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Abstract: We used fuzzy entropy as a feature to optimize the intrinsically disordered protein predic-
tion scheme. The optimization scheme requires computing only five features for each residue of a
protein sequence, that is, the Shannon entropy, topological entropy, and the weighted average values
of two propensities. Notably, this is the first time that fuzzy entropy has been applied to the field of
protein sequencing. In addition, we used three machine learning to examine the prediction results
before and after optimization. The results show that the use of fuzzy entropy leads to an improvement
in the performance of different algorithms, demonstrating the generality of its application. Finally,
we compare the simulation results of our scheme with those of some existing schemes to demonstrate
its effectiveness.

Keywords: intrinsically disordered proteins; fuzzy entropy; machine learning; prediction

1. Introduction

Proteins play an important role as the main bearers of human life activities [1]. For a
long time, the model of “lock and key” has been regarded as the general structural model of
protein [2]. However, with the development of scientific research conditions, many proteins
without fixed three-dimensional structure have been discovered by scientists [3]. Due to the
lack of a fixed three-dimensional structure, the structural flexibility of these proteins makes
them have the meaning that ordinary proteins do not have. With the discovery of more and
more proteins without fixed structure, they have been identified as a large class of proteins,
i.e., intrinsically disordered proteins. Recent studies have shown that innate intrinsically
disordered proteins are widespread in organisms, and their proportions differ significantly
between prokaryotes and eukaryotes [4]. Intrinsic disorder refers to segments or to whole
proteins that fail to self-fold into fixed 3D structure, with such disorder sometimes existing
in the native state [5]. The emergence of intrinsic disordered proteins has broken the unique
functional pattern of proteins in the past, and because of their widespread existence in
life, the research on them has become one of the topics widely discussed in recent years.
In the past few decades, many methods have been developed to predict IDPs. Gener-
ally speaking, these methods can be divided into two categories: physicochemical-based
and calculation-based. The first method is about employing the amino acid propensity
scales and physicochemical properties of the protein sequences to predict IDPs, such as
GlobPlot [6], IUPred [7], FoldUnfold [8] and IsUnstruct [9]. In the second method, the
prediction of intrinsically disordered proteins is regarded as a binary classification problem
and solved by machine learning. At present, many mature methods have been applied to
IDPs prediction, such as Support Vector Machines, Convolutional Neural Network, long
short term memory and so on. PONRD [10] is the first known mature machine learning
algorithm for predicting intrinsically disordered proteins. It mainly uses neural network al-
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gorithm to distinguish amino acids by the different components of ordered and disordered
amino acids. POODLE series of algorithms include POODLE-S [11], POODLE-L [12] and
POODLEW [13] algorithms. They predicted regions with lengths less than 40, greater than
40, and overall disorder. Because of some differences in the structure of their prediction
targets, their feature selection is slightly different. In addition, ESpritz [14] algorithm is
also a relatively successful algorithm. Espritz can reduce the number of parameters and
extract the hidden information from the sequence by recursive dynamic learning context.
In addition to the conventional machine learning algorithm, the comprehensive prediction
method based on a variety of independent prediction algorithms also shows good results
in the prediction of intrinsically disordered proteins. The method is to run several indepen-
dent intrinsically disordered protein prediction algorithms, and then get the final result
through comprehensive prediction. Metadisorder is a very accurate algorithm. It includes
13 kinds of algorithms: Globplot, IUPred, DisEMBL, RONN, POODLES, DISPRED2 [15],
DISPI [16], IPDA [17], PDISORDER [18], POODLE-L, PRDOS [19], Spritz [20], dispsmp [21].
The final results are weighted by these 13 algorithms, which have high accuracy. However,
the efficiency of the algorithm is very low because it contains 13 independent prediction
algorithms. In comparison, MFDP [22] with only three independent prediction algorithms
is a relatively simple model. It integrates the results of IUPred, DISOPRED2, DISOclust [23]
algorithms into SVM with linear kernel to get the final prediction.

