidate solutions, iteratively combine these solutions,
and implement survival of the fittest until an acceptable solution is achieved. The classic
EAs include Genetic Algorithm (GA) [20], Differential Evolution (DE) [21], Biogeography-
Based Optimization (BBO) [22], and Genetic Programming (GP) [23], etc. SI algorithms
start with a set of individuals, and a new set of individuals is created based on historical
information and related information in each iteration. A considerable number of new
SI algorithms have emerged, such as Ant Colony Algorithm (ACO) [24], Bat Algorithm
(BA) [25], Firefly Algorithm (FA) [26], Cuckoo Search (CS) [27], Coyote Optimization
Algorithm (COA) [28], and Social Network Optimization (SNO) [29].

SI is a relatively new category of evolutionary computation comparing with EAs and
other single-solution based approaches and has paid sufficient attention to feature selection
due to its potential global search ability. In particular, the interaction between features
can be considered in the screening process, which breaks through the shortcomings of
traditional feature selection algorithms. The surveys [30,31] have presented the proven
usage of SI algorithms for FS.

The Artificial Bee Colony (ABC) [32] algorithm, which simulates the intelligent forag-
ing behavior of a honeybee swarm, is one of the most well-known SI algorithms. Karaboga
et al. concluded that, although ABC uses fewer control parameters, it performs better than
or at least comparable to other typical SI algorithms [33]. Ozger et al. [34] carried out a
comparative study on different binary ABC algorithms on feature selection. BitABC [35]
employs bitwise operators such as AND, OR, XOR to generate new candidate solutions,
and the binary ABC algorithm uses different functions to convert continuous vector to
binary vectors, such as rounding function [36], sigmoid function [37], and tangent func-
tion [38]. The experimental results showed that BitABC generated better feature subsets in
shorter computational time. Moreover, many studies combine ABC with other optimization
algorithms, such as DE [39], ACO [40], and PSO [41], and they achieve promising results as
well. However, the ABC algorithm is seldom applied to regression and prediction problems
and achieve promising results.

To improve the accuracy and interpretability of QSAR that is a regression and predic-
tion problem, we apply ABC algorithm to feature selection in QSAR. Major novelties and
contributions of our study are described as follows:

(1) To save the process of converting continuous space into discrete space and reduce the
consumption of computing resources, a two-point crossover operator and a two-way
mutation operator are employed to generate food sources in employed bee phase and
onlooker bee phase.

(2) To achieve fast convergence, a novel greedy selection strategy is employed to greatly
reduce the possibility of food sources being abandoned.

(3) Furthermore, we investigate the influence of different threshold values that determine
whether to implement the scout bee phase on the performance of QSAR and draw an
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interesting conclusion that the scout bee phase is redundant when dealing with the
feature selection in low-dimensional and medium-dimensional regression problem.

The rest of this paper is organized as follows: Section 2 reviews the related work of
FS methods based on SI. Section 3 briefly describes QSAR modeling and the FS problem.
Section 4 presents the basic ABC algorithm and proposes two improved ABC variants for
FS in QSAR. Section 5 describes the experimental datasets and parameter settings. Section 6
presents the experimental results. Conclusions are given in Section 7.

2. Related Work

SI algorithms are well-known for their global exploration capability and are gaining
more attention by the feature selection community recently. It has been proven by the
well-known “No Free Lunch (NFL) theorem” [42] that there is no heuristic algorithm
that can solve all types of optimization problems. Specifically, since the exploration—
exploitation balance is an unsolved issue within SI algorithms, each SI algorithm introduces
an experimental solution through the combination of deterministic models and stochastic
principles. Under such conditions, each SI algorithm holds distinctive characteristics that
properly satisfy the requirements of particular problems [18]. Therefore, a particular SI
algorithm is not able to solve all problems adequately. This motivates many researchers
to investigate the effectiveness of different algorithms in different fields. Between 2010
and 2020, there have been a total of 85 papers used SI algorithms for feature selection in
different fields [30].

