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Abstract: Three-component systems of diffusion–reaction equations play a central role in the mod-
elling and simulation of chemical processes in engineering, electro-chemistry, physical chemistry,
biology, population dynamics, etc. A major question in the simulation of three-component systems
is how to guarantee non-negative species distributions in the model and how to calculate them
effectively. Current numerical methods to enforce non-negative species distributions tend to be
cost-intensive in terms of computation time and they are not robust for big rate constants of the
considered reaction. In this article, a method, as a combination of homotopy methods, modern
augmented Lagrangian methods, and adaptive FEMs is outlined to obtain a robust and efficient
method to simulate diffusion–reaction models with non-negative concentrations. Although in this
paper the convergence analysis is not described rigorously, multiple numerical examples as well as
an application to elctro-deposition from an aqueous Cu2+-(β-alanine) electrolyte are presented.

Keywords: diffusion–reaction system; augmented lagrangian method; adaptive FEM; laminar diffu-
sion boundary layer; three-component system; complexation of metal ions; obstacle problem

1. Introduction

Diffusion-reaction equations play a central role in the modelling and simulation of
chemical processes, as the corresponding system describes the transport of multiple species
w.r.t. diffusion and a single reaction. The modelling of processes in the interior of lithium-
ion batteries, complexation of metals during electro-plating, the electrical potentials in
neurons, diffusion in sensors, etc., are major examples for the usage of three-component
systems.

While the classical models in the literature of the speciation and modelling of metal-
ions, cf. [1–6], are not considering non-negative species-concentrations, this paper aims at
a model respecting non-negative species distributions in a simple case and their numerical
treatment in a more general setting. This is motivated by the fact that negative species
concentrations are unphysical and may and will most likely lead to false conclusions from
simulated data.

While the analytical, cf. [7], and numerical, cf. [5,8–10], treatment of diffusion–reaction
systems, are well known, even under convection, the enforcement of non-negative species
distributions, especially in the numerics, are rarely discussed.

The numerical strategy, which is discussed in this article, is based on the reformulation,
as discussed in Section 2, of the model equations into a constrained minimization problem
in which the positive concentrations are part of the model formulation. The respective
mathematical model that is used in this article is an optimization problem of the obstacle
type, which is well known in physics and numerics c.f. [11–13].
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A common strategy, cf. [13–16], to treat such problems of obstacle type is first to
discretize the obstacle-problem and then treat the restrictions. This strategy leads to a
restrained minimization problem in finite dimension. The resulting minimization problem
can be treated with many methods such as quasi-Newton methods, cf. [17], SQP methods,
cf. [18], penalty methods, cf. [19], augmented Lagrangian methods cf. [20–22], or Primal-
Dual Active-Set Strategies, cf. [23].

This type of strategy (first discretization, then solution) has the advantage to be, in
comparison, easy, but have some problems in terms of efficiency, since those methods are
iterative methods, due to a fixed triangulation T . Consequence is that for the convergence
of the complete scheme, one has to assume that the iterated problems are solvable and
stable with respect to T . Hence, one has to invest in a reasonable set of cases more in
computation time and data storage than possibly necessary, when using meshes for each
iterated problem separately.

Hence, a new methodology will be derived un this article, where the restriction of
the constrained minimization problem will first be treated with an augmented Lagrangian
method and then a discretization will be made, to use an adaptive FEM, cf. [24], in every
iteration of the augmented Lagrangian scheme. As a basis of the algorithm, augmented
Lagrangian algorithms, c.f. [25,26], on Banach spaces will be used. As discretization of the
considered Banach spaces conforming subspaces will be used, cf. [27–30].

Because the discretized problems discussed in this paper will be, as quasi-Newtonian
schemes, unstable cf. [17], Homotopy methods, cf. [31,32], will be used to gain stability.

For the theoretical background, some fundamental studies on the resulting algorithm,
considering some existence theory based on PDE and ODE theory [33–35] and the usage of
Γ-convergence, cf. [36–39], will be used. The theoretical results are underlined by an exten-
sive numerical verification of the algorithm, as given in Section 4, indicates convergence of
the numerical scheme and efficiency for nonlinear problem formulations and formulations
on non-convex domains. Nevertheless, a full proof of convergence, stability, and existence
theory will not be given in this paper.

As additional part of this article, a model for the static metal-deposition basing
the complexation in a laminar boundary layer will be discussed, see Section 5.1, and
numerically evaluated via the simulation methodology that is described in this article.

2. A Generalized Mathematical Model
2.1. The Classical Approach

In this article let Ω ⊂ Rd, for d ∈ {1, 2}, be an open, bounded, connected domain with
Lipschitz boundary. Furthermore, let the boundary ∂Ω, be split into a Dirichlet boundary
∅ ≠ ΓD ⊆ ∂Ω and a Neumann boundary ΓN ⊂ ∂Ω, such that ΓD and ΓN are relative open
w.r.t. the restriction topology, ΓD ∩ ΓN = ∅ and for the topological completion of ΓN ∪ ΓD
one assumes the identity ΓN ∪ ΓD = ∂Ω.

During this article, reactions in the following form will be considered:

A + B
k1⇌
k2

C. (1)

As is known, cf. [1–4,7], the concentrations of the species A, B, C are formulated, in
the stationary case, as a system of ODEs, for d = 1, and a system of partial differential
equations in multiple space dimensions, i.e., for d > 1, which is for fA, fB, fC ∈ L2(Ω), for
gA,D, gB,D, gC,D ∈ L∞(ΓD), and for gA,N , gB,N , gC,N ∈ L∞(ΓN), given through the following
system of equations

0 = DA∆cA + k2cC − k1cAcB + fA, in Ω, (2a)

0 = DB∆cB + k2cC − k1cAcB + fB, in Ω, (2b)

0 = DC∆cC − k2cC + k1cAcB + fC, in Ω, (2c)

gA,D = cA∣ΓD , gB,D = cB∣ΓD , gC,D = cC ∣ΓD , (2d)
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gA,N = ∇cA∣ΓN ⋅ νΓN , gB,N = ∇cB∣ΓN ⋅ νΓN , gC,N = ∇cC ∣ΓN ⋅ νΓN . (2e)

Note that, by L2(Ω), in this article, the Hilbert space of square integrable functions is
denoted, with scalar product (●, ●)L2(Ω) ∶ L2(Ω)× L2(Ω)→ R and induced norm ∥ ● ∥L2(Ω) ∶
L2(Ω) → R, c.f. [36,40]. Furthermore, the Banach spaces Lp(Ω) with associated norms
∥ ● ∥Lp(Ω), will be considered.

As can be seen, the straight-forward formulation given by the Equation (2a)–(2e)
does not contain a condition of the non-negativity of the concentrations cS, with S ∈
{A, B, C}. This missing formulation of non-negative species distributions will actually lead
to unphysical behavior in the computation results. Hence in the following section, the
usual approach to reinforce non-negative species distributions will be discussed.

2.2. Reinforcing Non-Negative Species Distributions

Assuming the system above has a unique solution, one obtains that the solution of
the system (2a)–(2e) can be identified, for pS = ∇cS, with the solution of the following
minimization problem: Find (cS,LS, pS,LS)S∈{A,B,C} ∈ X, such that

(cS,LS, pS,LS)S∈{A,B,C} = argmin
(vS ,qS)S∈{A,B,C}∈X

LS((vS, qS)S∈{A,B,C}), (3)

where X is a Banach space, which will be defined later, and the non-linear least-squares
functional LS((vS, qS)S∈{A,B,C}) is given through the following identity:

LS((vS, qS)S∈{A,B,C}) ∶=

∥DAdivqA + k2vC − k1vAvB + fA∥2
L2(Ω) + ∥qA −∇vA∥2

L2(Ω)

+ ∥DBdivqB + k2vC − k1vAvB + fB∥
2
L2(Ω) + ∥qB −∇vB∥

2
L2(Ω)

+ ∥DCdivqC − k2vC + k1vAvB + fC∥
2
L2(Ω) + ∥qC −∇vC∥

2
L2(Ω)

+ ∑
S∈{A,B,C}

[∥vS − gS,D∥2
L2(ΓD)

+ ∥∇vS ⋅ νΓN − gS,N∥2
L2(ΓD)

]

For the last terms of the least squares functional above, one has to note that the space
L∞(Ω) is continuously embedded into the space L2(Ω) and, hence, the evaluation of the

terms ∥cS − gS,D∥2
L2(ΓD)

and ∥∇cS ⋅ νΓN − gS,N∥2
L2(ΓD)

are formally correct and simplify the
calculations needed to implement a corresponding solver.

In the following, the space X has to be fixed. The space X is defined s.t. the non-linear
functional LS((vS, qS)S∈{A,B,C}) is well defined, for each element (vS, qS)S∈{A,B,C} ∈ X.

First, note that, for each S ∈ {A, B, C}, the conditions divqS ∈ L2(Ω) and q ∈ L2(Ω;Rd)
have to be fulfilled, since for d = 1, the divergence reduces to a simple derivative, i.e.,
divqS = ∂

∂x qS, one obtains, for d = 1, the inclusion qS ∈ H1(Ω) and for d = 2, 3 the inclusion
qS ∈ H(div; Ω), for the definition of H(div; Ω) see [36,40].

Furthermore, one observes that the inclusion vAvB, vC ∈ L2(Ω) has to be fulfilled, a
sufficient condition to fulfil the inclusion above is vA, vB ∈ L4(Ω) and ∇vA,∇vB,∇vC ∈
L2(Ω;Rd), whence vA, vB ∈ W1,4(Ω) and vC ∈ H1(Ω). The spaces Wk,p(Ω) and Hk(Ω)
denote the usual and well known Sobolev spaces, cf. [36,40]. This gives, for d = 1, the

identity (W1,4(Ω) × H1(Ω))×2 × (H1(Ω) × H1(Ω)) and for d = 2 the identity (W1,4(Ω) ×
H(div, Ω))×2 × (H1(Ω)× H(div, Ω)).

The reformulation discussed in this article is to introduce the positivity of cA, cB, cC as
side condition, cf. [11,41].
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Find (cS,LS, pS,LS)S∈{A,B,C} ∈ X, such that

(cS,LS, pS,LS)S∈{A,B,C} = argmin
(vS ,qS)S∈{A,B,C}∈X

LS((vS, qS)S∈{A,B,C})

s.t.: 0 ≤ vS, ∀S ∈ {A, B, C}
(4)

where the non-linear least-squares functional LS((vS, qS)S∈{A,B,C}) is the same as in (3).

3. Numerical Scheme

This section is devoted to the construction of a robust numerical scheme to approx-
imate a solution to (4). This section provides an outline of the numerical scheme and
ommites the proof of convergence. In contrast to [5,42] no finite-difference scheme will be
discussed, but a finite-element discretization, which allows for us to employ augmented
Lagrangian methods, cf. [25,26], on the continuous level of the model.