Most current machine learning methods for intrinsically disordered protein prediction
require as many as tens of features and have high computational complexity; they are
less efficient when dealing with large amounts of data. We propose a new feature scheme
based on fuzzy entropy; and test the feasibility of the scheme using three machine learning
algorithms. Our scheme is trained and tested by the dataset DIS1616 with 10-fold cross-
validation, firstly. The dataset DIS1616 is comprised of 1616 protein sequences with 2503
disordered regions and 2629 ordered regions, which include 186,069 disordered and 715,619
ordered residues. As a comparison, we run our schemes together with some existing
schemes, such as DISOPRED2, RONN [24], DISPSSMP [25], Espritz and IsUnstructure [9]
on the datasets R80 which are comprised of 78 protein sequences which include 2439
disordered and 19,412 ordered residues. The simulation results suggest that our scheme
is at least as accurate as DiISPSSMP and requires computing only five features for each
residue of a protein sequence, while the other need to compute 120 features for each
residue, respectively.

In addition, we also compared the prediction performance of our algorithms before
and after adding the fuzzy entropy feature; the results showed that the accuracy and
stability of the predictions of our three selected algorithms improved after adding fuzzy
entropy; according to the experimental results, the MCC values of the three algorithms
improved by 4.22%, 3.92% and 9.09% respectively. This indicates that the addition of fuzzy
entropy has a positive effect on the prediction of intrinsically disordered proteins and
provides a new alternative method for protein prediction.

2. Features Selection of IDPS

In protein sequences, the sequence complexity indicates how many different rear-
rangements the sequence can have. Regions with low complexity are more likely to be
disordered than regions with high complexity. Shannon entropy and topological entropy
can reflect the complexity of protein sequences and have been used to relatively good effect
in the prediction of intrinsically disordered proteins. Whereas fuzzy entropy is a concept
first used in information theory to describe the degree of uncertainty of a probability distri-
bution, it also indicates the complexity of the data. In this paper, it is used in intrinsically
disordered protein sequencing and the feasibility of its application will be explored below.
In this section, however, let us first briefly review the specific mathematical meaning of
these features.



Algorithms 2021, 14, 102 3 of 15

2.1. Shannon Entropy

For a given protein sequence, assuming its length to be n, the Shannon entropy can be
calculated by the following equation:

Hw = −
20

∑
k=1

fk log2 fk (1)

In Formula (1), fk (1 ≤ k ≤ 20) represents the frequency of 20 amino acids in the
sequence. The calculation formula is given in Formula (2):

fk =
∑N

j=1 k(j)

N
(2)

In Formula (2), when J = k, K(j) = 1; otherwise K(j) = 0.
The corresponding values for the various amino acids used in the calculation of

Shannon entropy are shown in Table 1:

Table 1. Mapping values of topological entropy.

A R N D C Q E G H K

Mapping values 0 0 0 0 0 0 0 0 0 0

M P S T I L F W Y V

Mapping values 0 0 0 0 1 1 1 1 1 1

2.2. Topological Entropy

In order to calculate the topological entropy, the complexity function pw(n) must be
calculated first. It means the number of different subsequences with length n contained in
the sequence w with length n (1 ≤ n ≤ N), which is calculated as shown in Equation (3):

pw(n) = |{u :|u| = n}| (3)

In this formula, u is any continuous string of length N in the sequence w, and |u| = n
means that the length of u is n. For example, given a sequence w = TASEAT, the subse-
quences of length 2 are:

{TA, AS, SE, EA, AT} (4)

From this we can get pw(n) = 5.
If a protein sequence w with length n is given, the length n of its subsequence should

satisfy the following formula:

20n + n − 1 ≤ |w| ≤ 20n + 1 + (n + 1) − 1 (5)

We use w20n+n−1 to represent the first sequence with length 20n + n − 1:

w20n+n−1 = w(1)w(2)w(3) . . . . . . W(20n + n − 1) (6)

Then the topological entropy can be expressed as follows:

Htop(w) =
log20 p20n+n−1(n)

n
(7)
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For the whole sequence, there are N − (20n + n − 1) fragments with length
20n + n − 1. In order to improve the accuracy, we take the average value of each fragment
as the final calculation result of topological entropy:

Htop(w) =
∑

N − (20n + n − 1)
t=1 log20 p20n + n − 1(n)

N − (20n + n − 1)
(8)

