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Abstract: Best match graphs (BMGs) are vertex-colored digraphs that naturally arise in mathematical
phylogenetics to formalize the notion of evolutionary closest genes w.r.t. an a priori unknown
phylogenetic tree. BMGs are explained by unique least resolved trees. We prove that the property of
a rooted, leaf-colored tree to be least resolved for some BMG is preserved by the contraction of inner
edges. For the special case of two-colored BMGs, this leads to a characterization of the least resolved
trees (LRTs) of binary-explainable trees and a simple, polynomial-time algorithm for the minimum
cardinality completion of the arc set of a BMG to reach a BMG that can be explained by a binary tree.

Keywords: best matches; least resolved trees; graph completion; polynomial-time algorithm

1. Introduction

Best match graphs (BMGs) are vertex-colored digraphs that appear in mathematical
phylogenetics as a representation of a gene’s evolutionary closest relatives in another
species [1,2]. That is, given a rooted tree T, a vertex (gene) x in the BMG G(T, σ) is colored
by the species σ(x) in which it resides, and there is an arc (x, y) if there is no other gene y′

in species σ(y′) = σ(y) 6= σ(x) with a later last common ancestor than the last common
ancestor lcaT(x, y) of x and y in T. Although rooted trees are crucial for the definition of
BMGs, they are, however, unknown in practice, and we are often only left with estimates
of their BMGs. In general, there are multiple trees that “explain” the same BMG. There is,
however, a unique least resolved tree (LRT) for each BMG, which can be obtained from T
by contracting certain edges [1]. The LRTs will play a central role in this contribution. The
subgraph of a BMG induced by the vertices of some subset of colors is again a BMG. Every
BMG therefore can be viewed as the disjoint union of (the arc sets of) 2-colored BMGs
(2-BMGs). These 2-BMGs [1,3,4] are bipartite and form a common subclass of the sink-free
digraphs [5,6] and the bi-transitive digraphs [7].

Estimates of graphs from real-life data tend to be affected by noise and thus typ-
ically will violate the defining properties of the desired graph class. The solution of a
corresponding graph modification problem [8] therefore can by employed as a means of
noise reduction, see, e.g., in [9]. The arc modification problems (deletion, completion, and
editing) for BMGs are NP-complete, in general [10], and remain hard even for the special
case of 2 colors.
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Phylogenetic trees are often considered to be binary in theory. Most polytomies are
therefore considered a limitation of the available data or method of tree reconstruction [11,12]
rather than a biological reality [13,14]. In the setting of BMGs, this distinction is important
because not all BMGs can be derived from binary gene trees. Instead, binary-explainable
BMGs (beBMGs) form a proper subclass [15] that is distinguished by a single forbidden
induced subgraph, the hourglass, from other BMGs [16]. As “true phylogenies” are often
assumed to be binary, BMGs that are not binary-explainable will be considered as a poor
model. It is of interest, therefore, to consider the problem of modifying a BMG to a beBMG.
Conceptually, this is similar to fully resolving phylogenetic trees starting from a tree with
multifurcations. The arc modification problems for beBMGs are, as the more general case,
NP-complete [10,15]. Thus, heuristic algorithms must be employed in practice [17]. It
is useful to know, therefore, whether an approximation of a graph by a BMG that is not
binary-explainable may be helpful towards finding a beBMG. That is, whether a solution
to the more general problem makes is easier to find a solution of the constrained problem.
To this end, we naturally ask whether the problem of modifying a BMG to a beBMG is as
difficult as the general case. It is, in fact, not unusual that graph modification problems that
are hard in general become easy when the input is confined to a—usually restrictive—class
of graphs, see, e.g., in [18,19]. Here, we show that the problem of completing a 2-colored
BMG to a beBMG can indeed be solved in polynomial time.

To prove this result, we make use of the fact that every BMG is associated with a
unique least resolved tree (LRT). Theorem 1 shows that the property of being the LRT for
some BMG is preserved under contraction of inner edges. This observation leads to the
explicit construction of a “collapsed tree” from the LRT of the input BMG (G, σ), which not
only is the LRT of a 2-colored beBMG, but also minimizes the number of arcs that need to
be inserted to obtain a beBMG from (G, σ). The construction does not generalize to more
than 2 colors.