For the medical application, Mehrdad et al. integrated the node centrality and PSO
algorithm [43] to improve the performance on FS. Neggaz et al. [44] applied the sine–
cosine algorithm and the disruption operator to Salp Swarm Algorithm (SSA) to improve
the accuracy of disease diagnosis. Mafarja and Mirjalili [45] proposed a novel Whale
Optimization Algorithm (WOA) for FS, and the crossover and mutation operators are used
to enhance the exploitation of the WOA algorithm. An FS method suppressed less relevant
features in the breast cancer datasets by ABC. Then, to minimize the potential of ABC
being trapped in a local optimum, the accuracy of classification by GBDT is employed to
evaluate the quality of the inputs [46]. To select a DNA microarray subset of relevant and
non-redundant features for computational complexity reduction, Indu et al. [47] proposed a
two-phase hybrid model based on improved-binary PSO (iBPSO). A recursive PSO method
was developed by Prasad et al. [48] for gene selection. Ahead of this, an Ant Colony
Optimization-selection (ACO-S) is utilized to generate a gene subset with the smallest
size and salient features while yielding high classification accuracy [49]. Furthermore,
Yan et al. [50] hybridized the V-WSP, proposed by Ballabio et al. [51], with PSO to improve
the accuracy of laser-induced breakdown spectroscopy. Moreover, to solve the feature
selection problem for acoustic defect detection, a single-objective feature selection algorithm
hybridizing the Shuffled Frog Leaping Algorithm (SFLA) with an improved minimum-
redundancy maximum-relevancy (ImRMR) was proposed by Zhang et al. [52]. To handle
the challenges of the network detection that detecting anomalies from high dimensional
network traffic feature is time-consuming, an FA-based feature selection was attempted
by Selvakumar and Muneeswaran [53]. to obtain an optimized detection rate. In addition,
FS methods based on the firefly algorithm were investigated for Arabic text classification.
Ref. [54] and facial expression classification [55].

Additionally, various SI algorithms have been applied to FS in QSAR. Kumar et al. [56]
first used multi-layer variable selection strategy, and then used GA to select meaningful
descriptors from a large set of initial descriptors. PSO has been widely applied to selection
descriptors in QSAR. For instance, Shen et al. [57] modified PSO named PSO-PLS for
variable selection in MLR and PLS modeling. The hybridization of PSO with GA are
used as a FS technique by Goodarzi et al. [58]. After that, Wang et al. [59] proposed a
weighted sampling PSO-PLS (WS-PSO-PLS) to select the optimal descriptor subset in the
QSAR/QSPR model. Moreover, the improved binary Pigeon Optimization Algorithm
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(POA) was applied to selecting the most relevant descriptors (variables) in QSAR/QSPR
classification models [60].

Compared with PSO and ACO, there are fewer studies applying ABC algorithm to FS.
Most of them are applied to classification or clustering problems, and rarely used to select
features for regression problems. Therefore, in this paper, the ABC algorithm is used to
select features for PLS modeling, which is the most straightforward linear regression-based
modeling method in QSAR.

3. Preliminaries
3.1. QSAR Modeling

In QSAR study, the number of parameters describing the molecular structure of
compounds is generally much larger than the number of samples, and there may be obvious
chance correlations and multicollinearity between these parameters. By decomposing and
screening the information in the data system, the Partial Least Squares (PLS) method can
extract the variables with a strong explanation to overcome the adverse effects of chance
correlations and multicollinearity in modeling. Therefore, the PLS method is often used as
a prediction model for QSAR modeling.

The PLS method is often utilized to predict the relationship between compounds and
their corresponding biological activities or chemical properties. It models the relationship
between two data matrices, the independent variables X and target variable Y, by a linear
multivariate model with factor analysis [61]. The basic principle of PLS regression depends
on latent variables. Latent variables are extracted from a set of descriptors that include the
basic information essential for modeling the target. QSAR is modeled by using a dependent
(response variable) and several independent (molecular descriptors) variables.

The value of Q2, a well-known metric which employs the cross-validation technique,
measures the accuracy of QSAR modeling, and it is defined as follows:

Q2 = 1− ∑n
i=1(yi − ŷi)

∑n
i=1(yi − ȳi)

(1)

where yi, ŷi, and ȳi are the observed value of activity of the compound, the predicted value
by the PLS model via using cross-validation procedure, and the average observed value of
all compounds, respectively. n is the total number of compounds.