In this section, a numerical scheme for a generalized problem in the form (3) will
be discussed, by adding additional reaction terms γScS. The respective generalized least-
squares functional is given through

LS((vS, qS)S∈{A,B,C}) ∶=

∥DAdivqA + γAvA + k2vC − k1vAvB + fA∥2
L2(Ω) + ∥qA −∇vA∥2

L2(Ω)

+ ∥DBdivqB + γBvB + k2vC − k1vAvB + fB∥
2
L2(Ω) + ∥qB −∇vB∥

2
L2(Ω)

+ ∥DCdivqC + γCvC − k2vC + k1vAvB + fC∥
2
L2(Ω) + ∥qC −∇vC∥

2
L2(Ω)

+ ∑
S∈{A,B,C}

[∥vS − gS,D∥2
L2(ΓD)

+ ∥∇vS ⋅ νΓN − gS,N∥2
L2(ΓD)

]

In contrast to the usual numerical schemes, as described above, the current augmented
Lagrangian methods work on the continuous level of the problem. Applying the algorithms
given in [26] and in [25] to (4) yields the following algorithm:
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Algorithm 1: augmented Lagrangian algorithm

Input : j = 0, (x(0), µ(0) ∈ X × L2(Ω)×3), 0 < λmax, 0 < α0, τ ∈]0, 1[, 1 < γ, ε > 0.

Output : Approximate solution ((c(j+1)
S,LS , p(j+1)

S,LS )S∈{A,B,C}) ∈ X to (4) and approximation λ(j) of the Lagrangian
multiplier.

Follow the steps
S1.: Define λ(j) ∶= min (µ(j), λmax) and approximate a solution to

((c(j+1)
S,LS , p(j+1)

S,LS )S∈{A,B,C}) = argmin
(vS ,qS)S∈{A,B,C}∈X

LSαj((vS, qS)S∈{A,B,C},
λ(j)

αj
) (5)

S2.: Define

µ(j+1) ∶= (λ(j) − αj[c
(j+1)
A , c(j+1)

B , c(j+1)
C ])

+
.

If j = 0 or if

∥min[[c(j+1)
A , c(j+1)

B , c(j+1)
C ], λ(j)

αj
]∥

L2(Ω)

≤ τ∥min[[c(j)A , c(j)B , c(j)C ], λ(j−1)

αj−1
]∥

L2(Ω)

(6)

then set αj+1 ∶= αj, otherwise set αj+1 = γαj.
S3.: If

∣[c(j+1)
A , c(j+1)

B , c(j+1)
C ] ⋅ µ(j+1)∣ ≤ ε

and

∥[c(j+1)
A , c(j+1)

B , c(j+1)
C ]− ([c(j+1)

A , c(j+1)
B , c(j+1)

C ])
+
∥

L2(Ω)
≤ ε

then break the algorithm.
S4.: Set j = j + 1 and go to S1.

For f ∈ L2(Ω), the map (●)+ ∶ L2(Ω)→ L2(Ω) is defined as ( f )+ ∶= max(0, f ), almost
everywhere. Furthermore, let LSαk((vS, qS)S∈{A,B,C}, λ) be given for all (vS, qS)S∈{A,B,C} ∈ X
and for all λ ∈ L2(Ω)×3 through the following non-linear functional:

LSα((vS, qS)S∈{A,B,C}, λ) ∶=

∥DAdivqA + γAcA + k2vC − k1vAvB + fA∥2
L2(Ω) + ∥qA −∇vA∥2

L2(Ω)

+ ∥DBdivqB + γBcB + k2vC − k1vAvB + fB∥
2
L2(Ω) + ∥qB −∇vB∥

2
L2(Ω)

+ ∥DCdivqC + γCcC − k2vC + k1vAvB + fC∥
2
L2(Ω) + ∥qC −∇vC∥

2
L2(Ω)

+ ∑
S∈{A,B,C}

α

2
∥(λS − vS)+∥

2
L2(Ω)

+ ∑
S∈{A,B,C}

[∥vS − gS,D∥2
L2(ΓD)

+ ∥∇vS ⋅ νΓN − gS,N∥2
L2(ΓN)

]

Remark 1. Note that the iterated minimization problem (5) generalizes the unrestrained minimiza-
tion problem (3) through the choice of α = 0 and λ = 0, as well as γS = 0, for all S ∈ {A, B, C}.
Hence, the choice of a numerical scheme for (5) directly implies a numerical scheme for (3).

The augmented Lagrangian algorithm leaves the unrestrained minimization problems (5)
to approximate. As a first step, (5) will be discretized. The essential key to discretize (5) is
the discretization of the space X. In this paper a conforming discretization of X was chosen,
by choosing a finite-dimensional subspace Xh ⊂ X. The choice of Xh will be discussed in
the following.
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Let T , in the respective dimension, be at first, an arbitrary fixed triangulation of Ω.
The index h of the finite dimensional space Xh refers to the diameter of T , which is in one
space dimension the maximal length of an interval T ∈ T and in two, the length of the
longest edge in the set of edges E .

For d = 1, the discrete (finite dimensional) space Xh ⊂ X is constructed by the lowest
order conforming discretization S1(T ) ⊂ Wk,p(Ω), where S1(T ) is the space of affine
splines that is defined by

S1(T ) ∶= P1(T )∩C0(Ω),

where

P1(T ) ∶= {v ∈ L2(T ) ∣ ∀T ∈ T ∃a, b ∈ R ∶ v∣T = a + bx},

cf. [43]. Hence, in this paper, the discrete space S1(T )×6 =∶ Xh ⊂ X is used as discretization.
For d = 2, the vector space affine splines S1(T ), defined analogous as before as

S1(T ) ∶= P1(T )∩C0(Ω),

are used as a conforming discretization of Wk,p(Ω), cf. [27,28,30], and the Raviart–Thomas
elements given by

RT0(T ) ∶= P1(T ,Rd)∩ H(div, Ω),

with
P1(T ,Rd) ∶= {v ∈ L2(Ω;Rd) ∣ ∀T ∈ T ∃a ∈ Rd, b ∈ R ∶ v∣T = a + bx},

as discretization of H(div, Ω). Hence, in this paper, the lowest order discretization Xh ⊂ X,
will be discussed, which is given by

Xh ∶=
⎧⎪⎪⎨⎪⎪⎩

(S1(T )× S1(T ))×3
, for d = 1,

(S1(T )× RT0(T ))×3
, for d = 2.

(7)

This leaves the following discrete problem to solve or to approximate:
Find xh ∈ Xh such that

((cS,LS,h, pS,LS,h)S∈{A,B,C}) = argmin
(vS ,qS)S∈{A,B,C}∈Xh

LSαj((vS, qS)S∈{A,B,C},
λ(j)

αj
) (8)

As a fundamental step of the numerical scheme, a linearization of (8) is introduced.
For this, a few calculations are necessary. First, remark that, in contrast to the non-linear
functional LS((vS,C, qS,RT)), the functional LSα((vS,C, qS,RT), µ) is, for α > 0, not differen-
tiable. The non-differentiability lies in the evaluation of the function (µ − vS,C)+. Hence,
for the linearization of (µ − vS,C)+, one has to use a different notion of differentiability
than the common Fréchet-differential. Therefore for the linearization of (µ − vS,C)+ in this
article, the convex subdifferential ∂cvx as defined, c.f. [44], was used. For a convex function
f ∶ Y → R, for a Banach space Y, its topological dual Y∗, and the dual pairing ⟨●, ●⟩Y∗,Y,
cf. [40], in a point y0 ∈ Y is given through

∂cvx f (y0) ∶= {g ∈ X∗ ∣ ⟨g, x − x0⟩+ f (y0) ≤ f (y), ∀y ∈ X}.

As it is commonly known, the subdifferential ∂cvx([µS − cS](●))+ is for almost all
x0 ∈ Ω and all S ∈ {A, B, C}, given through

∂cvx([µS − cS](●))+(x0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{0}, for [µS − cS](x0) < 0,
{−1}, for [µS − cS](x0) > 0,
[−1, 0], for [µS − cS](x0) = 0.

(9)
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Furthermore, for cA,h, cB,h ∈ S1(T ) and arbitrary fixed vA,h, vB,h, the following Taylor
approximation is considered

vA,hvB,h ≈cA,hcB,h + cA,h[vB,h − cB,h]+ cB,h[vA,h − cA,h]
=cA,hvB,h + vA,hcB,h − cA,hcB,h. (10)

An additional approximation of cS,h, for S ∈ {A, B}, is made through

cS,h ≈ Π0cS,h

In the notation above, the map, Π0 ∶ L2(Ω) → P0(T ) denotes the orthogonal L2-
projection onto the space of piecewise constant functions, which is given through:

P0(T ) ∶= {v ∈ L2(Ω) ∣ ∀T ∈ T ∃c ∈ R ∶ v∣T ≡ c}.

i.e., for all f ∈ L2(Ω), the image of Π0 f is given as the solution of the following minimization
problem, cf. [30]:

Π0 f = argmin
w0∈P0(T )

∥ f −w0∥
2
L2(Ω). (11)

Furthermore, for f ∈ H1(Ω), due to the Poincaré inequality, cf. [40] or [30], there exists
a constant 0 < c, such that

∥ f ∥2
L2(Ω) = ∥Π0 f ∥2

L2(Ω) + ∥(1−Π0) f ∥2
L2(Ω) ≤ ∥Π0 f ∥2

L2(Ω) + ch2, (12)

where the equality results from the pythagorean theorem, [40].
The identities (9), (10), and (12) inspire the following quasi-Newton scheme given,

for a starting value x0 ∈ Xh, through the iterative solution of the following minimization
problem:

Find (c(n)S,LS,h, p(n)S,LS,h)S∈{A,B,C} ∈ Xh, such that the following identity holds true

(v(n)S,h , q(n)S,h )S∈{A,B,C} = argmin
(vS,h ,qS,h)S∈{A,B,C}

LSα((vS,h, qS,h)S∈{A,B,C}, µ;T , n)
(13)

where LSα((vS,h, qS,h)S∈{A,B,C}, µ;T ) is, for all (vS,h, qS,h)S∈{A,B,C} ∈ Xh, defined as

LSα((vS,h, qS,h)S∈{A,B,C}, µ;T ) ∶=

∥DAdivqA + γAvA,h + k2vC,h − k1[Π0(c(n−1)
A,h )vB,h +Π0(c(n−1)

B,h )vA,h −Π0(c(n−1)
A,h c(n−1)

B,h )]+Π0 fA∥2
L2(Ω)

+ ∥DBdivqB + γBvB,h + k2vC,h − k1[Π0(c(n−1)
A,h )vB,h +Π0(c(n−1)

B,h )vA,h −Π0(c(n−1)
A,h c(n−1)

B,h )]+Π0 fB∥
2
L2(Ω)

+ ∥DCdivqC + γCvC,h − k2vA,h + k1[Π0(c(n−1)
A,h )vB,h +Π0(c(n−1)

B,h )vA,h −Π0(c(n−1)
A,h c(n−1)

B,h )]+Π0 fC∥
2
L2(Ω)

+ ∑
S∈{A,B,C}

[∥Π0qS,h −∇vS,h∥
2
L2(Ω) +

α

2
∥χA(n−1)(

µS

α
− vS)∥

2

L2(Ω)
]

+ ∑
S∈{A,B,C}

[∥vS − gS,D∥2
L2(ΓD)

+ ∥∇vS ⋅ νΓN − gS,N∥2
L2(ΓN)

]

where the set A(n−1)
S ⊂ Ω is the support of (µS − c(n−1)

S )
+

, where the support of a function

f ∈ L2(Ω) is defined as supp( f ) ∶= {x ∈ Ω∣ f (x) ≠ 0}. Hence, A(n−1)
S is defined as:
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A(n−1)
S = supp[(µS − c(n−1)

S )
+
]

furthermore for a subset B ⊂ Ω, the map χB ∶ Ω → [0, 1] is given by

χB(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

1, for x ∈ B,
0, else.