However, if the topological entropy is calculated according to the above equation, it
is clear that the required sequence length would be very large, exceeding the sequence
length of many proteins. Therefore, to facilitate the treatment of topological entropy for
short sequences, we plot amino acid residues according to Table 1, and then the protein
sequence becomes a 0–1 sequence, and the length of subsequence n can be given by the
following equation:

Htop(w) =
∑

N − (2n + n − 1)
t=1 log2 p2n + n − 1(n)

N − (2n + n − 1)
(9)

2.3. Fuzzy Entropy

To better highlight the sequence complexity of proteins, we use fuzzy entropy as a
new feature of protein sequences. This is the first time that fuzzy entropy has been used
as a feature of a protein sequence in the study of an inherently disordered protein. For
computational convenience, we use numbers from 0 to 19 to represent the 20 amino acids.

For {u(1), u(2) . . . U(N)}, the non-negative integer a is introduced to reconstruct the
phase space, and the reconstructed sequence is:

sm [i] = {u(i), u(i + 1) . . . U(i + m− 1)} − u0(i) (10)

u0(i) =
∑m−1

j=0 u(i + j)

m
(11)

And the membership fuzzy function is introduced:

A(x) =

{
1 x = 0

exp
[
− ln(2)

( x
r
)2
]

x > 0
(12)

According to the above formula, we can transform the fuzzy membership function into:

Am
ij = exp (− ln (2) × (

dm
ij

r
)̂2) (13)

where dijm is the distance between the window vectors sm [i], sm [j]:

dijm = d[sm [i], sm [j]] = max
p=1,2,...m

(|u(i + p − 1) − u0(i)| − |u(j + p − 1) − u0(j)|) (14)

The corresponding values for each amino acid in the calculations are shown in Table 2:

Table 2. Mapping values of fuzzy entropy.

A R N D C Q E G H K

Mapping values 0 1 2 3 4 5 6 7 8 9

M P S T I L F W Y V

Mapping values 10 11 12 13 14 15 16 17 18 19
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So, we can get:

Ci
m (r) = (N −m)−1

N−m+1

∑
j=1, j 6=i

Am
ij (15)

φm (r) = (N −m)−1
N−m+1

∑
i=1

Ci
m (r) (16)

The fuzzy entropy of the sequence is:

FuzzyEn(m, r, N) = ln φm (r) − ln φ m+1 (r) (17)

In Equation (17), m, r, N represent the dimensionality of the phase space, the similarity
tolerance and the length of the time series respectively. If M is too large, it will cause
information loss, but too small will increase the sensitivity of the results to noise. According
to the validation, the best experimental results were obtained when m = 2 or m = 3.

2.4. Amino Acid Propensity Scale

In addition to the three kinds of entropy given above, two amino acid propensity scales
are selected to calculate protein sequence complexity. They were presented in GlobPlot’s
paper [6]. Including Remarking465, Bfactor(2STD). As shown in Table 3.

Table 3. Amino acid propensity scale.

A R N D C Q E G H I

Remarking465 −0.0537 −0.2141 0.2911 −0.5301 0.3088 0.5214 0.0149 0.1696 0.2907 0.1739
Bfactor(2STD) 0.0633 0.2120 0.3480 −0.4940 0.1680 0.4560 0.1060 −0.0910 −0.1400 −0.4940

L K M F P S T W Y V

Remarking465 −0.3379 0.1984 −0.1113 −0.8434 −0.0558 0.2627 −0.1297 −1.3710 −0.8040 −0.2405
Bfactor(2STD) −0.3890 0.4020 −0.1260 −0.5260 0.1800 0.1260 −0.0390 −0.7260 −0.5060 −0.4630

3. Algorithm Principle

There are many low-complexity intrinsically disordered protein-based algorithms,
such as those constructed by He, H., Zhao, J. [26] and Liu, Y., Wang, X., Liu, B. [27] that have
achieved good results. As the Disport dataset [28] we used to have a total of 1616 protein
sequences and the training set contained a total of 900,000 amino acids, the sample size was
large and the homology of the data was poor, some of the machine learning may not achieve
the desired classification results. After preliminary research, LDA, SVM and BP neural
networks are more suitable for low-complexity model building. And after experimental
comparison and research, the three classification algorithms are more responsive to the
differences between samples than other machine learning algorithms. Therefore, these
three algorithms are chosen as the basis for this paper to verify the effectiveness of fuzzy
entropy in inherently disordered protein prediction.