3.2. Feature Selection

Let S be a dataset of L samples with D features. A feature selection problem can be
described as follows: selecting d features (d < D) from all features, to optimize a given
function H(·). In regression analysis and prediction, H(·) generally represents the accuracy
or error rate. Generally, we use a binary string to encode a solution X in FS problems:

X = (x1, x2, . . . , xD), xj ∈ 0, 1 (2)

where xj = 1 represents that the jth feature is selected into the subset X, otherwise, not
selected. Then, taking the case of that function H(·) being prediction accuracy, the FS
problem can be formulated as follows:

max H(X)

s.t. X = (x1, x2, . . . , xD)
(3)

4. The Proposed Method
4.1. The Basic Artificial Bee Colony Algorithm

ABC is a swarm intelligence algorithm that simulates the foraging behavior of a
honey bee colony [32]. It has been used widely in many fields for solving optimization
problems [62]. In the hive, three types of bees are assigned to the foraging task: employed
bees, onlooker bees, and scout bees. Employed bees use the previous source information
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to find better food sources and share the information with onlooker bees. Onlooker bees
waiting on the hive exploit a source with the help of the information shared by employed
bees. Scout bees search for undiscovered sources based on an internal rule or possible
external clues. The basic implementation of ABC is as follows:

(1) Initialization phase: From the perspective of an optimization problem, each food
source represents a probable solution which is described as a vector: X = (xi,1, xi,2, . . . , xi,D),
and is generated by Equation (4):

xi,j = xmin
j + rand(0, 1)(xmax

j − xmin
j ) (4)

where i = 1, 2, . . . , SN and SN is the number of the food source. j = 1, 2, . . . , D and D is the
dimensionality of the search space. xi,j is the jth dimension of xi . xmax

j and xmin
j are the

maximum and minimum boundary value, respectively.
(2) Employed bee phase: Each employed bee is associated with a food source. Em-

ployed bees need to modify the position of their food source to find new better ones.
Thereby, they learn from a neighbor source which is selected randomly among all sources
except for itself. The new food source is produced by Equation (5):

x′i,j = xi,j + φi,j(xi,j − xk,j) (5)

In the above formula, φi,j is a uniformly distributed random value within [−1,1]. After
x′i is produced, its fitness value can be evaluated according to Equation (1). Then, a greedy
selection is applied to the selection between x′i and xi. Specifically, if f (x′i) > f (xi), x′i
replaces xi to enter the next iteration and its counter holding, the number of trials is reset to
0. Otherwise, xi is kept into the next iteration and its counter holding the number of trials
is increased by 1.

(3) Onlooker bee phase: After getting the information concerning nectar amount
(fitness value) and positions of food sources from employed bees, each onlooker bee selects
a food source according to the fitness values by a roulette-wheel scheme, where the better
the fitness value of the source, the higher the probability of being selected. The probability
value of each food source is calculated by Equation (6):

Pi =
f itnessi

∑SN
j=1 f itnessj

(6)

After calculating the probability value of each source, a random number rand(0, 1) is
generated to determine whether to be chosen. If Pi > rand(0, 1), xi is chosen to update just
as in the employed bee phase.

(4) Scout bee phase: Each source has a counter which is zero at the beginning. If the
counter holding the number of trials exceeds the predefined threshold value, its corre-
sponding food source will be abandoned and replaced by a new food source, which is
generated by Equation (4).

4.2. ABC Algorithm for FS in QSAR

The basic ABC algorithm is originally proposed for optimization problems in continu-
ous space; however, FS is an optimization problem in discrete space. Each feature subset
is represented with a binary string. “1” in the string means the feature is selected and “0”
means the feature is not selected. Hence, the value obtained by Equation (4) needs to be
converted into a discrete value by Equation (7):

xi,j =

{
1, xi,j ≥ 0.5
0, otherwise

(7)

If the value of a dimension is greater than or equal to the threshold value 0.5, the
corresponding feature is selected and then its value will be set as 1. Otherwise, it is
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not selected and its value will be set as 0. Accordingly, an ABC-based algorithm for
feature selection in QSAR is proposed, namely ABC-PLS. The pseudo code of the ABC-PLS
algorithm can be seen in Algorithm 1.

Algorithm 1 Pseudo code of the ABC-PLS algorithm

Input: Population size SN, Maximum number of iterations MaxIt, Abandonment limit L,

counter = 0, t = 0.

Output: The optimal food source xbest, the best fitness value f (xbest).

1: Initialize the population xi, (i = 1, 2, . . . SN ) by using Equation (4).

2: Evaluate the fitness value of each food source by using Equation (1).

3: while t ≤ MaxIt do

4: %Employed bee phase

5: for each employed bee do

6: Randomly select a different food source xk.

7: Generate a new food source according to Equation (5) and convert it into

discrete values by using Equation (7).
8: Evaluate the fitness value of each food source by using Equation (1).