As it can directly be seen, the inclusion χA(n−1)(x) ⊆ ∂cvx([µS − cS](●))+(x) holds true.
As it is commonly known, cf. [17,45,46] Newton and quasi-Newton schemes tend to

be unstable. One strategy, as described in [46], is to use stabilized quasi-Newton methods
based on a coupling of a quasi-Newton method with a subgradient scheme, on a not
linearised problem. Another option, which is used and implemented for the numerical
examples, as discussed in the Sections 4 and 5, are homotopy methods, cf. [31,32], which
is a scheme for the solution (13), based on the iterative transformation of a system with
known solution into the non-linear system associated to (13). The homotopy methodology
is probably the easiest way to stabilize the numerical strategy and increase the robustness.

Remark 2. The strategy refereed to as quasi-Newtonian scheme is in fact a disturbed variant of a
‘normal’ quasi-Newtonian scheme. The difference between the ’normal’ quasi-Newtonian scheme
and the quasi-Newtonian scheme discussed in this paper is the application of the projections Π0.
The sequence that is generated by the corresponding quasi-Newtonian scheme is denoted by y(k).

Some notations are needed to describe the used transformation. First, let, for M ∈ N,
the following discretisation of the interval [0, 1] be given through 0 = t1 ≤ . . . ≤ tj ≤ . . . ≤
tM = 1. Subsequently, a homotopy method is given by the solution, for 1 ≤ j ≤ N, by
computing the following algorithm:

Algorithm 2: Homotopie-Loop
Input : Inital discretization 0 = t1 ≤ . . . ≤ tj ≤ . . . ≤ tM of the interval [0, 1], system parameters DA, DB, DC, k1, k2

and set j = 0, set initial value x(0) ∈ Xh, 0 < ε.
Output : Approximate solution to (8) and set (c(n)LS,S,h, p(n)LS,S,h)S∈{A,B,C} = (c(n,1)

LS,S,h, p(n,1)
LS,S,h)S∈{A,B,C}.

The homotopy algorithm is given through the following steps.
S1: For n = 1, 2, . . . solve the following problem.

Find ((c(n,j)
LS,S,h, pLS,S,h))S∈{A,B,C} ∈ Xh s.t.

(c(n,j)
LS,S,h, p(n,j)

LS,S,h)S∈{A,B,C} = argmin
(vS,h ,qS,h)S∈{A,B,C}∈Xh

LSα((vS,h, qS,h)S∈{A,B,C};T , n, j) (14)

and break if

∑
S∈{A,B,C}

[∥cj,n
S,h − cj,n−1

S,h ∥2
L2(Ω) + ∥qj,n

S,h − qj,n−1
S,h ∥2

L2(Ω)] < ε

and for all (vS,h, qS,h)S∈{A,B,C} ∈ Xh, the linear functional LSα((vS,h, qS,h)S∈{A,B,C};T , n, j) is given by

LSα((vS,h, qS,h)S∈{A,B,C};T , n, j)

∶= (1− tj) ∑
S∈{A,B,C}

[∥vS,h∥
2
L2(Ω) + ∥qS,h∥

2
L2(Ω)]

+ tjLSα((vS,h, qS,h)S∈{A,B,C};T , n).

S2: If (14) converges for n →∞, go to S3 else refine the decomposition 0 ≤ t0 ≤ . . . ≤ tM = 1, set j = 0 and go to S1.
S3: If tj = 1 break the loop, else set j = j + 1 and go to S1.
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The usage of the homotopy-algorithm, as described above, yields a cost-intensive
numerical scheme. Hence, the usage of adaptive schemes for (5) is the best choice at hand
to treat the iterate problems. Adaptive schemes in the homotopy steps are possible, but not
implemented for this paper.

Adaptive FEM is used as the last step of the numerical scheme. As described
in [24,47,48] the adaptive scheme is given through the following algorithm:

Algorithm 3: AFEM-loop
Input : Initial regular triangulation T0, system parameters, set j = 0.
Output : Fine mesh T`, approximate limit of the solutions to (13), estimation of the error.
The adaptive FEM algorithm is given by the following steps:
S1: Solve: Take the limit of the solutions iterated problems (13), approximated through Algorithm 2.
S2: Estimate: Estimate the error of the current discrete problem on each element T ∈ Tj with an estimator η.
S3: Break: If the triangulation is fine enough or the estimated error is lower than a given Tolerance, then break

the condition.
S4: Mark: Mark the elements of the triangulation T ∈ Tj with the highest estimated local errors.
S5: Refine: Refine all marked elements and additonal elements, such that the result Tj+1 is again a regular

triangulation.
S6: Set j = j + 1 and go to S1:

At the end of the section, a few remarks have to be made:

Remark and Definition 1 (Used setup of the AFEM-Algorithm for this paper). Note that:

(i) In S2 of Algorithm 3, an estimator is evaluated on each element T ∈ Tj, which has to be defined.
Assuming that for the exact solution (uLS,S, pLS,S)S∈{A,B,C} ∈ X of (3), the equality

LS((uLS,S, pLS,S)S∈{A,B,C}) = 0 (15)

holds true. In this paper, the estimator σ ∶ T → R≥0 and the discrete solution of the discrete
solution from S1: of Algorithm 3, for α = 0 and µ ≡ 0, is defined as

η2(T) ∶= ∥DAdivqA + γAcA + k2vC − k1vAvB + fA∥2
L2(T) + ∥qA −∇vA∥2

L2(T)

+ ∥DBdivqB + γBcB + k2vC − k1vAvB + fB∥
2
L2(T) + ∥qB −∇vB∥

2
L2(T)

+ ∥DCdivqC + γCcC − k2vC + k1vAvB + fC∥
2
L2(T) + ∥qC −∇vC∥

2
L2(T)

+ ∑
S∈{A,B,C}

α

2
∥(λS − vS)+∥

2
L2(T)

+ ∑
S∈{A,B,C}

[∥vS − gS,D∥2
L2(ΓD∩∂T) + ∥∇vS ⋅ νΓN − gS,N∥2

L2(ΓN∩∂T)].

(ii) Because, for the solution (u(j)LS,S, p(j)LS,S) ∈ X of (5), in the iteration j ∈ N, for given αj and µ(j),
one cannot expect the identity

LSαj((u(j)LS,S, p(j)LS,S), µ(j)) = 0 (16)

to hold true, since a solution of (5) is in general not a solution to a system of non-linear
equations. Hence, the usage of

ρ(T) ∶= LSαj((u(j)LS,S,h∣T , p(j)LS,S,h∣T)S∈{A,B,C}, µ(j)∣T) = 0,

for the solution (u(j)LS,S,h, p(j)LS,S,h)S∈{A,B,C} of the discrete problem of S 1 of Algorithm 3, is not
practical. In the spirit of the usage of adaptive schems an estimator τ, basing on ρ, is used,
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which gives an estimation on the local changes w.r.t. the elements T ∈ T of the evaluation of ρ.
For the definition of a practical estimator let for an arbitrary fixed T ∈ T the element patch
T (T) be given through

T (T) ∶= {T̂ ∈ T ∣ ∂T̂ ∩ ∂T ≠ ∅}.

Afterwards, the new estimator σ is given through:

σ2(T) = max
T̂∈T (T)

∣ρ2(T̂)− ρ(T)2∣. (17)

(iii) A common strategy, used for the marking is the so-called Dörfler marking, cf. [49]. In this
strategy, a setM is chosen for which, τ2 ∈ {η2, σ2, ρ2}, for a given bulk parameter θ ∈ [0, 1]
the inequality

θ ∑
T∈T

τ2(T) ≤ ∑
T∈M

τ2(T) (18)

holds true.
(iv) Note that the Dörfler marking implies for θ = 1 a simple uniform marking scheme.
(v) As discussed in [50,51], one can usually prove convergence of the adaptive scheme by using,

as in this article, the least-squares functional as error estimator, but cannot expect optimal
convergence rates as discussed in [24] or [47]. Hence, another error estimator has to be derived
for which optimal convergence rates are provable.

With the remark and definition above, the numerical scheme is completed. The
numerical validation will be made in Section 4, the numerical scheme will be validated.

3.1. Remarks on Existence and Convergence Theory to the Numerical Scheme

This subsection is devoted to a first discussion of some fundamental convergence and
existence properties of the algorithm and the underlying optimization methods. The dis-
cussion in this section is incomplete, but it gives an important first glance at the theoretical
background of the algorithm.

3.1.1. Notes on the Existence Theory

In this section, some theoretical notes on the existence theory will be given. While
the existence theory in one space dimension, thanks to the ODE theory and, in particular,
thanks to the theorem of Picard–Lindelölf, cf. [35], and for linear PDEs is well known,
cf. [33], the existence theory for nonlinear PDEs is, in most of the cases, not known, cf. [34].
The following discussion only tangents the cases known in literature.

Remark 3 (The 1d-case). In this remark, a the 1d case will be discussed.

(i) The system of second order ODEs, as given by (2a)–(2e), can equivalently reformulated into a
System of first order ODEs, which are uniquely solvable due to the theorem of Picard-Lindelölf,
cf. [35].

(ii) The assertion in (i) gives directly the solvability of (3)–(5), due to the fact that in the derivation
of the least squares functional exactly the needed first order reformulation was used, which
was needed for the assertion.

After the remark above on ODE theory, a further remark on the linear PDE theory will
by given:

Remark 4 (The linear 2d-case). In this remark, the discussion of linear variants of (2a)–(2e) will
be treated. i.e., during this remark k1 = 0 is assumed. In this case the continuous space X can be
extended to X = (H1(Ω)×H(div, Ω))3

, which makes the theory reasonable easier since in this case
X is an Hilbert space.
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(i) First, similar as in [52], the case of minimal assumptions to the problem formulation will be
discussed. Essentially one assumes 0 < DA, DB, DC and the injectivity of the linear operator
L ∶ H1

D(Ω)3 → (H1
D(Ω)3)∗ = H−1

D (Ω)3, used in the operator Equation (2a)–(2e). For this,
one assumes that k2, γA, γB and γC are assumed to be chosen in a way that 0 is no eigenvalue
of L.
Indeed, the injectivity, i.e., there is no 0-Eigenvalue of the corresponding operator, assumption
together with the assumption of the existence of solutions for given fA, fB, fC ∈ L2(Ω), gives
the unique solvability due to Fredholm’s alternative, cf. [53].
The results above directly apply to the PDE equation that is given by

0 = DAdiv pA + k2cC + fA, in Ω, (19a)

0 = pA −∇cA, in Ω, (19b)

0 = DBdiv pB + k2cC + fB, in Ω, (19c)

0 = pB −∇cB, in Ω, (19d)

0 = DCdiv pC − k2cC + fC, in Ω, (19e)

0 = pC −∇cC, in Ω, (19f)

gA,D = cA∣ΓD , gB,D = cB∣ΓD , gC,D = cC ∣ΓD , (19g)

gA,N = ∇cA∣ΓN ⋅ νΓN , gB,N = ∇cB∣ΓN ⋅ νΓN , gC,N = ∇cC ∣ΓN ⋅ νΓN . (19h)

and one obtains unique solvability of (19a)–(19h). The corresponding Operator is denoted by
O ∶ (H1(Ω)× H(div; Ω))3 → [(H1(Ω)× H(div; Ω))3]∗, the RHS is given by a functional

g ∈ [(H1(Ω)× H(div; Ω))3]∗.
This solvabllity of (19a)–(19h) directly implies the unique solvability of (3).