2. Notation

We consider simple directed graphs (digraphs) G = (V, E) with vertex set V and arc set
E ⊆ V ×V \ {(v, v) | v ∈ V} and rooted (undirected) trees T with root ρ. Correspondingly,
we write (x, y) for directed arcs from x to y, and xy for undirected tree edges. We write
G[W] for the subgraph of G induced by a set of vertices W ⊆ V. Given a tree T, we write
V(T) and E(T) for its set of vertices and edges, respectively; L(T) for the set of leaves; and
V0(T) = V(T) \ L(T) for the set of inner vertices.

A vertex coloring of a graph is a map σ : V → S, where S is a non-empty set of colors.
A vertex coloring of G is proper if σ(x) 6= σ(y) for all (x, y) ∈ E(G). We will also consider
leaf-colorings σ : L(T) → S for trees T and denote by (G, σ) and (T, σ) vertex-colored
(di)graphs and leaf-colored trees, respectively.

Given a rooted tree, we write x �T y if y is an ancestor of x, i.e., if y lies along the
unique path from ρ to x in T. We write x ≺T y if x �T y and x 6= y. The relation �T is a
partial order on T. If xy ∈ E(T) and x ≺T y, then y is the unique parent of x, denoted by
parT(x), and x a child of y. The set of children of a vertex u ∈ V(T) is denoted by childT(u).
A rooted tree T is phylogenetic if every inner vertex x ∈ V0(T) has at least two children.
All trees in this contribution are assumed to be phylogenetic. Furthermore, we write T(u)
for the subtree rooted in u, i.e., V(T(u)) = {y ∈ V(T) | y �T u}. The last common ancestor
of a non-empty subset A ⊆ V(T) is the unique �T-minimal vertex of T, that is, an ancestor
of every u ∈ A. For convenience, we write lcaT(x, y, . . . ) instead of lcaT({x, y, . . . }).

A triple xy|z is a rooted tree with the three leaves x, y, and z such that lcaT(x, y) ≺
lcaT(x, y, z). If e ∈ E(T), we denote by Te the tree obtained by contracting the edge e. We
will only be interested in contractions of inner edges, i.e., those that preserve the leaf set.
We say that T displays a tree T′, in symbols T′ ≤ T, if T′ can be obtained from T as the
minimal subtree of T that connects all elements in L(T′) with root lcaT(L(T′)) and by
suppressing all inner vertices that only have one child left, which can, e.g., be achieved by
a stepwise contraction of one of their two incident edges until no such vertices remain.
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3. Best Match Graphs, Least Resolved Trees, and Binary-Explainable BMGs

In this section, we first summarize some properties of best match graphs and their
least resolved trees. We then show that the contraction of inner edges in least resolved
trees always leads to least resolved trees. Furthermore, we recall some properties of
binary-explainable best match graphs that will be needed later.

Definition 1. Let (T, σ) be a leaf-colored tree. A leaf y ∈ L(T) is a best match of the leaf x ∈ L(T)
if σ(x) 6= σ(y) and lcaT(x, y) �T lcaT(x, y′) holds for all leaves y′ of color σ(y′) = σ(y).

Given (T, σ), the digraph G(T, σ) = (V, E) with vertex set V = L(T), vertex-coloring
σ, and with arcs (x, y) ∈ E if and only if y is a best match of x w.r.t. (T, σ) is called the best
match graph (BMG) of (T, σ) [1]:

Definition 2. An arbitrary vertex-colored digraph (G, σ) is a best match graph (BMG) if there
exists a leaf-colored tree (T, σ) such that (G, σ) = G(T, σ). In this case, we say that (T, σ)
explains (G, σ).

Proposition 1 ([16], Lemma 8). If TA is obtained from a tree T by contracting all edges in a
subset A of inner edges in T, then G(T, σ) ⊆ G(TA, σ).

An edge e of a leaf-colored tree is redundant (w.r.t. (G, σ)) if it can be contracted without
affecting the BMG, i.e., if G(T, σ) = G(Te, σ).

Definition 3. A leaf-colored tree (T, σ) is least resolved if there is no non-empty subset A ⊆ E(T)
such that G(T, σ) = G(TA, σ).

We define the notion of being least resolved here as a property of the tree (T, σ)
alone. Of course, every least resolved tree is also least resolved w.r.t. some BMG, namely, the
(uniquely defined) digraph G(T, σ).