9: Update xi according to greedy selection, and increase its counter counter by 1

if not update.
10: end for

11: Calculate the selection probability of each food source by using Equation (6).

12: %Onlooker bee phase

13: for each onlooker bee do

14: Select a food source xi according to the selection probability by

the roulette-wheel scheme.
15: Randomly select a different food source xk.

16: Generate a new food source according to Equation (5) and convert it into

discrete values by using Equation (7).
17: Evaluate the fitness value of each food source by using Equation (1).

18: Update xi according to greedy selection, and increase its counter counter by 1

if not update.
19: end for

20: %Scout bee phase

21: for each food source do

22: if counter ≥ L then

23: Replaced by a new food source according to Equation (5) and convert it

into discrete values by Equation (7).
24: Evaluate the fitness value of the new food source by using Equation (1).

25: end if

26: end for

27: end while

28: Output xbest and f (xbest).
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4.3. An Improved ABC Algorithm for FS in QSAR

Since ABC-PLS needs to convert continuous values into discrete values in all four
phases of the algorithm, it consumes more computational resources (time, memory). In-
spired from Hancer [63], the two-point crossover operator and two-way mutation operator
are employed to generate food sources in the employed bee phase and onlooker bee phase.
In the algorithm proposed by Hancer, xi and xk generate two new food sources by the
crossover operation, and generate another two new food sources by the mutation operator.
Therefore, the size of a set with SN solutions will expand to 5× SN after cross-mutation.
Furthermore, the 5× SN solutions are ranked using non-dominated sorting, and SN num-
ber of solutions are selected to update the population through rank and crowding distance.
Instead of expanding the size of the solutions set, which consumes much computational
time and memory, the two-point crossover operator and the two-way mutation operator
used in this paper are described as follows:

4.3.1. Two-Point Crossover

crossover is operated between the current food source xi and a food source xk that is
selected randomly (xi 6= xk ), two positions m and n are randomly determined on xi and xk
(m < n < D). All values between the position of xi are copied to xi and generate a new
food source [63]. An illustrative sample of crossover operator is presented in Figure 1.

Figure 1. Two-point crossover operator.

4.3.2. Two-Way Mutation Operator

First, a random number within the range of 0 and 1 is uniformly generated. If the
generated number is greater than 0.5, a position with value 1 is randomly chosen and its
position is set to 0. Otherwise, a position with value 0 is randomly chosen and its position
is set to 1 [63]. In this way, a new food source is generated. The mutation operator used in
this paper is shown as Figure 2.

Figure 2. Two-way mutation operator.

Subsequently, in view of the fact that if the food source in the employed bee or
onlooker bee phase is not updated for a long time, it will be abandoned and reinitialized
to produce a new food source, which will reduce the convergence speed of the algorithm,
a greedy selection strategy is employed after mutation, and it is specifically described
as follows.

4.3.3. Novel Greedy Selection Strategy

If the fitness value of x′i is higher than xi, x′i replaces xi and enters next iteration. If the
fitness of x′i is the same as xi, but its number of selected features is less than or equal to the
xi, x′i replaces xi and enters next iteration as well. Else, xi enters the next iteration and x′i is
discarded. To make it easier to understand, we give the following example, as shown in
Figure 3.
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Figure 3. The novel greedy selection strategy.

There are nine cases of whether an individual updates or not in Figure 3, where xt and
xt′ denote food source and its offspring in the current iteration, respectively. xt+1 denotes
the individual entering the next iteration. f itness is the prediction accuracy and sum is the
number of selected features. The first three cases indicate that, if xt has the same fitness
value with xt′ and its number of selected features is the same as or more than xt′, it will
be replaced by xt′; otherwise, it will enter the next iteration directly. If the fitness value of
xt is smaller than xt′, it will also be replaced by xt′ regardless of the number of features it
selects, which is shown as cases 4–6. In another three cases, xt with a larger fitness value
than xt′ will enter the next iteration without update.

Combining the above three together, the ABC-PLS-1 is proposed. Figure 4 shows the
flowchart of ABC-PLS-1 and pseudo code is outlined in Algorithm 2. Overall, the two-point
crossover and two-way mutation operators not only save on the process of converting
continuous space into discrete space, but also reduce the consumption of computing
resources. Furthermore, the greedy selection strategy greatly reduces the possibility of
food sources being abandoned so that the algorithm can converge fast to the optimal
solution, thereby, the scout bee phase of ABC algorithm does not improve the prediction
performance, so it can be omitted. This conclusion will be verified by setting different
thresholds that determine whether to carry out the scout bee phase.
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Figure 4. The flowchart of ABC-PLS-1.