(ii) Note that in (i) only necessary conditions for the unique solvability are discussed. Some
sufficient conditions can be obtained by the decoupling of the PDE. Where in fact the sufficient
conditions for the unique solvability can be obtained by sufficient conditions to scalar Diffusion
reaction equations, cf. [33,54].

(iii) By some standard calculations, as given in e.g., [19,28], one obtains that x∗ ∈ X solves (3) if
the first order optimality in form of the Euler–Lagrange equations is fulfilled, which is given
by the following equation:
Find x∗ ∈ X such that for all y ∈ X the following equation holds true:

a(x∗, y) ∶= (Ox∗ − g,Oy)X = (g,Oy)X . (20)

Note that, due to the unique solvability of (3) and the problem equivalence described above,
one obtains the unique solvability of 20.

(iv) From the unique solvability of (3), c.f. (i) and (iii), it directly follows, cf. theorem 3.6 on page
120 in [30], that the bilinear form a(●, ●) ∶ X ×X → R is elliptic.

(v) From the ellipticity of the bilinear form a, cf. (iv), one directly obtains the unique solvability
of (4).

3.1.2. Notes on the Convergence Theory

In this section, a few notes on the convergence theory will be made. Although a proof
of convergence of the solutions to the discretisation of (5), will be given in this section,
the convergence analysis will be incomplete. For the rest of the necessary convergence
theorems, some notes on what to be shown will be given.

First, some remarks on the quasi-Newtonian scheme, as given by the iterative solution
of (13) and the Homotopy loop will be made. The remark below gives a sketch of the proof
of convergence of the discussed quasi-Newtonian scheme. A mathematical rigorous proof
has to be given in a future paper.

Remark 5. (i) First note that the least squares functional LS((vS, qS)S∈{A,B,C}) is Fréchet
differentiable and explicitly A((vS, qS)S∈{A,B,C}) = vAvB is Fréchet differentiable. Recall
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that the Notion of Fréchet derivatives yields that for given x ∈ X and for all 0 < ε, there exists
a 0 < δ, such that

∥A(x + h)− A(x)− A′(x)d∥Y ≤ ε∥d∥X , ∀∥d∥X < δ.

This yields that there exists a constant 0 < c, such that for a solution x(n)h ∈ X of (13) the
following estimate holds true, if the initial value x0 ∈ Xh is sufficiently close to the exact
solution to (8):

∣LSα(k)(x(n)h , λ(k)

αk )− LSα(k)(x(n)h , λ(k)

αk ;T , n)∣

≤ ε∥x(n)h − x(n−1)
h ∥X

+c ∑
S∈{A,B,C}

[∥(1−Π0)p(n)S,h ∥L2(Ω;Rd)
+ ∥(1−Π0)c(n)S,h ∥L2(Ω)]

(21)

As discussed in Remark 2, a direct application of a classical quasi-Newtonian scheme to (8)
yields a convergent sequence (yn) ⊂ Xh, if the initial value y0 is sufficiently close to the
solution x∗h ∈ Xh to (8) and it follows with inequality (21), the convergence of x(n)h .

A similar interpretation, as in Remark 2 of the sequences yk
h, x(k)h ⊂ Xh and the inequality (21),

indicate that there exists a constant c1 > 0, such that for initial values y(0) sufficiently close
to the solution x∗h of (8) and the initial value x(0)h are sufficiently close to the limit of the
quasi-Newtonian scheme, the following inequality holds true:

∥x(n)h − y(n)h ∥X

≤ c1 ∑
S∈{A,B,C}

[∥(1−Π0)p(n)S,h ∥L2(Ω;Rd)
+ ∥(1−Π0)c(n)S,h ∥L2(Ω)].

It directly follows

lim
h↓0

∥x(n)h − y(n)h ∥Xh = 0. (22)

(ii) The discussion (i) indicates that the quasi-Newtonian scheme described by the iterative
solution by (13) has the same issue with stability as classical quasi-Newtonian schemes,
cf. [17]. To stabilize the quasi-Newtonian scheme, it was coupled to a homotopy method,
cf. [32]. As already discussed, the idea of the method is to solve for a continuous function

H ∶ Xh × [0, 1] → Xh, with H(xh, 0) = idXh and H(xh, 1) = LSαk(xh, µ(k)

αk
;T , n) and a

decomposition 0 = t0 < . . . < tj < . . . < tM to solve the minimization problem that is given by:

Find x(j)h ∈ Xh susch that

x(j)h = argmin
xh∈Xh

H(xh, tj). (23)

As a solution step, the quasi-Newtonian scheme (13) can be used. For j = 0, an initial value
x0 for the algorithm is given through x0 and for j > 0 the x(j−1)

h is given as an initial value for
the quasi-Newtonian scheme.

In the following lemma, a theoretical statement will be proven, which will be essential
for the proof of a simple convergence result for solutions of (8).

For the proof of the following Lemma, recall the Γ-convergence. As defined in [36–39],
a sequence of nonlinear functionals Fn ∶ X → R is said to Γ-converge to a functional
F ∶ X → R if the following two conditions are fulfilled:
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(i) For every sequence (xn) ⊂ X, with x = lim
n→∞

xn, the following inequality holds true:

F(x) ≤ lim inf
n→∞

Fn(xn) (24)

(ii) For every x ∈ X, there exists a sequence (xn) ⊂ X with x = lim
n→∞

xn, such that the

following inequality holds true:

F(x) ≥ lim sup
n→∞

Fn(xn). (25)

Lemma 1. Let Tn be a sequence of tirangulations with hn ↓ 0, where hn denotes the diameter of Tn,
which fulfills 0 = lim

n→∞
hn, as well as that Tn+1 is a refinement of Tn, i.e., the set of nodes Nn of Tn

is included in the set of nodes Nn+1 of Tn+1, i.e., Nn ⊂ Nn+1, then the sequence Fn ∶ X → R given
through,

Fn ∶= F + δTn ,

Γ-converges to F ∶= LSαj(x, λ(j)). In the notation above, δn is given through the following
definition:

δn(x) =
⎧⎪⎪⎨⎪⎪⎩

0, for x ∈ Xhn ,
∞, else.

Proof. To prove the Γ-convergence of the sequence (Fn), the assertions (24) and (25) have
to be proven.

(i) ad (24): for the proof of this claim one needs to distinguish two cases. However, first,
let x ∈ X and x(k) ⊂ X with x = limk→∞ x(k) be arbitrary fixed.

(a) First, assume that up to finitely many n ∈ N one has ¬(xn ∈ Xhn). From the
definition of Fn it follows then that, up to finitely many n ∈ N, the lowest
accumulation point of the sequence Fn(xn) = +∞. Hence, one obtains the
following inequality:

F(x) ≤ lim inf
n→∞

Fn(xn) =∞.

The inequality above shows the assertion for this case.
(b) For the second case, assume that there are infinitely many n ∈ N, such that

xn ∈ Xhn . Subsequently, there exists a subsequence (xnl) ⊂ (xn) with

Fnl(xnl) = F(xnl).

Because of the continuity of F and the definition of Fn, it follows:

F(x) = lim
l→∞

F(xnl) = lim
l→∞

Fnl(xnl) = lim inf
n→∞

Fn(xn).

The equalities above yield that the claim for the second case holds true.

The discussion of the two cases above proves the claim.
(ii) ad (25): first, note that, for all n ∈ N, one has a continuous embedding S1(T )× ↪

Wk,2(T ) and ⋃
n→∞

S1(Tn) is a dense subset of Wk,2(Ω), c.f. [19,27–29]. Similarly, one

has a continuous embedding RT0(T ) ↪ H(div, Ω) furthermore ⋃
n→∞

RT0(T ) is a

dense subset of H(div, Ω), c.f. [19,27–29]. From the definitions of Xh and X, it follows
with the both densities, where ⋃

n→∞
Xhn is a dense subset of X. From the assumptions

on the sequence Tn and the density of ⋃
n→∞

it follows that there exist, for all x ∈ X, a
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sequence with xn ∈ Xhn s.t. x = lim
n→∞

xn. Furthermore, it follows from the continuity of

F and the definitions above:

F(x) = lim
n→∞

F(xn) = lim
n→∞

Fn(xn) = lim sup
n→∞

Fn(xn). (26)

The equalities above prove the statement.

From (i) and (ii), the claim of the Lemma follows by definition.

Corollary 1. Let Tn be a sequence of triangulations fulfilling Nn ⊂ Nn+1 and hn ↓ 0 as n → ∞,
then the following two statements hold true:

(i) Let (y(n))hn ⊂ X, be the sequence of minimizers of (8) generated by the usage of Xhn as
discrete subspace Xhn ⊂ X in the problem formulation of (4), then every accumulation point
of (y(n)hn

) is a minimizer of (4).

(ii) Let x(n)hn
⊂ X be the sequence of limits of the sequences that are generated by the solution

of (13) on the triangulations Tn, then every accumulation point of the sequence x(n)hn
is a

minimizer of (4).

Proof. Let the sequences Tn, (y(n))hn ⊂ X, x(n)hn
⊂ X be given, as stated in the corollary.

(i) A common result in the context of Γ-convergence, c.f. in [36–39], is that if Gn ∶ X → R Γ-
converges to G ∶ X → R then every accumulation point of the sequence of minimizers
(xn)n∈N, i.e., xn minimizes Gn, is a minimizer of G.
Applying this theoretical result to the setup of Lemma 1, one obtains the statement in
the corollary.

(ii) The statement of the lemma directly follows by (i) and by (22).

Remark 6. (i) The convergence proof above is a first result underlining the plausibillity of the
described discretization of (5). But first note that from the proof of convergence above no rates
of convergence can be obtained. From the classical theory, cf. [19,27–29], convergence to a
certain rate seems to be a valid hypothesis, at least for the linear cases of the PDE (2a)–(2e),
cf. [14,15,19].

(ii) Note that convergence of the sequence of limits xhk
= lim

n→∞
x(n)hk

, where x(n)hk
is a solution

to (13), will only be obtained if one accumulation point of xhk
exists, this is fulfilled if (5) is

uniquely solvable.

With this result, this section will be concluded. For future discussions, the following
discussions have to be made:

1. The stability and the convergence of the augmented Lagrangian Algorithm 1 is proven
in [25,26], to prove stability and the convergence of Algorithm 1 for the case that is
considered in this article the assumptions of the corresponding theorem in [25] have
to be verified.

2. The convergence of the quasi-Newtonian scheme (13) has to be discussed in a much
more rigorous way than done in Remark 5.

3. Convergence to a certain rate has to be verified for the discretization of (5).
4. As known to the authors, the existence theory, as described in Section 3.1.1, is for the

problem (2a)–(2e) incomplete. A careful study of sufficient and necessary condition
has to be made.