It is shown in [1] that (T, σ) is least resolved if and only if it does not contain a
redundant edge.

Proposition 2 ([1], Thm. 8). Every BMG (G, σ) is explained by a unique least resolved tree (LRT),
which is obtained from an arbitrary tree (T, σ) that explains (G, σ) by contraction of all redundant
edges of (T, σ).

In particular, therefore, there is a bijection between BMGs and LRTs. Surprisingly, the
property of being least resolved for some BMG is preserved under contraction of inner
edges of T.

Theorem 1. Suppose (T, σ) is least resolved and let A be a set of inner edges of T, and denote by TA
the tree obtained from a tree T by contracting all edges in A. Then, (TA, σ) is again least resolved.

Proof. Assume that (T, σ) is least resolved, i.e., it does not contain any redundant edges,
and set (G, σ) := G(T, σ). Lemma 7 in [16] states that an inner edge e = uv with v ≺T u in
(T, σ) is non-redundant if and only if there is an arc (a, b) ∈ E(G) such that lcaT(a, b) = v
and σ(b) ∈ σ(L(T(u)) \ L(T(v))). The statement trivially holds if (T, σ) has at most one
inner edge. Therefore, we assume that (T, σ) has at least two distinct inner edges e = uv
and e′. We show that every non-redundant edge e in T remains non-redundant in Te′ .
Thus, let e be a non-redundant edge in T. Therefore, there is an arc (a, b) ∈ E(G) such
that lcaT(a, b) = v and σ(b) ∈ σ(L(T(u)) \ L(T(v))). Now consider the tree Te′ obtained
from T by contraction of the inner edge e′ 6= e. Clearly, we also have lcaTe′

(a, b) = v
and σ(b) ∈ σ(L(Te′(u)) \ L(Te′(v))). Proposition 1 implies G(T, σ) ⊆ G(Te′ , σ), and thus
(a, b) ∈ E(G(Te′ , σ)). Making use of the characterization of redundant edges in ([16],
Lemma 7) again, we conclude that e is non-redundant in (Te′ , σ).
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As both e and e′ were chosen arbitrarily, we observe that the contraction of a single
inner edge does not produce new redundant edges. We can therefore apply this argument
for each step in the consecutive contraction of all edges in A (in an arbitrary order) to
conclude that (TA, σ) does not contain redundant edges. Therefore, Proposition 2 implies
that (TA, σ) is least resolved.

Corollary 1. If (T, σ) is least resolved and A is a non-empty set of inner edges of T, then G(T, σ) (
G(TA, σ).

Proof. By Proposition 1, we have G(T, σ) ⊆ G(TA, σ). By Theorem 1, (TA, σ) is least re-
solved. As the LRT of a BMG is unique (cf. Proposition 2), we have G(T, σ) 6= G(TA, σ).

As another immediate consequence of Theorem 1 and uniqueness of the LRT of a
BMG (Proposition 2), we obtain the following.

Corollary 2. If e and e′ are two distinct inner edges of a least resolved tree (T, σ), then G(Te, σ) 6=
G(Te′ , σ).

Let us now turn to the subclass of BMGs that can be explained by a binary tree.

Definition 4. A binary-explainable BMG (beBMG) is a BMG (G, σ) such that there is a binary
leaf-colored tree (T, σ) that explains (G, σ).

As shown in [16], beBMGs can be characterized among BMGs by means of a simple
forbidden colored induced subgraph:

Definition 5. An hourglass in a properly vertex-colored digraph (G, σ), denoted by [xy↘↗ x′y′],
is a subgraph (G[Q], σ|Q) induced by a set of four pairwise distinct vertices Q = {x, x′, y, y′} ⊆
V(G) such that (i) σ(x) = σ(x′) 6= σ(y) = σ(y′), (ii) (x, y), (y, x) and (x′y′), (y′, x′) are
bidirectional arcs in G, (iii) (x, y′), (y, x′) ∈ E(G), and (iv) (y′, x), (x′, y) /∈ E(G).