Algorithm 2 Pseudo code of the ABC-PLS-1 algorithm

Input: Population size SN, Maximum number of iterations MaxIt, Abandonment limit L,

counter = 0, t = 0.

Output: The optimal food source xbest, the best fitness value f (xbest).

1: Initialize the population xi, (i = 1, 2, . . . SN ) by using Equation (4).

2: Evaluate the fitness value of each food source by using Equation (1).

3: while t ≤ MaxIt do

4: % Employed bee phase

5: for each employed bee do

6: Randomly select a different food source xk.
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Algorithm 2 Cont.

Input: Population size SN, Maximum number of iterations MaxIt, Abandonment limit L,
counter = 0, t = 0.

Output: The optimal food source xbest, the best fitness value f (xbest).
7: Generate a new food source by crossover operator and mutation operator on

xi and xk.
8: Evaluate the fitness value of each food source by using Equation (1).
9: Update xi according to greedy selection, and increase its counter counter by 1

if not update.
10: end for
11: Calculate the selection probability of each food source by using Equation (6).
12: % Onlooker bee phase
13: for each onlooker bee do
14: Select a food source xi according to the selection probability by

roulette-wheel scheme.
15: Randomly select a different food source xk.
16: Generate a new food source by crossover operator and mutation operator on

xi and xk.
17: Evaluate the fitness value of each food source by using Equation (1).
18: Update xi according to greedy selection, and increase its counter counter by

1 if not update.
19: end for
20: %Scout bee phase
21: for each food source do
22: if counter ≥ L then
23: Replaced by a new food source according to Equation (5) and convert it

into discrete values by Equation (7).
24: Evaluate the fitness value of the new food source by using Equation (1).
25: end if
26: end for
27: end while
28: Output xbest and f (xbest).

5. Experimental Design
5.1. Datasets and Parameters

To verify the performance of the proposed ABC-PLS and ABC-PLS-1 algorithm, a
series of experiments are conducted on three common QSAR datasets: Artemisinin, benzo-
diazepine receptors(BZR), and Selwood. The Artemisinin dataset contains 178 compounds
and 89 features. The BZR dataset contains 163 compounds and 75 features. The Selwood
dataset contains 29 compounds and 53 features [59]. The basic information about the
datasets is described in Table 1.

Table 1. Properties of the datasets.

Datasets #Compounds #Descriptors

Artemisinin 178 89
BZR 163 75

Selwood 29 53

We investigate the performance of the proposed algorithms by comparing it with
three FS algorithms for QSAR, including PSO-PLS [57], WS-PSO-PLS [59], and BFDE-
PLS [64]. For the compared algorithms, the parameters are set as recommended in the
corresponding papers. All algorithms are in MATLAB languages. The population size is 50,
and the maximum number of iterations is 200. The thresholds value (i.e., Limit) in the ABC
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algorithm is set to 100. For fair comparison, each algorithm runs 100 times independently.
Table 2 gives the parameter settings of all algorithms.

Table 2. Experimental parameters and settings.

Method Learning Rate α Limit learning Rate β Weight Coefficient

PSO-PLS 0.5 / / /
WS-PSO-PLS 0.5 / 0.8 0.5

BFDE-PLS / / / /
ABC-PLS / 100 / /

ABC-PLS-1 / 100 / /

All the algorithm operations are programmed by MATLAB (R2016b) produced by
MathWorks, Natick, MA, USA. All experiments were run on an Intel Core i5 computer
with a 3.40 GHz CPU and 8 GB RAM.

5.2. Performance Metric

A 5 fold cross-validation method is employed to evaluate the performance of QSAR.
Here, the metric Q2 reflects the prediction accuracy, and it is calculated as Equation (1).
The number of features denotes NUM. To know more about the stability of the algorithm,
the Root Mean Square Error (RMSE) is calculated as well, which is defined as follows:

RMSE =

√
∑n

i=1(yi − ŷi)2

MX
(8)

where yi, ŷi refer to the same as in Equation (1), and MX denotes the number of compounds.