4. Numerical Examples and Validation of the Software

In this section, multiple numerical experiments are treated to validate the robustness
and the functionality of the numerical scheme. In all three subsections, the numerical ex-
amples that are given through the parameters in the Tables 1–3 are discussed. Furthermore,
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for all numerical examples, the starting values for the augmented Lagrangian algorithm
were chosen as α(0) = 5

6 , µ(0)(x) = 0 for all x ∈ Ω, τ = 0.9, and λmax(x) = 0.02 for all x ∈ Ω.

Table 1. The first example of physical parameters of the diffusion–reaction model for the complexation
of K.

Species D in m2

s
k1 in 1

s k2 in m3

mol s
γS

A 1/2 - - 0
B 1/3 - - 0
C 1/4 0 0 0

Table 2. Second example of physical parameters of the diffusion–reaction model for the complexation
of K.

Species D in m2

s
k1 in 1

s k2 in m3

mol s
γS

A 1/2 - - 0
B 1/3 - - 0
C 1/4 0 1 0

Table 3. Third example of physical parameters of the diffusion–reaction model for the complexation
of K.

Species D in m2

s
k1 in 1

s k2 in m3

mol s
γA

A 1/2 - - 0
B 1/3 - - 0
C 1/4 1 1 0

4.1. Numerical Examples in 1d

For the numerical examples presented in this section, let Ω ∶=]0, 2[. For the examples
that are discussed in this section, let an exact solutions cA, cB, cC of the unrestrained
problem (3) be given through

cA ∶= cB ∶= cC ∶= x(x − 2)+ 1
2

(27)

and let ΓD = ∂Ω and gA,D = gB,D = gC,D ≡ 1. Afterwards, the functions fA, fB, fC ∈ L2(Ω)
are given through

fA =− 2DA − k2(x(x − 2)+ 1
2
)+ k1(x(x − 2)+ 1

2
)

2
, (28a)

fB =− 2DB − k2(x(x − 2)+ 1
2
)+ k1(x(x − 2)+ 1

2
)

2
, (28b)

fC =− 2DC + k2(x(x − 2)+ 1
2
)− k1(x(x − 2)+ 1

2
)

2
. (28c)

As breaking conditions for the simulations, in this subsection, the fulfillment of the
following conditions were set:

1. The breaking condition from S3 in Algorithm 1 is fulfilled with a tolerance ε ∶= 10−4.
2. The number of nodes in the current mesh increases 10, 000 nodes.
3. More than 100,000 iterations of the augmented Lagrangian algorithm were performed.

Before the numerical examples are discussed, note that the exact error is given through:

∥x − xh∥2
X = ∑

S∈{A,B,C}
[∥∇cS −∇uS∥

2
L2(Ω) + ∥pS,h −∇uS∥

2
L2(Ω) + ∥ ∂

∂x
pS,h −

∂2

∂x2 uS∥
2

L2(Ω)
]. (29)
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Simulating the unrestrained problem (3), for the the given RHS, as defined above, for
the parameters that are defined in the Tables 1–3, with the reduced numerical scheme, see
Remark 1, one obtains approximations of the defined exact solution (27). For a number of
10, 000 DoFs, one obtains the results that are shown in Figure 1, which were simulated for
the parameters defined in Table 1. Because no visible difference to the other experiments
can be seen, Figure 1 will be the only given pictures of approximate solutions to (3) in this
section.

Figure 1. Concentration profiles with negative concentrations cA (a), cB (b) and cC (c), obtained by
approximation of (3), for the parameters that are given in Table 1.

Furthermore, note that, for the simulations, the following setup was chosen:
For all simulations of the ‘classical’ concentration-profiles, with no restrictions on

the positivity of the concentrations, the reduced method, as described in Remark 1, was
used. Furthermore, in all cases of simulations of (3), the estimtor η was used. For the
adaptive refinement of (5), the practical error estimator σ was used for all approximations
of solutions of (5). Furthermore, for all adaptive refinement Dörfler marking, cf. Remark 1,
was used as marking strategy with common bulk parameter θ = 0.5.

The first example that will be discussed in the following in more detail is given by
the parameters in Table 1. As mentioned before, Figure 1 provides the simulations with a
minimum number of 104 nodes in the AFEM loop as breaking-condition.

By the evaluation of the error estimators for this example, cf. Figure 2, one can
observe convergence of the estimators, except for the practical estimator σ for the uniform
refinement. As expected, the rest of the estimators are parallel, from which the equivalence
of estimators can be formulated as a conjecture.
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Figure 2. Developement of the error estimators for the uniform and adaptive mesh refinement, for
the approximation of (3) with the parameters given in Table 1.

In Figure 3, some iterations of the augmented Lagrangian scheme with uniform
refinement are shown. The augmented Lagrangian scheme needed 85 steps to obtain
non-negative species distributions. The augmented Lagrangian scheme converges to set a
non-negative species distributions for this example, as shown in the subfigures (a), (d), (g).

Furthermore, as predicted in Remark 1, the localized evaluation of the least-squares
functional, which is given by the estimator η, does not converge to zero in all examples. In
this case, for the uniform refinement, the practical error estimator converges lim

h↓0
σ = 0.

Additionally, this example also shows the convergence of the multipliers µA, µB, and
µC as well, which also seems to converge.

The parameter α grows exponentially over the iterations of the augmented Lagrangian
algorithm, as shown in the Figure 4.

In Figure 5, the development of the augmented Lagrangian algorithm is shown,
applying the adaptive algorithm in each iteration of (5). The augmented Lagrangian
algorithm takes, like for uniform mesh refinement, 85 iterations to guarantee non-negative
species distributions, as can be seen in this case. Just observing the discrete solutions cA,h,
cf. Figure 5a, cB,h (d), and cC,h (g), and the Lagrangian multipliers µA (b), µB (e), and µC (h),
one obtains the same result as for the uniform refinement. The limit of the solutions seems
to be identical, but the interesting aspect is the estimators, which are given in the subfigures
(c), (f), and (i). The practical errors σ seem to converge to a value b ≠ 0, as well as the
estimators η do, as expected to a value a ≠ 0.
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Figure 3. Concentrationprofiles (a,d,g), evaluation of the Lagrangian multipliers (b,e,h) and esti-
mators (c,f,i) during the augmented Lagrangian scheme in the 1-st, 43-rd, and 85-th itartion w.r.t.
parameters that are given in Table 1 and uniform mesh refinement.
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Figure 4. Development of α during the augmented Lagrangian algorithm.

The development of the parameter α for the augmented Lagrangian algorithm with
adaptive mesh refinement is similar to the development of the augmented Lagrangian
algorithm with uniform mesh refinement. No further pictures are given due to the fact that
no differences are visible between the developments of α with uniform or adaptive mesh
refinement.

The second example that is discussed in this section is given by the parameters shown
in Table 2. In Figure 6, the convergence graphs for the approximation of the solution (3),
for the given parameters, are shown. In this setting, the evaluation of the least squares
functional η for uniform and adaptive refinement are shown, as well as the exact error for
uniform and adaptive refinement and the practical error σ again for uniform and adaptive
refinement are given. The corresponding graphs are, at most, parallel and show the same
behavior and indicate convergence of the numerical scheme for the simulation, as can
be seen in Figure 6. The graph indicates that the estimators could be equivalent for the
simulation.

Figure 5. Cont.
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Figure 5. Concentration profiles (a,d,g), evaluation of the Lagrangian multipliers (b,e,h) and esti-
mators (c,f,i) during the augmented Lagrangian scheme in the 1-st, 43-rd and 85-th itartion w.r.t.
parameters that are given in Table 1 and adaptive mesh refinement.

Figure 6. Developement of the error estimators for the uniform and adaptive mesh refinement, for
the approximation of (3) with the parameters given in Table 2.

Applying the augmented Lagrangian Algorithm 1 onto (4) with the parameters that
are given in Table 2 and applying uniform refinement on the mesh, T one obtains, after
89 iterations of the augmented Lagrangian scheme, non-negative species distributions, as
seen in Figure 7.
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The estimator η converges not to 0 in each iteration of the augmented Lagrangian
method, as expected, but the practical estimator does converge to 0 in each iteration, as can
be seen in Figure 7.

Figure 7. Concentration profiles (a,d,g), evaluation of the Lagrangian multipliers (b,e,h) and esti-
mators (c,f,i) during the augmented Lagrangian scheme in the 1-st, 44-th, and 89-th itartion w.r.t.
parameters that are given in Table 2 and uniform mesh refinement.

In Figure 8, the application of the augmented Lagrangian algorithm is shown for multi-
ple iterations with the application of adaptive mesh refinement, as described above. The al-
gorithm needed, as for treating the iterate problems with uniform refinement, 89 iterations.
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As it can be seen, the algorithm outputs non-negative species distributions. In principle,
equivalent results in the output can be seen in Figure 7. However, the principal behavior of
the practical error estimator differs while using adaptive schemes from the same method-
ology but using uniform mesh refinement. The estimator η, cf. remark and Definition 1,
converges, but not to 0, as expected, while the convergence of the practical error σ seem to
also be given, as can be seen in Figure 8c,f,i.

Figure 8. Concentration profiles (a,d,g), evaluation of the Lagrangian multipliers (b,e,h) and esti-
mators (c,f,i) during the augmented Lagrangian scheme in the 1-st, 44-th and 89-th itartion w.r.t.
parameters that are given in Table 2 and adaptive mesh refinement.
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The developments of the parameter α during the augmented Lagrangian algorithm
are for the adaptive and uniform refinement identical for linear reaction terms and they are
very similar to the development for the pure diffusive case given in Figure 4.

The third example that is discussed in this section is given by the parameters in Table 3.
The discrete solutions to (3) w.r.t. the parameters above are close to identical to the discrete
solution given in Figure 1, as discussed previously. In fact no differences are visible. Hence,
the corresponding figure will not be displayed in this paper.

The evaluation of the error estimators, which are defined in remark and Definition 1,
cf. Figure 9, are yielding that the numerical scheme converges for both the uniform and
adaptive refinement scheme. Furthermore, it is shown in Figure 9 that the localized evalu-
ation of the non-linear least-squares functional, as beforehand η, seems to be equivalent
to the exact error for uniform and adaptive refinement. Furthermore, up to a value of
approximately 104 DoF, the corresponding practical estimators σ are decreasing for uniform
and adaptive refinement. At this stage, the convergence of the numerical schemes is given
from a practical viewpoint.

Figure 9. Development of the error estimators for the uniform and adaptive mesh refinement, for the
approximation of (3) with parameters given in Table 3.

Applying the augmented Lagrangian algorithm, cf. Algorithm 1, to (4) with the
parameters that are given in the Table 3 and applying uniform refinement, one obtains
non-negative species distributions after 89 iterations of the augmented Lagrangian scheme,
c.f. Figure 3. Furthermore, it is observable that the practical error estimator η, cf. definition
and Remark 1, converges, but not to 0 in each setting. Furthermore, it is observable that
the practical σ, cf. definition and Remark 1, converges to zero for each iteration.