An hourglass together with a (non-binary) tree explaining it is illustrated in Figure 1A.
A properly vertex-colored digraph that does not contain an hourglass as an induced
subgraph is called hourglass-free.

x1

x2y1

y2 x1

x2y1

y2

y3
x1

y1 y2

x2

F1-graphs F2-graphs F3-graphs

x

x'

y

y'

x

x'

y

y'
hourglass

A

B

Figure 1. (A) An hourglass as the characteristic forbidden induced subgraph of beBMGs and its
non-binary explaining tree. (B) The three classes of forbidden induced subgraphs of 2-colored BMGs
(see Definition 6 below). The gray-dashed arcs may or may not exist.

Proposition 3 ([16], Lemma 31 and Prop. 8). For every BMG (G, σ) explained by a tree (T, σ),
the following three statements are equivalent:
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1. (G, σ) is binary-explainable.
2. (G, σ) is hourglass-free.
3. There is no vertex u ∈ V0(T) with three distinct children—v1, v2, and v3—and two distinct

colors—r and s—satisfying

(a) r ∈ σ(L(T(v1))), r, s ∈ σ(L(T(v2))), and s ∈ σ(L(T(v3))), and
(b) s /∈ σ(L(T(v1))), and r /∈ σ(L(T(v3))).

Note that the LRTs of beBMGs are usually not binary. In fact, it is shown in [15]
that, for a beBMG (G, σ), there exists a unique binary refinable tree (BTR) B(G, σ) with the
property that every binary tree (T, σ) that displays B(G, σ) explains (G, σ). The BRT is in
general much better resolved than the LRT of (G, σ).

4. Two-Colored BMGs

Let us now briefly focus on 2-colored BMGs (2-BMGs). As arcs in BMG can only
connect vertices with different colors, every 2-BMG is bipartite. Furthermore, every leaf
x in a tree with two leaf colors has at least one best match y. Every 2-BMG is therefore
sink-free, i.e., every vertex has at least one out-neighbor. Furthermore, Schaller et al. [10]
showed that the following graphs (see also Figure 1B) are forbidden induced subgraphs
for 2-BMGs.

Definition 6 (F1-, F2-, and F3-graphs).

(F1) A properly 2-colored digraph on four distinct vertices V = {x1, x2, y1, y2} with coloring
σ(x1) = σ(x2) 6= σ(y1) = σ(y2) is an F1-graph if (x1, y1), (y2, x2), (y1, x2) ∈ E and
(x1, y2), (y2, x1) /∈ E.

(F2) A properly 2-colored digraph on four distinct vertices V = {x1, x2, y1, y2} with coloring
σ(x1) = σ(x2) 6= σ(y1) = σ(y2) is an F2-graph if (x1, y1), (y1, x2), (x2, y2) ∈ E and
(x1, y2) /∈ E.

(F3) A properly 2-colored digraph on five distinct vertices V = {x1, x2, y1, y2, y3} with coloring
σ(x1) = σ(x2) 6= σ(y1) = σ(y2) = σ(y3) is an F3-graph if
(x1, y1), (x2, y2), (x1, y3), (x2, y3) ∈ E and (x1, y2), (x2, y1) /∈ E.

Proposition 4 ([10], Thm. 4.4). A properly 2-colored digraph is a BMG if and only if it is sink-free
and does not contain an induced F1-, F2-, or F3-graph.

A peculiar property of 2-BMGs is that their LRTs can be constructed efficiently by re-
cursively decomposing an input 2-BMG into non-trivial induced subgraphs and individual
vertices [15]. Although we will not need this construction here, one of its corner stones
plays an important role:

Definition 7 (Support Leaves). For a given tree T, the set Su := childT(u) ∩ L(T) is the set of
all support leaves of vertex u ∈ V(T).

We note in passing that every inner vertex u of the LRT of a 2-BMG (G, σ), with the
possible exception of the root ρ, has a non-empty set of support leaves Su, and Sρ 6= ∅ if
and only if (G, σ) is connected [20]. In the following, we will make use of a connection
between a 2-BMG and its LRT.

Lemma 1. Let (G, σ) be a 2-BMG, (T, σ) its LRT, and x, y ∈ L(T) = V(G). Then, (x, y) ∈
E(G) if and only if σ(x) 6= σ(y) and y ∈ L(T(parT(x))).