6. Experimental Results and Analysis

Table 3 shows the experimental results of six QSAR methods.The best results are
identified in boldface. Without introducing intelligent algorithms, the PLS model selects all
features in each dataset, and the mean Q2 and root mean square error are respectively 0.6
and 0.99 on the Artemisinin dataset, 0.4 and 0.85 on the BZR dataset, and 0.24 and 0.65 on
the Selwood dataset. However, the performance of PLS is improved when the intelligent
algorithm is introduced into the model. The experimental results show that the intelligent
algorithm can eliminate the irrelevant features in the datasets by using global search or
local search.

The following comparison results can be obtained from Table 3: on the Artemisinin
dataset, the mean Q2 of ABC-PLS-1 is 3.64% larger than that of PSO-PLS and 1.48% larger
than that of WS-PSO-PLS, the root mean square error of ABC-PLS-1 is 5.73% smaller than
that of PSO-PLS and 2.39% smaller than WS-PSO-PLS. On the BZR dataset, the mean Q2 of
ABC-PLS-1 is 1.8% larger than that of PSO-PLS and 1.29% larger than that of WS-PSO-PLS,
the root mean square error of ABC-PLS-1 is 1.49% smaller than that of PSO-PLS and 1.07%
smaller than that of WS-PSO-PLS, and the features selected by ABC-PLS-1 are 5.88 less
than that selected by PSO-PLS and 4.14 less than that selected by WS-PSO-PLS. On the
Selwood dataset, the mean Q2 of ABC-PLS-1 is 6.73% larger than that of PSO-PLS and
1.74% larger than that of WS-PSO-PLS, the root mean square error of ABC-PLS-1 is 7.67%
smaller than that of PSO-PLS and 2.28% smaller than that of WS-PSO-PLS, and the features
selected by ABC-PLS-1 are 5.8 less than that selected by PSO-PLS and 3.16 less than that
selected by WS-PSO-PLS. The mean Q2 of ABC-PLS-1 is larger than that of BFDE-PLS
and the root mean square error of ABC-PLS-1 is smaller than that of BFDE-PLS on all the
three datasets. However, the features selected by ABC-PLS-1 is more than that selected
by BFDE-PLS in the Artemisinin dataset and the BZR dataset. ABC-PLS-1 selects more
features than ABC-PLS on the Artemisinin dataset, but it is superior to the ABC-PLS on the
other two datasets.
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Table 3. Performance of six QSAR methods on three datasets.

Dataset Method Mean Q2 ± Std Mean RMSE ± Std Mean NU M ± Std

Artemisinin

PLS 0.6 0.99 89
PSO-PLS 0.7352 ± 0.012 0.8066 ± 0.0182 39.18 ± 4.6436

WS-PSO-PLS 0.7568 ± 0.0072 0.7732 ± 0.0115 32.19 ± 4.41
BFDE-PLS 0.7299 ± 0.0109 0.8147 ± 0.0164 22.48 ± 4.2557
ABC-PLS 0.7697 ± 0.0016 0.7524 ± 0.0026 30.77 ± 3.5358

ABC-PLS-1 0.7716 ± 0.002 0.7493 ± 0.0032 33.29 ± 5.3073

BZR

PLS 0.4 0.85 75
PSO-PLS 0.5544 ± 0.012 0.733 ± 0.0099 29.14 ± 3.6764

WS-PSO-PLS 0.5595 ± 0.008 0.7288 ± 0.0066 27.4 ± 2.8955
BFDE-PLS 0.5490 ± 0.0103 0.7374 ± 0.0084 18.9 ± 2.0865
ABC-PLS 0.4523 ± 0.0129 0.8126 ± 0.0096 38.04 ± 4.4311

ABC-PLS-1 0.5724 ± 0.0053 0.7181 ± 0.0044 23.26 ± 2.1112

Selwood

PLS 0.24 0.65 53
PSO-PLS 0.8653 ± 0.0428 0.2692 ± 0.0401 19.66 ± 3.1662

WS-PSO-PLS 0.9152 ± 0.0128 0.2153 ± 0.0163 17.02 ± 3.0977
BFDE-PLS 0.9112 ± 0.0359 0.2170 ± 0.0409 14.72 ± 2.4457
ABC-PLS 0.8187 ± 0.0887 0.3078 ± 0.0704 20.3 ± 3.9093

ABC-PLS-1 0.9326 ± 0.0023 0.1925 ± 0.0033 13.86 ± 0.9849

In conclusion, although the number of selected features of ABC-PLS-1 is not smaller
than that of BFDE-PLS on Artemisinin and BZR, the prediction accuracy and the root mean
square error of ABC-PLS-1 is obviously better than ABC-PLS, PSO-PLS, WS-PSO-PLS, and
BFDE-PLS on all the three datasets.