3.1. Linear Discriminant Analysis

LDA is mainly used in the field of pattern recognition. Recently, however, it has also
performed well in the field of bioinformatics. Compared to some other learning methods,
it is more purposeful and better reflects the differences between samples.

For a given characteristic matrix X = [x1, x2, x3 . . . xNs ], we use Ns to represent the
number of samples, and X1, X2 is used to represent the two kinds of discrimination. For
the best projection direction W:

Y = WTX (18)
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In this discrimination, we use Rayleigh entropy to reflect the classification effect. In
order to calculate Rayleigh entropy, it is necessary to calculate the scattering matrix Sw and
scattering matrix Sb:

Sw =
2

∑
i=1

Ni

∑
j=1,xj∈Xi

(
xj − µj

)(
xj − µj

)T
(19)

The µ1, µ2 in the above formula represents the expectations of the first and second types:

µi =
1
Ni

Ni

∑
j=1,xj∈Xi

Xj (20)

here, Ni represents the set of samples of class i.
For the two species, we hope that the center distance of different species is as large as

possible, while the data of the same kind after dimensionality reduction is as centralized as
possible. Rayleigh entropy can well reflect these two properties:

J(W) =
WTSbW
WTSwW

(21)

The optimal projection direction can be obtained by using Lagrange operator:

W = S−1
w (µ1 − µ2) (22)

Based on the optimal projection direction and true classification of each amino acid, a
classification threshold ζ can be obtained, followed by the required classification plane.

3.2. Support Vector Machines

Support vector machines (SVM) is a binary classification model. Its purpose is to find
a hyperplane to segment the sample. Its basic model is the linear classifier with the largest
interval defined in the feature space 36.

For a given sample set, we need to find a hyperplane (W, b) so that the minimum
geometric interval between the sample set and the hyperplane is the largest:

r(i) = yi(
w
||w|| × xi +

b
||w|| ) (23)

r = min
i=1,2,3...N

r(i) (24)

Equation (32) gives the formula for calculating the geometric interval. Our optimiza-
tion goal is to maximize Formula (33) to obtain the optimal result. The formula is expressed
as Formula (32):

max
w,b

r st.r ≤ yi(
w
||w|| × xi +

b
||w|| ) (25)

Since the proportional scaling of w and b does not change the value of r, we add
a constraint:

min
i=1,2,3...N

yi(w × xi + b) = 1 (26)

So optimization object becomes:

max
w,b

1
||w|| st × 1 ≤ yi(w.xi + b) (27)
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Then our final optimization goal is to:

min
w,b

1
2
||w||2st × 1 ≤ yi(w.xi + b) (28)

We can use Lagrange multiplier method to transform the above formula into:

max
α

W(α) =
m

∑
i=1

αi −
1
2

m

∑
i=1

m

∑
j=1

yiyjαiαj × < xi, xj > (29)

w and b in the original formula can be expressed by training samples and α:

w =
m

∑
i=1

αiyixj (30)

where α is the Lagrangian multiplier and C is the penalty parameter. For the optimization
in formula above, we use SMO algorithm. The principle of the algorithm is: change
the minimum number of αi at a time. First we select αi, αj and hold other parameters
unchanged. Then optimization object becomes the following form:

max
α

W(α) = aαj
2 + bαj + c0 ≤ αj ≤ c (31)

The results can be obtained by iterating until convergence.

3.3. Back Propagation Neural Network

BP neural network is a kind of multilayer feedforward network trained by error
back propagation algorithm [29]. It has shown excellent performance in bioinformatics.
In protein sequencing, BP neural networks play a good role in classification. Since BP
neural networks are fully connected networks, each dimension of the space is affected
by all dimensions of the source space, and the data is utilized to the fullest extent that
classification results can be obtained very accurately. Below we will describe this network
in brief terms.