Proof. First note that as (G, σ) is 2-colored, (T, σ) has at least two leaves and u := parT(x)
is always defined. First, assume σ(x) 6= σ(y), and thus x 6= y, and let y ∈ L(T(u)). As x is
a child of u, we have lcaT(x, y) = u. Moreover, as u is the parent of x, there is no vertex y′
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of color σ(y) such that lcaT(x, y′) ≺T lcaT(x, y) = u. Therefore, y is a best match of x, i.e.,
(x, y) ∈ E(G).

Now suppose, for contraposition, that σ(x) = σ(y) or y /∈ L(T(u)). If σ(x) = σ(y),
then, by definition, (x, y) /∈ E(G). If y /∈ L(T(u)), then u ≺T ρT . Therefore, we can
apply Corollary 1 in [20] to the inner vertex u to conclude that |σ(L(T(u)))| > 1, i.e., the
subtree L(T(u)) contains both colors. Thus, we can find a vertex y′ of color σ(y) such that
lcaT(x, y′) �T u ≺T lcaT(x, y) which implies that (x, y) /∈ E(G).

As an immediate consequence, we find the following.

Corollary 3. Let (G, σ) be a 2-BMG, (T, σ) its LRT and x, y ∈ V(G) = L(T). Then, (x, y), (y, x)
∈ E(G) if and only if σ(x) 6= σ(y) and parT(x) = parT(y).

5. Completion of a 2-BMG to a 2-beBMG

Writing G + F := (G, E∪ F) for a digraph G = (V, E) and arc set F ⊆ V×V \ {(v, v) |
v ∈ V}, consider the following graph completion problem:

Problem 1 (2-BMG COMPLETION RESTRICTED TO BINARY-EXPLAINABLE GRAPHS (2-BMG
CBEG)).

Input: A properly 2-colored digraph (G = (V, E), σ) and an integer k.
Question: Is there a subset F ⊆ V ×V \ ({(v, v) | v ∈ V} ∪ E) such that

|F| ≤ k and (G + F, σ) is a binary-explainable 2-BMG?

In the general case, 2-BMG CBEG is NP-complete ([10], Cor. 5.11). Here, we are
interested in the restriction of the 2-BMG CBEG problem with BMGs as input.

The following result holds for BMGs and their completions to beBMGs with an
arbitrary number of colors.

Lemma 2. Let (G′, σ) be a completion of a BMG (G, σ) to a beBMG, and let [xy ↘↗ x′y′] be an
induced hourglass in (G, σ). Then, (G′, σ) contains both arcs (x′, y) and (y′, x).

Proof. It is shown in ([1], Obs. 1) that the subgraphs of a BMG induced by all vertices
with any two given colors is a 2-BMG. As (G′, σ) is a (binary-explainable) BMG, all of
its 2-colored induced subgraphs are therefore 2-BMGs. By assumption, (G, σ) is not
binary-explainable as it contains the hourglass [xy ↘↗ x′y′] as an induced subgraph (cf.
Proposition 3). The hourglass contains all possible arcs between vertices of different colors
except (x′, y) and (y′, x). As (G′, σ) contains no hourglass and G′ is a completion of G, i.e.,
E(G) ⊆ E(G′), we conclude that (G′, σ) contains at least one of the arcs (x′, y) and (y′, x).

Assume for contradiction that, w.l.o.g., (G′, σ) only contains (x′, y). We have (y′, x′),
(y, x) ∈ E(G′) and σ(y′) = σ(y) 6= σ(x′) = σ(x) by the definition of hourglasses, and
by assumption (x′, y) ∈ E(G′) and (y′, x) /∈ E(G′). Therefore, the four vertices x, x′, y, y′

induce an F2-graph in (G′, σ). By Proposition 4, the 2-colored subgraph of (G′, σ) induced
by the two colors σ(x) and σ(y) is not a BMG. Consequently, (G′, σ) is not a BMG either, it
is a contradiction. Therefore, (G′, σ) contains both arcs (x′, y) and (y′, x).

Definition 8. Let (T, σ) be a tree with a 2-colored leaf set, i.e., |σ(L(T))| = 2. Denote by (T∗, σ)
the collapsed tree obtained from (T, σ) by contraction of all inner edges in T(u) for all u ∈ V0(T)
that have support leaves of both colors.

In other words, (T∗, σ) is obtained from (T, σ) by collapsing every subtree T(u) to a
star if u has support leaves of both colors.