Applying the augmented Lagrangian algorithm to (4) with the parameters that are
given in Table 3 and applying adaptive mesh refinement to the iterative defined problem (5),
one obtains the results given in Figure 10. The iterates converge to a species distributions
with non-negative species concentrations, as seen in the corresponding figure. After
89 iterations, non-negative species distributions are obtained. Furthermore, it is visible
that the estimator η, cf. remark and Definition 1, that is based on the piecewise evaluation
of the corresponding least-squares functional converges, but not to 0. In contrast to the
setting shown in Figure 11, the practical error σ, cf. remark and Definition 1, one obtains
convergence, but not to 0, as beforehand.
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Figure 10. Concentration profiles (a,d,g), evaluation of the Lagrangian multipliers (b,e,h) and
estimators (c,f,i) during the augmented Lagrangian scheme in the 1-st, 44-th and 89-th iteration w.r.t.
the parameters given in Table 3 and uniform mesh refinement.
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Figure 11. Concentration profiles (a,d,g), evaluation of the Lagrangian multipliers (b,e,h) and
estimators (c,f,i) during the augmented Lagrangian scheme in the 1-st, 44-th and 89-th iteration w.r.t.
parameters given in Table 3 and adaptive mesh refinement.

The developments of the parameter α during the augmented Lagrangian algorithm
for the adaptive and uniform refinement are identical for the full reaction terms and they
are very similar to the development for the pure diffusive case, as given in Figure 4, also in
this case, a figure is not given in this paper.

As a remaining part of the discussions to the 1d examples, a comparison of the CPU
running times of the different examples will be discussed. One observes that, for the given
examples, the number of iterations of the augmented Lagrangian algorithm do not differ
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between uniform and adaptive mesh refinement, as seen in Table 4. However, one sees,
in Table 4, that the usage of the adaptive algorithm is far more efficient than the usage of
the uniform refinement. Especially for the nonlinear system of ODEs, as described by the
parameter set given in Table 3, a massive reduction of computation time was obtained.

Table 4. Overview of number of iterations of the augmented Lagrangian Algorithm 1 and CPU times
for the different parameter sets and uniform resp. adaptive mesh refinement.

Parameter Set Type of Refinement Number of Iterations CPU-Time

Table 1 Uniform 85 4.3157e + 04 s
Table 1 Adaptive 85 1.0347e + 04 s
Table 2 Uniform 89 5.0281e + 04 s
Table 2 Adaptive 89 9.9426e + 03 s
Table 3 Uniform 89 2.0356e + 05 s
Table 3 Adaptive 89 4.7214e + 04 s

All together, one can conclude that the numerical scheme works for the given scheme
and examples. Because of the fact that no rigorous proofs are done in this paper, the
convergence remains as conjecture, based on the numerical results in this section.

4.2. Examples in 2d

In this section, two examples will be discussed for the parameter sets that are given in
the Tables 1 and 2. For the treatment of the augmented Lagrangian algorithms, the same
parameters were used as before. Furthermore, in every numerical example in this section,
the estimators η and σ from remark and Definition 1 were used. Furthermore, note that the
refinement algorithms that were implemented in [55] were used to treat the examples of
the adaptive scheme.

For the numerical examples in 2d, similar breaking conditions on the algorithms were set:

1. The breaking condition from S3 in Algorithm 1 is fulfilled with a tolerance ε ∶= 10−4.
2. The number of nodes in the current mesh increases 1000 nodes.
3. More than 100,000 iterations of the augmented Lagrangian algorithm were performed.

In contrast to the examples in 1d, a lower number of nodes was used as breaking
condition for the refinement algorithm.

4.2.1. Examples on a Convex Domain

Similar to Section 4.1, non-trivial examples will be discussed in this section. First, let
Ω =]0, 2[2 be given, as well as ΓD = ∂Ω. In this section, an exact solution of (3) will be fixed.
As done before, the concentrations cA, cB, cC will be given as:

cA ∶= cB ∶= cC ∶= x(x − 2)y(y − 2)+ 1
2

.

This yields the RHS for the Dirichlet condition as gS,A ≡ 1
2 , for S ∈ {A, B, C}, and the

RHS fA, fB, fC ∈ L2(Ω) are given through:

fA =− 2DA(y(y − 2)+ x(x − 2))− k2(x(x − 2)y(y − 2)+ 1
2
)+ k1(x(x − 2)y(y − 2)+ 1

2
)

2
, (30a)

fB =− 2DB(y(y − 2)+ x(x − 2))− k2(x(x − 2)y(y − 2)+ 1
2
)+ k1(x(x − 2)y(y − 2)+ 1

2
)

2
, (30b)

fC =− 2DC(y(y − 2)+ x(x − 2))+ k2(x(x − 2)y(y − 2)+ 1
2
)− k1(x(x − 2)y(y − 2)+ 1

2
)

2
. (30c)
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Before the discussion of the examples is done, note that the exact error for the problems
above is given by

∑
S∈{A,B,C}

[∥∇cS −∇cS,h∥
2
L2(Ω) + ∥pS,h −∇cS∥

2
L2(Ω) + ∥divpS,h −∆cS∥2

L2(Ω)]. (31)

The first example that is discussed in this section is given by the parameters that are
defined in Table 1. When simulating the problem (3) with uniform refinement, one obtains
the species concentration that is displayed in Figure 12. Furthermore, note that, for the
adaptive scheme, one obtains close to identical figures, hence it will be omitted in this
article.

Figure 12. Concentration profiles cA, cB and cC with negative concentrations for (3) with parameters
given in Table 1 and adaptive mesh refinement in 2d.

When evaluating the error estimators as well as the exact error, c.f. Figure 13, one
obtains that the exact error, the estimator η given by the localized evaluation of the corre-
sponding least-squares functional as well as the practical error estimator σ can be consid-
ered to be parallel for both refinement schemes. As can be seen, the adaptive scheme gives
no prior advantage besides a better estimator η, which was used in the adaptive scheme.

Figure 13. Developement of the error estimators for the uniform and adaptive mesh refinement, for
the approximation of (3) with the parameters given in Table 1, in 2d.
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When evaluating the augmented Lagrangian scheme, cf. Algorithm 1, one sees that
the scheme converges after 166 iterations, cf. Figure 14, to species distributions with
non-negative concentrations. One already obtains a state with small negativities after
316 iterations, as seen in Figure 14. Furthermore, one can see that the estimator η in each
iteration does not converge to 0. However, in contrast to the examples in Section 4.1, the
practical error seems to converge to 0.

Figure 14. Cont.
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Figure 14. Species distributions cA (a,d,g), cB (b,e,h) and cC (c,f,i) as well as error estimators (j,k,l)
in the 1st, 83rd and 166th iteation of the augmented Lagrangian algorithm with adaptive mesh
refinement, w.r.t. the parameters that are given in Table 1.

The second example that is discussed in this section is given by the parameters that
were defined in Table 2. When simulating the corresponding example (3) one obtains an
analogous Figure 12, which are not displayed in this article, since no major difference to
Figure 12 is visible.

When evaluating the augmented Lagrangian scheme for the example that is given
by the set of parameters defined in Table 2 with adaptive mesh refinement, one obtains
non-negative species distributions after 188 iterations, cf. Figure 15, although the history
given in the figure indicates states close to the approximated solution after 1161 iterations
of the augmented Lagrangian schemes.

Figure 15. Cont.
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Figure 15. Species distributions cA (a,d,g), cB (b,e,h) and cC (c,f,i) in the 1st, 80th and 181st iteation
of the augmented Lagrangian algorithm with adaptive mesh refinement, w.r.t. the parameters that
are given in Table 2.

4.2.2. Examples on a Non-Convex Domain

In this section, two examples on non-convex domains will be discussed. In this section,
let the domain be given Ω =]0, 1[2/([0, 1] × [−1, 0]). For the numerical experiments, the
boundary conditions are defined analogously as in Section 4.2.1. The Dirichlet boundary is
assumed to be given as ΓD = ∂Ω, the Neumann-boundary given as ΓN ∶= ∅ and

cA∣ΓD = cA∣ΓD = cA∣ΓD = 1
2

.

Furthermore, let the RHSs fA, fB, fC ∈ Ł2(Ω) be given, as follows:

fA(x) ∶= fB(x) ∶= fC(x) ∶= −2. (32)

The first example that is discussed in this subsection is given for the parameters
defined in Table 1.

When calculating an approximate solution to the minimization problem (3), one
obtains discrete solutions in the form, as shown in Figure 16, for uniform mesh refinement.
Because of the fact that the approximate solution w.r.t. adaptive mesh refinement only
gives small differences to the displayed figure, it is not shown in this paper.
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Figure 16. Concentration profiles cA, (a), cB, (b), cC (c) as approximate result to (3), with parameters,
as given in Table 1.

When evaluating the estimators η and σ, as defined in definition and Remark 1, for
the approximation of (3) for adaptive and uniform mesh refinement, one obtains that the
estimators η and σ are restricted parallel to the refinement type, cf. Figure 17. Furthermore,
one sees, as expected, that the estimators for adaptive refinement are steeper in the log log
plot given in Figure 17, which indicates the expected increase of efficiency obtained by
adaptive schemes.

Figure 17. Developement of the error estimators for the uniform and adaptive mesh refinement, for
the approximation of (3) with parameters that are given in Table 1 on the L-shaped domain.

When comparing the triangulation generated by uniform refinement, cf. left image
in Figure 18, and the triangulation, cf. right image in Figure 18, one observes that, while
the uniform triangluation has a homogeneous distribution of triangles, in the adaptively
generated mesh, the triangles accumulate in the non-convex vertex. This behavior is
commonly known in the literature, cf. [27,30].
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Figure 18. Triangulations generated by uniform (left) and adaptive (right) refinement for the approx-
imate solution of (3) with the parameters that are given in the Table 1.

The evaluation of the augmented Lagrangian algorithm, cf. Figure 19, with the
use of adaptive refinement with estimator η yields that 188 iterations of the augmented
Lagrangian algorithm are needed to guarantee non-negative species distributions.

The second example that is given in this section is, as before, given by the parameters
that are defined in Table 2. When simulating the minimization problem (3), approximately
one obtains an approximation of the form, as shown in Figure 20, which was obtained by
simulation under uniform refinement. Because there are no visible differences between the
picture generated under uniform refinement and generated under adaptive refinement,
only the approximate solution under the usage of adaptive mesh-refinement will be given
in this paper.

Figure 19. Cont.
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Figure 19. Species distributions cA (a,d,g), cB (b,e,h) and cC (c,f,i) in the 1st, 94th and 188th iteation
of the augmented Lagrangian algorithm with adaptive mesh refinement, w.r.t. the parameters that
are given in Table 1.

Figure 20. Concentration profiles cA, (a), cB, (b), cC (c) as approximative result to (3) with parameters
in Table 2.

After the evaluation of the error estimators η and σ, as defined in remark and
Definition 1, one obtains that the practical error σ and the classical error estimator η
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are parallel in both cases, uniform and adaptive refinement. Furthermore, one obtains that
all error-terms converge to zero. Furthermore, it can be seen that the given error estimators
that were induced by adaptive refinement seem to converge with a higher rate, since the
corresponding graphs in the log log plot shown in Figure 21 are steeper than the graphs
associated to uniform refinement.

Figure 21. Developement of the error estimators for the uniform and adaptive mesh refinement, for
the approximation of (3) with parameters that are given in Table 2 on the L-shaped domain.

Similar to the previous example, one sees, in Figure 22, a uniform triangulation of the
L-shaped domain in Figure 22 on the left side and right side one generated by the adaptive
algorithm. The triangulation that is generated by the AFEM-loop is dominantly refined in
the neighbourhood of the non-convex vertex. This clearly coincides with the theory about
singular solutions to elliptic PDEs, cf. [33] and their treatment, cf. [27,30].