In Formula (35), W [l]
i , b[l]i i is the i-th line of parameter W[l] and A[l−1] is the output of

layer L − 1.
z[l]i = W [l]

i A[l−1] + b[l]i (32)

Then, for the characteristic matrix X, the determination of each sample can be obtained
according to Formulas (44) and (45):

Z[l] = W [l]A[l−1] + b[l] (33)

A[l] = g[l](Z[l]) (34)

A[0] = X (35)

A[last] = Ŷ (36)

After getting the prediction result Ŷ of training samples, we use cross entropy to
calculate the cost function of BP neural network:

J(W, b) = − 1
Ns

Ns

∑
j=1

[
yj log ŷj +

(
1 − yj

)
log
(
1 − ŷj

)]
(37)

where ŷj is the predicted value of each sample and yj is the true value of each sample.
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In order to optimize the cost function, we use back propagation to train the optimiza-
tion parameter W l , bl . The process of back propagation is as follows:

dZ[l] = dA[l] ∗ g[l]
′(

Z[l]
)

(38)

dW [l] =
1

Ns
dZ[l] × A[l−1]T (39)

dW [l] =
1

Ns
dZ[l] × A[l−1]T (40)

4. Performance Evaluation

In bioinformatics, sensitivity (Sens), specificity (Spec) and Matthews’ correlation
coefficient (MCC) are often used to evaluate predictive outcomes. For example, in the study
by Lee, Khanh [30] and in the study by Lam, Luu Ho Thanh [31], these three parameters
were utilized to evaluate the model. On this basis, we have also chosen the weight score
(Sw) for our algorithms as evaluation criteria. These evaluation measurements are defined
as follows:

Sensitivity:
Sens = TP/(TP + FN) (41)

Specificity:
Spec = TN/(TN + TP) (42)

The weighted score:
Sw = Sens + Spec − 1 (43)

Matthews’ correlation coefficient:

MCC =
(TP ∗ TN) − (FP ∗ FN)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(44)

In the above formula, TP and TN are the predicted correct ordered and disordered
amino acids, respectively; FP and FN are the mispredicted ordered and disordered amino
acids, respectively.

5. Data Preprocessing Method

It is not ideal to directly calculate the characteristics of each amino acid and classify
them. To make the results more accurate, we added a sliding window to pre-process the
data. For a given protein sequence of length L, we need to choose a sliding window of
length N and add [N/2] zeros to both ends of the sequence. For the region intercepted by
the sliding window, a five-dimensional feature vector can be obtained for each amino acid
in that region. The average of the eigenvectors of all amino acids in the sliding window
is taken as the eigenvalue of each residue in the window. As the window slides, the
eigenvalues for each amino acid are accumulated. Finally, the sum of the eigenvalues
obtained for the amino acids is divided by the cumulative number. Each amino acid in the
protein sequence is then given a five-dimensional eigenvector as the feature vector for that
amino acid. The equation for this process is as follows.

xj =



1
j+N0

j+N0

∑
j=1

vi 1 ≤ j ≤ N0

1
N

j+N0

∑
i=j+N0−N+1

vi N0 ≤ j ≤ L − N0

1
L0−j−N0+1

L0−N0+1
∑

i=j+N0−N+1
vi L − N0 ≤ j ≤ L

(45)
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Taking feature Bfactor(2STD) and fuzzy entropy as examples. After windowing, the
separability of the two categories of data is significantly improved, and the effect is shown
in Figure 1.
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The accuracy as well as the stability of the prediction results of each learning method
has been improved after the raw data has been processed by adding windows. We have
compared the MCC values of different learning algorithms before and after window-
ing, using a window length of 35 as an example, and the comparison results are shown
in Table 4.

Table 4. Influence of window on the three learning algorithms results.

LDA SVM BP

Before windowed 0.3769 0.4109 0.4483
After windowed 0.4396 0.4818 0.4953

6. Result and Discussion
6.1. The Simulation Results

To train our prediction scheme, we randomly divided the 1616 protein sequences
in Disport into ten subsets of approximately equal size and trained them using ten-fold
cross-validation. The results of our three chosen machine learning methods under different
windows are shown in the Tables 5 and 6; and Figures 2–4 plot the effect of different
window lengths on the prediction performance of the three learning algorithms:
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Table 5. Prediction performance of different window lengths in LDA/SVM.