Lemma 3. The collapsed tree (T∗, σ) of (T, σ) is uniquely defined and can be computed from
(T, σ) in O(|V(T)|)-time.
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Proof. The collapsed tree (T∗, σ) is well defined because whenever v ≺T u, collapsing the
subtree T(v) to a star does not change the set of support leaves Su. Similarly, collapsing
T(v) if v is not≺T-comparable with u does not change Su. Thus, (T∗, σ) is uniquely defined.
To see that (T∗, σ) can be computed in O(|V(T)|) operations, we observe that it suffices to
collapse all subtrees T(u) such that u ∈ V0(T) has support leaves of both colors and there
is no u′ ≺T u with this property, i.e., u is �T-maximal in that sense. These vertices u for
which T(u) is replaced by a star are found by a top-down traversal of T and evaluating
|σ(Su)|, all of which can be computed in linear total time.

As an immediate consequence of the uniqueness of T∗ and the construction in the
second part of the proof of Lemma 3, we obtain the following.

Corollary 4. The collapsed tree (T∗∗, σ) of a collapsed tree (T∗, σ) satisfies T∗∗ = T∗.

Lemma 4. If (T∗, σ) is the collapsed tree of an LRT (T, σ) with 2-colored leaf set, then G(T∗, σ)
is binary-explainable.

Proof. As the collapsed tree (T∗, σ) is obtained from the LRT (T, σ) by contraction of edges,
Theorem 1 implies that (T∗, σ) is also least resolved. Now suppose, for contradiction,
that G(T∗, σ) is not binary-explainable. By, Proposition 3(3), (T∗, σ) has a vertex u ∈
V0(T∗) with three distinct children—v1, v2, and v3—and two distinct colors—r and s—
satisfying (i) r ∈ σ(L(T∗(v1))), r, s ∈ σ(L(T∗(v2))), and s ∈ σ(L(T∗(v3))), and (ii) s /∈
σ(L(T∗(v1))) and r /∈ σ(L(T∗(v3))). As (G, σ) is only 2-colored, the latter arguments imply
that |σ(L(T∗(v1)))| = |σ(L(T∗(v3)))| = 1 and |σ(L(T∗(v2))| = 2. As moreover (T∗, σ)
is least resolved and none of the vertices v1, v2, and v3 is the root of T∗, we can apply
Corollary 1 in [20] to conclude that v1 and v2 are leaves, and that v3 is an inner vertex,
respectively. In particular, σ(v1) = r 6= s = σ(v3). Therefore, T∗(u) is not a star tree and u
has support leaves of both colors in T∗; a contradiction to its construction. Therefore, we
conclude that G(T∗, σ) is binary-explainable.

Theorem 2. The optimization version of 2-BMG CBEG with a 2-BMG (G, σ) as input has the
unique solution F := E(G(T∗, σ)) \ E(G), where (T∗, σ) is the collapsed tree of the LRT (T, σ)
of (G, σ).

Proof. First note that the optimization version of 2-BMG CBEG always has a solution. To
see this, consider the complete bipartite and properly 2-colored digraph (G′, σ) with vertex
set V(G). This digraph is explained by the star tree with leaf set V(G). Moreover, (G′, σ) is
clearly hourglass-free as hourglasses require non-arcs (between vertices of distinct colors).
By Proposition 3, the BMG (G′, σ) is binary-explainable.

Now, consider the collapsed tree (T∗, σ) of (T, σ). As T∗ is obtained from T by
contraction of inner edges, Proposition 1 implies (G, σ) = G(T, σ) ⊆ G(T∗, σ) =: (G∗, σ).
Furthermore, (G∗, σ) is binary-explainable by Lemma 4. Therefore, (G∗, σ) is a valid
completion of (G, σ) to a beBMG.

We continue by showing the existence of certain arcs in every (not necessarily optimal)
completion (G′, σ) of (G, σ) to a beBMG. To this end, consider a �T-maximal vertex u such
that the subtree T(u) is not a star tree and u has support leaves Su of both colors in T. We
will make frequent use of the fact that E(G) ⊆ E(G′). We consider the following cases
in order to show that all arcs between vertices x, y ∈ L(T(u)) with σ(x) 6= σ(y) exist in
(G′, σ):

(i) x, y ∈ Su,
(ii) x ∈ L(T(u)) \ Su and y ∈ Su, and
(iii) x, y ∈ L(T(u)) \ Su.