Figure 22. Triangulations generated by uniform (left) and adaptive (right) refinement for the approx-
imate solution of (3) with the parameters that are given in the Table 2.

When applying the augmented Lagrangian algorithm to problem (4) and applying the
adaptive scheme to treat the iterate problem (5), one needs 35,057 iterations to guarantee
non-negative species distributions, but it is also clear that a close fit to non-negative species
distributions are already obtained after 17,528 iterations, cf. Figure 23.
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Figure 23. Species distributions cA (a,d,g), cB (b,e,h) and cC (c,f,i) in the 1st, 141st, and 283th iteration
of the augmented Lagrangian algorithm with adaptive mesh refinement, w.r.t. the parameters given
in Table 2.

As last point of the discussion of the numerical experiments in 2d, the evaluation of
the CPU running time has to be discussed. Table 5 presents the results discussed in the
following.
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First, note that the number of iterations as well as the computation time reduce by
using adaptive schemes. The reduction of computation time is for the the convex square
domain is somehow remarkable, since the gain of efficiency, when using adaptive schemes,
for convex domains is, in comparison to uniform refinement, rather low. The observed
reduction of CPU time can be explained by the reduction of iterations in the augmented
Lagrangian scheme, cf. Algorithm 1. However, the gain of efficiency, when using adaptive
schemes to non-convex domains is remarkable, since a reduction of over 50,000 iterations
of the augmented Lagrangian algorithm to under 300 is an extreme gain of efficiency.

Table 5. An overview of number of iterations of the augmented Lagrangian Algorithm 1 and CPU
running times for the different parameter sets and uniform resp. adaptive mesh refinement

Parameter Set Type of
Refinement Geomety Number of

Iterations CPU-Time

Table 1 Square Uniform 280 730.5068 s
Table 1 Square Adaptive 166 615.8496 s
Table 1 L-Shaped Uniform 53, 639 3.1204e + 05 s
Table 1 L-Shaped Adaptive 188 662.2452 s
Table 2 Square Uniform 287 881.2332 s
Table 2 Square Adaptive 181 645.7126 s
Table 2 L-Shaped Uniform 53, 553 3.1554e + 05 s
Table 2 L-Shaped Adaptive 283 742.0187 s

Remark 7. Note that the high number of needed iterations of the augmented Lagrangian algorithm
for the L-shaped domain results of the singularity at the non-convex vertex of the geometry, which
is a common result for non-convex domains. The adaptive scheme refines dominantly at the non-
convex vertex of the geometry, which enhances the approximation in a way such that the augmented
Lagrangian algorithm becomes enhanced, as can be seen in Figure 18.

When summarizing the results from this Section 4.2, it can been seen that the aug-
mented Lagrangian scheme is more cost intensive than its correspondence in 1d. Fur-
thermore, it can be seen in Section 4.2.1 that the practical estimator σ, as defined in the
remark and Definition 1, behaves differently than in 1d under adaptive refinement, where
it converges to zero, which justifies the use of the practical error. Additionally, one can
observe, cf. Table 5, that a massive gain of efficiency can be made by using adaptive
schemes in the discretization of (5).

4.3. Comparison to Other Methods

This section is devoted to the comparison of the augmented Lagrangian method, as
described in this paper, with the classical augmented Lagrangian regime as described
in [20,22] and the Primal-Dual Active-Set Strategy, as described in [23].

4.3.1. Theoretical Setup for the Classical Augmented Lagrangian Scheme and the
Primal-Dual Active-Set Strategy

This section is devoted to description of the theoretical setup for the application of the
classical augmented Lagrangian scheme [20,22] and the classical Primal-Dual Active-Set
Strategy, c.f. [23].

The classical approaches to treat (4) is to discretize the optimization problem (4) and
then use an optimization algorithm for the solution, as discussed in [14–16,19]. For an
arbitrary fixed triangulation T with diameter 0 < h and for the usage of the discretization
Xh of X, as defined in Section 3, one obtains the following discrete optimization problem:

Find xh = (cS,h, pS,h)S∈{A,B,C} ∈ Xh such that the following equality holds true

xh = argmin
(vS,h ,qS,h)S∈{A,B,C}

LS((vS,h, qS,h))

s.t. 0 < vS,h, ∀S ∈ A, B, C
(33)



Algorithms 2021, 14, 113 37 of 46

The classical approaches use the fact that Xh is a finite dimensional subspace of X
and, thus, (33) is an finite dimensional optimization problem, for which a lot of theory is
known, i.e., for the approximation of solutions (33), the augmented Lagrangian schemes
can directly be applied, as described in [20,22].

In contrast to augmented Lagrangian methods, the Primal-Dual Active-Set Strategy,
as in the form described in [23], cannot be indirectly applied to (33). For the application of
Primal-Dual Active-Set Strategies, in this paper it is assumed that the operator in the ODE,
resp. PDE, is linear, (2a)–(2e), is linear, i.e., the equality k1 = 0 is assumed. In this case, one
obtains, by using a basis of Xh, and using the Euler Lagrange Equation (20), one obtains a
minimization problem of the following form:

Find xv
h ∈ R

d, such that the following equation holds true

xv
h = argmin

y∈Rd

1
2 yT Axv

h − yT f

s.t.: 0 ≤ vv
S,h

(34)

In the problem above, dh ∈ N is the dimension of Xh, i.e., dh = dim Xh, xv
h ∈ Rdh is

the coefficient vector of the solution xh ∈ Xh of (33) and vv
S,h is the coefficient vector of

vh ∈ S1(T ). Furthermore, for all y ∈ Rdh , the equality

yT Ay + 2yT f + f T f = LS(yh)

holds true, where y ∈ Rd is the coefficient vector of yh ∈ Xh.

4.3.2. Description Classical Augmented Lagrangian Regime

This section is devoted to the description of the use of the classical augmented La-
grangian algorithm to the problem (33).

The classical augmented Lagrangian scheme is given through the following algorithm,
cf. [20,22].

Algorithm 4: Classical augmented Lagrangian method

Input : Define a starting values x(0),sh , λ(0), α0 and define j ∶= 0.
Output : Approximate solution xh to (33) and approximate Lagrangian function λh.
The classical augmented Lagrangian algorithm is given through the following steps.
S1: Approximate a solution to the following optimization problem.

Find x(j+1)
h ∶= (c(j)S,h, pj

S,h)S∈{A,B,C} ∈ Xh such that the following equation holds true:

x(j+1)
h = argmin

(vS,h ,qS,h)S∈{A,B,C}

LSαj((vS,h, qS,h)S∈{A,B,C}, λ(j)) (35)

and use x(0),sh as initial

S2: If (λj, x(j)h )L2(Ω) < ε break the algorithm.

S3: Update λ(j) via the update rule:

λ(j+1) ∶= (λ(j) − αj[c
(j+1)
A , c(j+1)

B , c(j+1)
C ])

+
.

Furthermore update x(j+1),s
h ∶= x(j+1)

h αj+1 such that αj ≤ αj+1.
S4: Set j ∶= j + 1 and go to S1.

The experimental setup needs to be described before the numerical experiments will
be discussed in detail.
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First, note that, for all simulations discussed with Algorithm 4, the parameter αj was
for all j ∈ N given as αj = 1. For the comparison of the algorithm on different meshes, the
algorithm was coupled with a loop of uniform refinements. The global algorithm is given
through the following:

Algorithm 5: Refinement strategy with the classical augmented Lagrangian algorithm

Input : Initial Triangulation T0. Define a starting values x(0),sh , λ(0), α0 and define j ∶= 0.
Output : Approximate solution xh to (33) and approximate Lagrangian function λh and final triangulation T .
Perform the following steps:
S1: Compute an Approximation xh` of a solution and a Lagrangian multiplier λ` to (33) on the current

triangulation T` using the initial values x(0),sh`
and λ

(0)
` using the Algorithm 4.

S2: If T` has more than N nodes then break the loop.
S3: Define the mesh T`+1 as uniform red refinement of the triangulation T`. For a definition of the uniform red

refinement see [27].
S4: Define x(0),sh`

∶= xh` and λ
(0)
` ∶= λ`.

S5: Set ` ∶= ` + 1 and go to S1.

The statement of the algorithm above finishes the description of the used classical
augmented Lagrangian scheme.

4.3.3. Description of the Primal-Dual Active-Set Strategy

This subsection is devoted to the explicit description of the Primal-Dual Active-Set
Strategy that is considered in this article.

As discussed before for a basis {b1, . . . , bnh}, a basis of Xh the problem (33) can be
equivalently reformulated to (34).

The corresponding representation of Xh, see (7), indicates that a basisBh = {b1, . . . , bnh}}
of Xh can be chosen, such that, for all coefficient vectors yv

h of element yh ∈ Xh for all
S ∈ {A, B, C}, there exists an index set JS ⊂ {1, . . . , nh}, such that the restriction of the
coefficient vector (yv

h) on the subindexset JS (yv
h)JS is the coefficient vector of cS. In this

notation, define the index-set J as

J ∶= ⋃
S∈{A,B,C}

JS.

Applying the Primal-Dual Active-Set Strategy, cf. [23] as a method to approximate
solutions to (34), together with the notation above, one obtains the following algorithm.
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Algorithm 6: Primal-Dual Active-Set Strategy

Input : Define a starting values x(0),sh , λ(0), α0 and define k ∶= 0.
Output : Approximate solution xh to (33) and approximate Lagrangian function λh.
With the notation above the Primal-Dual Active-Set Strategy for this problem type
S1: Define the inactive set Ik and active set Ak as follows:

Ik ∶= {i ∈ {1, . . . , n} ∣ λ
(k)
i + 1

2
yk

i > 0}∩ J,

and

Ak ∶= {i ∈ {1, . . . , n} ∣ λ
(k)
i + 1

2
yk

i ≤ 0}∩ J.

S2: Solve the following system of linear equations

Ay(k+1) + λ(k+1) = f , (36a)

y(k+1) = 0, on Ak (36b)

λ(k+1) = 0, on Ik. (36c)

S3: Stop the algorithm, or set k ∶= k + 1 and return to S1.

Remark 8. Note that, by the problem formulation (36a)–(36c) directly implies, by the split of the
indices into an active set A and an inactive set I, the orthogonality cS ⊥ µS for all S ∈ {A, B, C} is
fulfilled. Thus, the usage of the relative error

err =
RRRRRRRRRRRR

∑
S∈{A,B,C}

µA ⋅ cA

RRRRRRRRRRRR

for a breaking condition of the corresponding algorithm is not applicable.

Before the actual comparison between the Primal-Dual Active-Set Strategy and the
augmented Lagrangian method will be made, some additional remarks on the coupling
between refinement and Algorithm 6 have to be made:

For the comparison of the algorithm on different meshes, the algorithm was coupled
with a loop of uniform refinements. The global algorithm is given through the following:

Algorithm 7: Primal-Dual Active-Set strategy with refinement strategy

Input : Define a starting values x(0),sh , λ(0), α0 and define k ∶= 0. Furthermore define an initial triangulation T0.
Output : Approximate solution xh to (33) and approximate Lagrangian function λh. Additionally the algorithm

outputs the final triangulation T`
Perform the following steps:
S1: Compute an Approximation xh` of a solution and a Lagrangian multiplier λ` to (33) on the current

triangulation T` using the initial values x(0),sh`
and λ

(0)
` using the Algorithm 4.