Length
LDA SVM

Sw MCC Sw MCC

11 0.3831 0.3662 0.5665 0.4127
15 0.4125 0.3893 0.5788 0.4305
19 0.4401 0.4168 0.5805 0.4536
23 0.4584 0.4196 0.5937 0.4686
27 0.4736 0.4233 0.6054 0.4708
31 0.4918 0.4307 0.6166 0.4769
35 0.5161 0.4396 0.6313 0.4818
39 0.5145 0.4361 0.6216 0.4765
43 0.5078 0.4254 0.6220 0.4723
47 0.4854 0.4260 0.6139 0.4668

Table 6. Prediction performance of different window lengths in BP network.

Length Sw MCC

10 0.5310 0.4563
20 0.5486 0.4783
30 0.5648 0.4933
40 0.5749 0.4968
50 0.5836 0.5107
60 0.5947 0.5142
70 0.5893 0.5096
80 0.5842 0.5103
90 0.5796 0.5084
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Using the data in the table we find that for LDA and SVM, when the window size is
larger than 35, the values tend to be smooth; for BP neural networks, when the window
size is larger than 60, the values tend to be smooth. Therefore, we use a window length of
35, 60 as the selection window length for the corresponding algorithm. As a comparison,
we run our scheme together with some of the best-known schemes, such as Espritz [14],
DISOPRED2 [15], RONN [24], DISPSSMP [25] and IsUnstructure [9] on the dataset R80
which are comprised of 78 protein sequences. Table 7 shows the prediction results of these
learning methods on the test set; in Figures 5 and 6 we have visualized these results to
make the comparison between the different algorithms more intuitive.

Table 7. Prediction performance comparison based on test set R80.

Sens Spec Sw MCC

LDA-FE 0.846 0.702 0.548 0.439
BP-FE 0.843 0.765 0.608 0.518

SVM-FE 0.921 0.706 0.627 0.493
DISOPRED2 0.972 0.405 0.377 0.470

RONN 0.878 0.603 0.481 0.395
DISPSSMP 0.848 0.767 0.615 0.463

IsUnstructure 0.911 0.688 0.600 0.518
Espritz 0.884 0.688 0.572 0.466
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Considering the classification method used, we use LDA-FE, SVM-FE, BP-FE as
the abbreviation of our scheme. As shown in Table 6, the highest Sens, Spec, Sw, and
MCC among all algorithms are DISOPRED2, DISPSSMP, SVM-FZ and BP-FE, respectively.
Among all algorithms, only our BP-FE algorithm and IsUnstructure achieve 0.5 for MCC.
Taking all parameters together, DISPSSMP, IsUnstructure and SVM-FZ, BP-FE are close
to each other. However, our algorithms requires only five features of amino acids for
classification, whereas other algorithms with similar results to ours, such as DISPSSMP
and Espritz, require 188 and 25 features of each amino acid. Moreover, since our method
has a simpler decision curve calculation, our solution is more robust and requires fewer
learning samples than DISPSSMP, IsUnstructure, etc.

6.2. The Influence of Fuzzy Entropy on Prediction Effect

Since this paper introduces the feature of fuzzy entropy in the prediction process, it is
necessary for us to explore whether fuzzy entropy has a positive effect in the prediction of
inherently disordered proteins.

To ensure that fuzzy entropy plays an active role in the prediction of inherently
disordered proteins, we compared three learning algorithms with and without the feature
of fuzzy entropy, and the results of the comparison are shown in Tables 8–10.

Table 8. Influence of fuzzy entropy on LDA-FE prediction results.

Sens Spec Sw MCC

Fuzzy entropy included 0.8461 0.7023 0.5484 0.4396
Fuzzy entropy not included 0.8263 0.6902 0.5165 0.4218
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Table 9. Influence of fuzzy entropy on SVM-FE prediction results.

Sens Spec Sw MCC

Fuzzy entropy included 0.9213 0.7061 0.6394 0.4932
Fuzzy entropy not included 0.9016 0.6768 0.5784 0.4746

Table 10. Influence of fuzzy entropy on BP-FE prediction results.