In Case (i), the leaves x and y are both children of u. Together with Corollary 3, this
implies (x, y), (y, x) ∈ E(G) ⊆ E(G′).
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In Case (ii), we can find a vertex x′ ∈ Su of color σ(x) as Su contains vertices of
both colors. As in Case (i), we have (x′, y), (y, x′) ∈ E(G) ⊆ E(G′). As x ∈ L(T(u)) \ Su,
we can conclude that v := parT(x) ≺T u by the definition of support leaves. Therefore,
the inner vertex v is not the root of T and we can apply Cor. 1 in [20] to conclude that
the subtree T(v) of the inner vertex v contains both colors. The latter together with
Lemma 10 in [21] implies that there are arcs (x′′, y′′), (y′′, x′′) ∈ E(G) ⊆ E(G′) with x′′, y′′ ∈
L(T(v)) and σ(x) = σ(x′′) 6= σ(y) = σ(y′′). Note that x = x′′ is possible. As x, x′′, y′′

in L(T(v)) ⊂ L(T(u)), x′, y ∈ L(T(u)) \ L(T(v)) and v ≺T u, we can apply Lemma 1 to
conclude that (x′, y′′), (y, x), (y, x′′) ∈ E(G) ⊆ E(G′) and (y′′, x′), (x, y), (x′′, y) /∈ E(G) ⊆
E(G′). Together with (x′, y), (y, x′), (x′′, y′′), (y′′, x′′) ∈ E(G) and the coloring, this implies
that x′, y, x′′, y′′ induce an hourglass [x′y ↘↗ x′′y′′] in (G, σ). By Lemma 2, we have arcs
(x′′, y), (y′′, x′) ∈ E(G′). If x = x′′, we immediately obtain (x, y), (y, x) ∈ E(G′). Now,
suppose x 6= x′′, i.e., it remains to show that (x, y) ∈ E(G′). Thus assume, for contradiction,
that (x, y) /∈ E(G′). Lemma 1 together with σ(x) 6= σ(y′′) and y′′ ∈ L(T(parT(x) = v))
implies that (x, y′′) ∈ E(G) ⊆ E(G′). Therefore, we have the arcs (x, y′′), (y′′, x′), (x′, y) ∈
E(G′) but (x, y) /∈ E(G′), i.e., x, x′, y, y′′ induce a forbidden F2-graph. Together with
Proposition 4, this is a contradiction to (G′, σ) being a 2-BMG. Therefore, we conclude that
(x, y) ∈ E(G′).

In Case (iii), we have x, y ∈ L(T(u)) \ Su. We can find two vertices x′, y′ ∈ Su, which
are distinct from x and y, and satisfy σ(x) = σ(x′) 6= σ(y) = σ(y′). From Cases (i) and (ii),
we obtain (x′, y′), (y′, x′) ∈ E(G′) and (x′, y), (y, x′), (x, y′), (y′, x) ∈ E(G′), respectively.
Now assume for contradiction that (x, y) /∈ E(G′). Thus, we have (x, y′), (y′, x′), (x′, y) ∈
E(G′) and (x, y) /∈ E(G′), i.e., x, x′, y, y′ induce a forbidden F2-graph in (G′, σ); a contra-
diction to (G′, σ) being a 2-BMG. Therefore, we conclude that (x, y) ∈ E(G′). The existence
of the arc (y, x) ∈ E(G′) can be shown by analogous arguments.

We will now show that E(G∗) ⊆ E(G′) for every (not necessarily optimal) completion
(G′, σ) of the 2-BMG (G, σ) to a beBMG. To this end, consider an arbitrary arc (x, y) ∈
E(G∗). If (x, y) ∈ E(G), then (x, y) ∈ E(G′) follows immediately. Now, assume that
(x, y) ∈ F = E(G∗) \ E(G). As (G, σ) is a 2-BMG and thus properly-colored and sink-free
(cf. Proposition 4), there must be a vertex y′ of color σ(y) such that (x, y′) ∈ E(G). As
(x, y) /∈ E(G), we have lcaT(x, y′) ≺T lcaT(x, y) and thus the LRT (T, σ) displays the triple
xy′|y. However, (x, y), (x, y′) ∈ E(G∗) implies that (T∗, σ) does not display the triple xy′|y,
i.e., all edges on the path from lcaT(x, y′) to lcaT(x, y) have been contracted. Therefore,
there is a �T-maximal inner vertex u ∈ V0(T) such that x, y ∈ L(T(u)), T(u) is not a star
tree and u has support leaves of both colors in T. By the arguments above, we can conclude
that (x, y) ∈ E(G′).