S2: If T` has more than N nodes then break the loop.
S3: Define the mesh T`+1 as uniform red refinement of the triangulation T`. For a definition of the uniform red

refinement see [27].
S4: Define x(0),sh`

∶= xh` and λ
(0)
` ∶= λ`.

S5: Set ` ∶= ` + 1 and go to S1.

The statement of the algorithm above finishes the description of the Primal-Dual
Active-Set Strategy.
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4.3.4. Comparrison of the Different Mehtods

This section is devoted to the explicit comparison of the different numerical schemes.
However, before the actual comparison is undertaken the general setup of the experiments
have to be stated.

First, note that the parameters of the mathematical problems to approximate in this
section are given in the Tables 2 and 3. The corresponding RHS are the same as in the
respective examples above. Furthermore, in the 2d experiments, the geometry considered
is the L-Shaped domain.

Furthermore, for every method, the initial mesh T0 for the refinement scheme was
always the same in the respective dimension. Furthermore, note that refinement loops are
broken if the mesh has 10,000 nodes in one space dimension and 1000 nodes in two space
dimensions.

The loops of the respective augmented Lagrangian algorithms are broken if the
relative error

err =
RRRRRRRRRRRR

∑
S∈{A,B,C}

(µS, cS,h)L2(Ω)

RRRRRRRRRRRR
is bounded by the tolerance ε = 1e − 4.

First, note that there is no visual remarkable difference between the outputs of the
algorithms. Hence, in this algorithm only the CPU times of the algorithms will be compared.
Table 6 assembles the actual data for the comparrison.

In the context of the described algorithms, one would expect that the Primal-Dual
Active-Set Strategy is the most inefficient in terms of needed RAM space during the
computation due to the fact that the system of Equation (36a)–(36c) contain more variables
than the other optimization-problems, since the augmented Lagrangian methods treat the
multiplier λ as constant and not as a variable.

Table 6. Comparison of the augmented Lagrangian scheme discussed in this paper with adaptive
mesh refinement (AALA), the classical augmented Lagrangian algorithm (CALA), and the Primal-
Dual Active-Set Strategy (PDAS), for different space dimensions and parameter sets.

Parameter Set Dimension CPU Time
AALA

CPU Time
CALA

CPU Time
PDAS

cf. Table 2 1d 9.9426e + 03 s 8.8871e + 03 s 4.1808e + 03 s
cf. Table 2 2d 742.0187 s 4.4895e + 04 s 1.1331e + 04 s
cf. Table 3 1d 4.7214e + 04 s 2.0356e + 05 s -

In one space dimension and for the parameters given in Table 2, the Primal-Dual
Active-Set Strategy is the most efficient, while the two augmented Lagrangian schemes need
approximately the same CPU time, as seen in Table 6. In contrast to that the augmented
Lagrangian algorithm that is introduced in this paper is more efficient for non-convex
domains and nonlinear problems than the other algorithms.

5. Modelling the Stationary Species Transport in the Diffusion-Boundary Layer
during the Metal Deposition from a Cu2+ Electrolyte

This section is devoted to the derivation a model, see Section 5.1, for the metal
deposition from a Cu-electrolyte, taking the complexation with β-alanine (β-ala) in the
diffusion-boundary layer into account. In Section 5.2, the numerical strategy, which is
discussed in this article, will be applied to the model.

5.1. Theoretical Model

In this section, an abstract model for the static metal deposition in galvanic cells will
be discussed. As a model that is falling into the discussed model types, the static metal
deposition with speciation in a single diffusion boundary layer will be studied, c.f. [1–3].
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A few remarks on the physical setting will be made before the model will be discussed
in detail. In an electrolyte, a metal M, in this case Cu, and a ligand L, in this case β-ala, is
assumed, with the reaction

Cu+ (β − ala)⇌ Cu(β − ala). (37)

Furthermore, in the bath, there is an anode and a cathode, where, at the cathode, the
metal is deposited. In the global setting, there is a transport of Cu-ions from the anode,
with anodic current density jA, to the cathode, with cathodic current density jC. In this
model, one assumes that jC = jA.

For the model, assume that there exists a laminar boundary layer at the cathode,
which includes the diffusion boundary layer with thickness of δx = 10−4 m. Furthermore,
assume that, outside the diffusion boundary layer, the concentration cCu2+ of Cu2+, the
concentration cCu2+ of cβ−ala and cCu−β−ala are constant. Furthermore, the concentration the
bath is set by cb

S = 0.5 mol
` , for each S ∈ {Cu2+, β − ala, Cu(β − ala)}.

Furthermore, let the only deposited species at the cathode, at position x = 0, be the
Cu-ions and the species distribution in the diffusion boundary layer geometrically only be
dependant on the distance to the cathode and the concentrations in the diffusion-boundary
layer can be described by the diffusion–reaction problem (4), with diffusion coefficients
and reaction rate constants, as given in Table 7, and let no further reactive force be given.

When translating the assumptions above into boundary-data one obtains for all
S ∈ {Cu, β − ala, Cu − (β − ala)} the identity cS(δx) = cb

S. At the cathode for the species
S ∈ {S ∈ {β − ala, Cu − (β − ala)}, the identities d

dx cS = 0 will be used and d
dx cCu = j

DCuzF ,

where F is Faraday’s constant and z = 2 is the valency of the copper-ions Cu2+. The
absence of reactive forces is modeled by defining the functions fA, fB, fC ∈ L2(Ω) through
fA = fB = fC = 0.

Table 7. Physical parameters of the diffusion–reaction model for the complexation of CuL, with
β-alanine as ligand L, in a diffusion boundary-layer.

Species D in m2

s
k1 in 1

s k2 in m3

mol s
γS

Cu 7.14× 10−10 - - 0
L 9.29× 10−10 - - 0

CuL 9.29× 10−10 2× 105 11 0

For the diffusion coefficients cf. to supplementary matrerial of [4] and for the kinetic
parameters, cf. [3].

5.2. Simulation

In this section, the simulations according to the model above will be discussed. As-
suming concentrations of cb

S = 0.5 mol
m3 , for S ∈ {Cu, β − ala, Cu − β − ala} in the bath and a

current density of j = 0.6 A
m2 on the cathode, one obtains the concentration profile shown

in Figure 24 by evaluating the classical model 3, with the numerical scheme described for
the treatment of (5) under the reduction described in Remark 1. As seen in the figure, one
obtains a concentration of −0.4 mol

` , which can be considered to be unphysical.
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Figure 24. Concentration profiles cCu2+ , cβ−ala cCu(β−ala) with negative concentrations w.r.t. the
model parameters discussed in Table 7.

When applying the augmented Lagrangian method with adaptive meshrefinement
on (4), cf. Figure 25, one obtains that 75 iterations of the augmented Lagrangian algorithm
were needed to evaluate non-negative concentrations. As seen in the corresponding figures,
not only the behavior of cCu2+ , but, as directly seen, the behavior of cβ−ala, in the close area
of the cathode the concentration of cβ−ala increases. Furthermore, it can be seen that the
augmented Lagrangian algorithm needs 75 steps for the simulation of non-negative species
concentrations.

Figure 25. Concentration profiles cCu2+ , cβ−ala cCu(β−ala) (a,c,e) with corresponding Lagrangian
multipliers (b,d,f) in the 1st, 38th, and 75th iteration of the augmented Lagrangian algorithm.

Remark 9. During the application of the numerical scheme that is described in Section 3, one
observes that the adaptive scheme converges relative fast for the respective model 4 given through the
parameters that are defined in Table 7 and the given boundary conditions, while the quasi-Newtonian
part of the numerical scheme based on the uniform refinement does not converge, unless a high
number of homotopy steps > 106 is used.

In summary, the numerical methodology that is derived in this article is applicable to
practical relevant settings, and the adaptive scheme has a major part on the efficiency of
the described.
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6. Discussion and Conclusions

Although, in this article, the rigorous mathematical proofs are not done, in Section 4
various numerical examples are discussed, which show convergence. Hence, the conver-
gence of all included algorithms can be stated as a founded conjecture. Although some
mathematical considerations are made in this paper, some rigorous mathematical work still
has to be done. In detail, the following formal proofs have to be made in some future work:

(i) There exist, at least locally, a unique solution to (3) and (4).
(ii) The iterated minimization problems (5) are, at least locally, uniquely solvable and

the sequence of solutions ((u(n)S , p(n)S )S∈{A,B,C}) ∈ X, generated by the augmented
Lagrangian method, converges to the solution (uS, pS)S∈{A,B,C} ∈ X of (4).

(iii) For a triangulation T , with low enough diameter 0 < h and a stable starting point of
the quasi-Newton scheme described by solutions of (13), every iterate problem of (13)
is uniquely solvable.

(iv) The quasi-Newton method given by the iterative solution x(n)h of (13) converges in

Xh. i.e., there exists a xh ∈ Xh, such that xh = lim
n→∞

x(n)h .

(v) For h ↓ 0 the limits described in (iv) converge against the solution of (5).
(vi) The adaptive scheme that is described in Algorithm 3 converges.

Furthermore, the numerical experiments show that the application of the practical
error σ, as defined in Definition and Remark 1, can be used in two space dimensions.
In addition, the behavior seems to indicate the needed norm equivalences in two space
dimensions. Furthermore, in one space dimension, it can be seen that the practical error
estimator is not sufficient for the required norm equivalence, but the numerical examples
nevertheless show good results, which allow the use as above.

Although the numerical schemes are still cost intensive, they converge and, hence,
give physical behavior for three compound systems. In addition, as to be seen in Section 5,
in this article, a numerical scheme was introduced that is able to treat the high rate constants
given in real-world problems, cf. supplement to [4]. Hence, the numerical scheme can be
used in most relevant settings when considering three-component systems.

Furthermore, note that the algorithm that is described in this section seems, due to
the discussions for the numerical examples, to be especially efficient for nonlinear and
non-convex geometries. Especially, the efficiency for those two cases makes the algorithm
interesting for further applications.

The model that is presented in the Section 5 gives a first glance at the process of metal
deposition, but one has to expect that the model is improvable. Firstly, the assumption of
the existence of a uniform laminar boundary layer on any complex geometry is questionable
since fluid dynamics tend to be strongly geometry dependant, cf. [56]. Furthermore in
galvanic processes H2 development at the cathode can be expected, which questions the
existence of a laminar boundary layer in many cases. Although the concentration gradients
in a galvanic bath can be assumed to be low in some cases, the species-transport in the bath,
as described in [1–3], cannot necessarily be neglected. Furthermore, the processes in the
bath can be described by a multi physics coupling of fluid dynamics, diffusion, reactions,
and electro-magnetics. Furthermore, as seen in [3], the reaction kinetics that were discussed
in this article are not complete. Hence, a further discussion of this type of model needs to
be done.

As is well known, most of the real world processes do not reduce to static problems,
but, nevertheless, important limiting factors can be obtained from static laws. Furthermore,
from a technical numerical perspective, time-dependent laws can be approximately treated
as systems of static laws, c.f. [57] or [58]. Hence, this article gives a good first foundation
for further discussions and investigations.
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