Sens Spec Sw MCC

Fuzzy entropy included 0.8431 0.7654 0.6085 0.5184
Fuzzy entropy not included 0.8243 0.7548 0.5771 0.4826

By comparison, the values of SW and MCC improved for all three models we con-
structed after adding fuzzy entropy as a feature. In BP-FE, the most effective of the three
algorithms, the addition of the fuzzy entropy feature improved the value of MCC by 9.09%
and the accuracy of prediction from 84% to 88%. The MCC values for LDA-FE and SVM-FE
also improved by 4.22% and 3.92% respectively. This shows that fuzzy entropy shows a
positive effect in the prediction of inherently disordered proteins.

In order to compare the different models more intuitively, we conducted significance
tests for the three models we used. We make the assumption that the two algorithms
used as a comparison have the same performance. With this assumption we perform a
significance test; their p-values against each other are shown in Table 11:

Table 11. p-values in significance tests.

SVM-FE & BP-FE SVM-FE & LDA-FE BP-FE & LDA-FE

p-value 0.1679 9.5886 × 10−10 2.1404 × 10−6

By calculating the p-value, we find that the p-value between LDA-FE and SVM-FE,
BP-FE is much less than 0.05, so we can assume that the performance of LDA-FE is inferior
to the latter two; while the p-value between SVM-FE, BP-FE is 0.1679, which is much
greater than 0.05; therefore, according to SW as well as the MCC values, SVM-FE, BP-FE
are equally good.

7. Conclusions

With the advent of the post-genetic era, the number of protein sequences of unknown
structure and function has exploded. The advent of machine learning allows for efficient
processing of these sequences. In this paper, machine learning algorithms are used to
classify and identify intrinsically disordered proteins. The taxonomic identification of such
proteins is the first and most important step in understanding their biological properties.
In protein identification, feature extraction, which represents protein sequence information
in numerical form, is an important step in the overall model construction. In recent years,
a variety of feature extraction algorithms have been applied in bioinformatics research.
Appropriate feature extraction algorithms can achieve twice the result with half the effort.
The main research and the results achieved in this paper are summarized as follows:

1. In the sequence identification of intrinsically disordered proteins, this paper extracts
feature sets based on topological entropy, Shannon entropy, fuzzy entropy and in-
formation from two amino acid propensity tables. The multiple perspectives of
information extraction can lead to a better representation of the sequence information
of proteins. Among them, fuzzy entropy is applied as a feature for the first time in
this field.

2. In response to the uneven distribution of the dataset and the poor homogeneity of
the dataset as a whole, we have used a windowing approach to the dataset. After
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comparison, the windowed data is more robust and has a more concentrated data
distribution, and is more accurate for predicting inherently disordered proteins.

3. After comparison, the performance of all three algorithms we constructed was im-
proved after applying fuzzy entropy as a feature. Moreover, the recognition accuracy
of our algorithms is as accurate as several current algorithms. Among the three
schemes we constructed, BP-FE performs the best, and the MCC can reach 0.51, which
exceeds many existing schemes. It is worth noting that the algorithm that uses fuzzy
entropy as a feature requires only five features, whereas most algorithms used as a
comparison require more than 30 features to make predictions.

Overall, we provide a new way of thinking about feature selection for protein sequenc-
ing. However, due to the large number of knowledge points in the field of bioinformatics
and the short period of time in which the relevant research has been conducted, there are
certain shortcomings in the thesis. The following section summarizes the shortcomings of
this research and the ideas for future research work:

1. Although this paper has achieved good results for the identification of intrinsically
disordered proteins, a classification model with higher prediction accuracy and more
practical significance is needed for practical applications. Therefore, in future studies
on intrinsically disordered proteins, more in-depth studies will be carried out with
the aim of further improving the MCC by considering more influencing factors
as a condition. For example, amino acids possess more than 500 physicochemical
properties, can these five features we have chosen contain information on all aspects
of amino acids? This is a question that we need to focus on in our future work.

2. As classification of intrinsically disordered proteins is a more fundamental part of pro-
teomics, deeper exploration is essential in order to take full advantage of the unique
biological functions of each intrinsically disordered protein. Future research may
revolve around exploring the interactions between intrinsically disordered proteins,
protein-ligand interactions, etc.
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