In summary, F is a solution for 2-BMG CBEG with the 2-BMG (G, σ) (and some
integer k ≥ |F|) as input, and F ⊆ F′ for every other solution F′ = E(G′) \ E(G). Therefore,
we conclude that F is the unique optimal solution.

As a direct consequence of Theorem 2, the fact that LRTs can be constructed in
O(|V|+ |E| log2 |V|) (cf. [20]) and Lemma 3, we have

Corollary 5. 2-BMG CBEG with a 2-BMG as input can be solved in O(|V|+ |E| log2 |V|) time.

We also immediately obtain a characterization of the LRTs of 2-beBMGs.

Corollary 6. A 2-colored least resolved tree (T, σ) is the LRT of 2-beBMG if and only if it is a
collapsed tree.

6. Concluding Remarks

Starting from the observation that the property of being least resolved is preserved
under contraction of inner edges, we have obtained a characterization of the LRTs that
explains 2-colored beBMGs. The construction of these “collapsed trees” corresponds to the
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completion of BMGs to beBMGs, resulting in a simple, polynomial-time algorithm for this
problem. This result is primarily of theoretical interest.

In contrast to the 2-colored case, `-BMG CBEG with a BMG as input and ` ≥ 3 in
general does not have a unique optimal solution. In the example in Figure 2, the missing
arcs (a2, b1) and (b2, a1) in the induced hourglass [a1b1 ↘↗ a2b2] must be inserted. The
resulting digraph is not a BMG. To obtain a beBMG, it suffices to insert in addition either
the arc (c, a1) or the arc (c, b1) (cf. Proposition 3). We suspect, therefore, that `-BMG CBEG
does not admit an efficient solution in general. The solutions of 2-BMG CBEG problems
for all 2-colored induced subgraphs that are not binary-explainable are nevertheless an
appealing starting point for constructing heuristics for `-BMG CBEG. We refer to the
work in [17] for a detailed analysis of a class of approximation algorithms for BMG and
beBMG modification.

a1
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b1

b2

a1

a2

b1

c
c

b2

a1

a2

b1

b2

c

a1

a2
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a2

b1

b2

c

a1

b2

b1

c

a1

a2

b1

c

b2

a2

(G, σ) (G1, σ)

(G2, σ)

(T, σ) (T1, σ)

(T2, σ)no BMG

Figure 2. Example for 3-BMG CBEG with the 3-BMG (G, σ) (explained by the LRT (T, σ)) as input
that has no unique optimal solution. Insertion of the missing arcs (a2, b1) and (b2, a1) produces a
digraph that is not a BMG. At least one of the arcs (c, a1) or (c, b1) has to be inserted additionally to
obtain the beBMGs (G1, σ) and (G2, σ) (shown with their LRTs (T1, σ) and (T2, σ)), respectively.

The simple solution of 2-BMG CBEG begs the question whether other arc modification
problems for beBMGs, in particular the corresponding deletion and editing problems, have
a similar structure. This does not seem to be case however. Neither 2-BMG EBEG nor 2-
BMG DBEG with a 2-BMG as input has a unique optimal solution. To see this, consider the
2-BMG consisting of the hourglass [xy↘↗ x′y′] which is explained by the unique non-binary
tree (x, y, (x′, y′)) (in Newick format, see also Figure 1A). Deletion of the arcs (x, y) or (y, x)
results in a digraph that is explained by the binary trees (y, (x, (x′, y′))) or (x, (y, (x′, y′))),
respectively. We suspect that a BMG as input does not make these problems easier than the
general case—the complexity of which remains an open question however.
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Abbreviations
The following abbreviations are used in this manuscript:

BMG Best Match Graph
beBMG Binary-explainable Best Match Graph
LRT Least resolved tree
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