A rank sum test method at a significance level of 0.05 is used to compare mean Q2 on
three datasets to determine whether ABC-PLS-1 is significantly different from PSO-PLS,
WS-PSO-PLS, BFDE-PLS, and ABC-PLS. As shown in Table 4, ABC-PLS-1 is significantly
better than others in the mean Q2 on all datasets.

Table 4. Significant difference in mean Q2 between ABC-PLS-1 and the other four methods.

Method Artemisinin BZR Selwood

PSO-PLS 2.5606× 10−34 1.6434× 10−34 2.1212× 10−35

WS-PSO-PLS 4.2026× 10−33 5.1827× 10−31 1.6109× 10−27

BFDE-PLS 2.6385× 10−34 2.7446× 10−34 2.1211× 10−35

ABC-PLS 1.4839× 10−7 1.6434× 10−34 1.5693× 10−33

Figure 5 shows the Q2 obtained by each algorithm used by running 100 times on three
datasets. It is obvious that the Q2 of ABC-PLS-1 is generally higher than that of the other
four algorithms on the Artemisinin dataset and the Selwood dataset. In the last subfigure,
the Q2 of ABC-PLS-1 is higher than PSO-PLS, WS-PSO-PLS, and ABC-PLS, and it is stable.

Convergence curves of the algorithms on three datasets are shown in Figure 6. Each
curve is an average result of 100 runs in each iteration. ABC-PLS-1 converges faster with a
good quality of solution compared to other state of-the-art methods on Artemisinin and
BZR datasets. Although BFDE-PLS finally converges to a higher quality solution than
ABC-PLS-1 on the Selwood dataset, it is greatly inferior to others on Artemisinin and BZR
datasets and its convergence speed is slow. Overall, ABGWO achieved better performance
than others with respect to both convergence speed and solution quality.
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Figure 5. The Q2 obtained in 100 runs.

Figure 6. The convergence curve of algorithms during 200 iterations.

Furthermore, in order to verify the validity of ABC-PLS-1, the Root Mean Square
Error (RMSE) of ABC-PLS-1 is compared with that of the other four algorithms. Figure 7
presents Box-plots which show the RMES of the five algorithms on three datasets. “+” in
figure are outliers. As can be seen from the figure, the mean line of ABC-PLS-1 is lower
than PSO-PLS, WS-PSO-PLS, BFDE-PLS, and ABC-PLS on all three datasets. Therefore, the
performance of ABC-PLS-1 is better and more stable than others.

For a better evaluation of our proposed FS methods, not only the accuracy and the
size of feature subsets but also the computational time is investigated. The computational
time is presented in terms of mean values over the 100 runs in Table 5. Like as other
wrapper methods, the proposed algorithm requires a high computational cost to evaluate
the fitness of individuals. The CPU execution time of ABC-PLS-1 is only less than that of
BFED-PLS. However, it is a remarkable fact that the accuracy of feature selection method
is far more important than the computational complexity of this method in many high-
precision applications, such as biological genetic engineering, medical diagnosis, drug
design, and discovery. In fact, in these applications, we prefer to choose the FS method with
the highest accuracy, even if it is at the cost of higher computational complexity. Although
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the proposed ABC-PLS-1 has no edge over time consumption, it boosts the accuracy of FS
in QSAR, which is exactly what QSAR modeling needs.

According to the above experimental results, we come to the conclusion that the
proposed ABC-PLS-1 performs well in QSAR. In addition, to investigate whether the scout
bee phase is redundant when dealing with the feature selection for low-dimensional and
medium-dimensional regression prediction problem, we do further experiments on the
ABC-PLS-1 by setting different values of Limit.

Figure 7. Box-plots of RMSE for different methods on three datasets.

Table 5. The execution time (in seconds) of five SI-based algorithms for FS in QSAR.

Method Artemisinin BZR Selwood

PSO-PLS 86.15 ± 7.6716 44.99 ± 8.4498 32.25 ± 6.5508
WS-PSO-PLS 92.84 ± 6.6510 66.89 ± 5.0317 46.83 ± 4.3476

BFDE-PLS 273.09 ± 11.0566 224.29 ± 15.8253 158.28 ± 6.6698
ABC-PLS 103.68 ± 4.2085 99.50 ± 2.2932 80.68 ± 4.5513

ABC-PLS-1 224.20 ± 36.1620 185.83 ± 5.3332 113.30 ± 2.9640

Table 6 shows the experimental results of three performance metrics when the scout
bee operator takes different Limit values on the three datasets. The best results are identified
in boldface. In the case of no scout bee phase, i.e., Limit = ∞, the Q2 on the Artemisinin
dataset, BZR dataset, and Selwood dataset are, respectively, 0.7731, 0.5757, and 0.9338,
which are respectively 0.15%, 0.33% and 0.12% larger than that in the case of setting the
Limit to 100; The root mean square error are respectively 0.7468, 0.7153, and 0.1906, which
are, respectively, 0.25%, 0.34%, and 0.19% smaller than that in the case of setting the Limit to
100. The number of the selected features on the Artemisinin dataset is 0.3 smaller than that
in the case of setting the Limit value to 100. Therefore, the scout bee operator is redundant in
dealing with the feature selection for low-dimensional and medium-dimensional datasets
in regression.
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Table 6. Performance of ABC-PLS-1 with different values of Limit on three datasets.

Dataset Limit Mean Q2 ± Std Mean RMSE ± Std Mean NU M ± Std

Artemisinin

10 0.7164 ± 0.0057 0.835 ± 0.0083 43.25 ± 4.2221
50 0.7678 ± 0.0018 0.7555 ± 0.0029 32.56 ± 4.6042

100 0.7716 ± 0.002 0.7493 ± 0.0032 33.29 ± 5.3073
150 0.7721 ± 0.0016 0.7485 ± 0.0026 32.5 ± 4.489
200 0.7726 ± 0.002 0.7477 ± 0.0032 32.74 ± 5.3459
∞ 0.7731 ± 0.0019 0.7468 ± 0.0031 32.99 ± 5.5204

BZR

10 0.5283 ± 0.0051 0.7542 ± 0.0041 30.82 ± 3.6828
50 0.5714 ± 0.0051 0.7189 ± 0.0043 23.09 ± 2.0797

100 0.5724 ± 0.0053 0.7181 ± 0.0044 23.26 ± 2.1112
150 0.5733 ± 0.0052 0.7173 ± 0.0044 23.91 ± 2.1182
200 0.5758 ± 0.0049 0.7152 ± 0.0041 23.99 ± 1.8395
∞ 0.5759 ± 0.005 0.7150 ± 0.0042 24.22 ± 1.7557

Selwood

10 0.8626 ± 0.0177 0.2743 ± 0.0178 17.83 ± 2.8035
50 0.9321 ± 0.0009 0.1913 ± 0.0014 14.07 ± 0.5366

100 0.9326 ± 0.0023 0.1925 ± 0.0033 13.86 ± 0.9849
150 0.9337 ± 0.0035 0.1908 ± 0.0053 14.2 ± 0.8646
200 0.9337 ± 0.0043 0.1908 ± 0.0066 14.28 ± 0.9543
∞ 0.9338 ± 0.0045 0.1906 ± 0.0068 14.33 ± 1.3185

7. Conclusions

To improve the prediction accuracy and interpretability of QSAR modeling, two ABC
variants are proposed for feature selection in QSAR in this paper, namely ABC-PLS and
ABC-PLS-1. In the former variant, we convert the continuous space to a discrete space by a
threshold and then apply it to feature selection in QSAR. In the later variant, to save the
process of converting continuous space into discrete space and reduce the consumption of
computing resources, the two-point crossover operator and the two-way mutation operator
are introduced in the employed bee phase and onlooker bee phase. Furthermore, a novel
greedy selection strategy is employed to help the algorithm converge fast to the optimal
solution by reducing the possibility of food sources being abandoned. The performance
of our proposed algorithms on feature selection in QSAR are compared with that of three
state-of-the-art FS methods on three QSAR datasets. The comparison results show that, not
only in terms of prediction accuracy and feature subset size, but also in terms of stability,
the proposed ABC-PLS-1 outperforms other algorithms. Moreover, we also study whether
the scout bee phase is necessary by setting different values of Limit, and conclude that the
scout bee phase is redundant when dealing with the feature selection in low-dimensional
and medium-dimensional regression problems.

In future research, we will propose a multi-object ABC algorithm for QSAR to maximize
the prediction accuracy and minimize the number of selected features, simultaneously.
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