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Abstract: In this paper, we present a new parametric family of three-step iterative for solving nonlin-
ear equations. First, we design a fourth-order triparametric family that, by holding only one of its
parameters, we get to accelerate its convergence and finally obtain a sixth-order uniparametric family.
With this last family, we study its convergence, its complex dynamics (stability), and its numerical
behavior. The parameter spaces and dynamical planes are presented showing the complexity of
the family. From the parameter spaces, we have been able to determine different members of the
family that have bad convergence properties, as attracting periodic orbits and attracting strange
fixed points appear in their dynamical planes. Moreover, this same study has allowed us to detect
family members with especially stable behavior and suitable for solving practical problems. Several
numerical tests are performed to illustrate the efficiency and stability of the presented family.

Keywords: nonlinear equations; multistep iterative methods; convergence analysis; complex dynam-
ics; chaos and stability

1. Introduction

Many problems in Computational Sciences and other disciplines can be stated in
the form of a nonlinear equation or nonlinear systems using mathematical modeling. In
particular, a large number of problems in Applied Mathematics and Engineering are solved
by finding the solutions of these equations.

In the literature, there are many methods and families of iterative schemes that have
been designed by using different procedures to approximate the simple roots of a nonlinear
equation f (x) = 0, where f : I ⊆ R → R is a real function defined in an open interval I.
We can find in [1–3] several surveys and overviews of the iterative schemes published in
the last years. Each method has a different behavior. This behavior is characterized with
the efficiency criteria and the complex dynamics tools.

In this paper, we introduce a new family of multistep iterative schemes to solve
nonlinear equations, which contains as an element of this family, a particular method
presented in [4]. This family is built from the Ostrowski’s scheme, adding a Newton step
with a “frozen” derivative and using a divided difference operator. Therefore, the family
has a three-step iterative expression. Furthermore, it has three arbitrary parameters named
α, β, and γ, which can take real or complex values, and an order of convergence of at least
four. The order of convergence will be discussed in Section 2.

From the error equation we observe by fixing two parameters in function of the third
one, an uniparametric family of sixth-order iterative methods is obtained. We analyze
the dynamical behavior of this family in terms of values of the parameter, in order to
detect its elements with good stability properties and others with chaotic behavior. The
concept of chaos has been widely discussed (see, for example, in [5]) and it is commonly
understood as the presence of complex orbit structure and extreme sensitivity of orbits
to small perturbations. Moreover, the presence of unstable periodic orbits of all periods
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is also included in the concept of chaotic system. For this study, we use tools of discrete
complex dynamics that we introduce in Section 3.

In Section 4, we present the performance of the presented schemes on several test
functions. These numerical tests allow us to confirm the results obtained in the dynamical
section and to compare our schemes with other known ones. The manuscript finishes with
some conclusions and the references used in it.

The parametric family object of study in this manuscript has the following iterative ex-
pression: 

yk = xk −
f (xk)

f ′(xk)
,

zk = yk −
f (yk)

2 f [xk, yk]− f ′(xk)
,

xk+1 = zk − (α + βuk + γvk)
f (zk)

f ′(xk)
,

(1)

where uk = 1 − f [xk, yk]

f ′(xk)
; vk =

f ′(xk)

f [xk, yk]
; k = 0, 1, 2, ...; and α, β, and γ are arbitrary

parameters.
The divided difference operator f [·, ·] : I × I ⊂ R×R→ L(R) defined by Ortega and

Rheinboldt in [6], satisfies

f [x, y](x− y) = f (x)− f (y), ∀x, y ∈ I. (2)

2. Convergence of the New Family

In this section, we perform the convergence analysis of the new triparametric iterative
family. Furthermore, we propose a strategy to reduce the triparametric scheme to an
uniparametric scheme in order to accelerate the convergence.

Theorem 1. Let f : I ⊆ R → R be a sufficiently differentiable function on an open interval I
and ξ ∈ I a simple root of the nonlinear equation f (x) = 0. Suppose that f (x) is continuous and
sufficiently differentiable in an environment of the simple root ξ, and x0 is an initial estimate close
enough to ξ. Then, the sequence {xk}k≥0 obtained by using the expression (1) converges to ξ with
an order of convergence of four, being its error equation

ek+1 = (1− α− γ)C2

(
C2

2 − C3

)
e4

k +O
(

e5
k

)
,

where ek = xk − ξ, Cq =
1
q!

f (q)(ξ)
f ′(ξ)

and q = 2, 3, ...

Proof. Let ξ be a simple root of f (x) (that is, f (ξ) = 0 and f ′(ξ) 6= 0) and xk = ξ + ek.
Using Taylor expansion of f (xk) and f ′(xk) around ξ, we have

f (xk) = f (ξ + ek)

= f (ξ) + f ′(ξ)ek +
1
2!

f ′′(ξ)e2
k +

1
3!

f ′′′(ξ)e3
k +

1
4!

f (iv)(ξ)e4
k +O(e

5
k)

= f ′(ξ)

[
ek +

1
2!

f ′′(ξ)
f ′(ξ)

e2
k +

1
3!

f ′′′(ξ)
f ′(ξ)

e3
k +

1
4!

f (iv)(ξ)
f ′(ξ)

e4
k +O(e

5
k)

]
= f ′(ξ)

[
ek + C2e2

k + C3e3
k + C4e4

k +O(e
5
k)
]
,

(3)

and
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f ′(xk) = f ′(ξ + ek)

= f ′(ξ) + f ′′(ξ)ek +
1
2!

f ′′′(ξ)e2
k +

1
3!

f (iv)(ξ)e3
k +O(e

4
k)

= f ′(ξ)

[
1 +

f ′′(ξ)
f ′(ξ)

ek +
1
2!

f ′′′(ξ)
f ′(ξ)

e2
k +

1
3!

f (iv)(ξ)
f ′(ξ)

e3
k +O(e

4
k)

]
= f ′(ξ)

[
1 + 2C2ek + 3C3e2

k + 4C4e3
k +O(e

4
k)
]
,

(4)

where Cq =
1
q!

f (q)(ξ)
f ′(ξ)

, q = 2, 3, ...

Dividing (3) by (4), we get

f (xk)

f ′(xk)
= ek − C2e2

k + 2
(

C2
2 − C3

)
e3

k −
(

4C3
2 − 7C2C3 + 3C4

)
e4

k +O
(

e5
k

)
. (5)

Replacing (5) in the first step of family (1), we have

yk = ξ + C2e2
k − 2

(
C2

2 − C3

)
e3

k +
(

4C3
2 − 7C2C3 + 3C4

)
e4

k +O
(

e5
k

)
. (6)

Using Taylor expansion again, similar to (3), to develop f (yk) around ξ, we get

f (yk) = f ′(ξ)
[
C2e2

k − 2
(

C2
2 − C3

)
e3

k +
(

5C3
2 − 7C2C3 + 3C4

)
e4

k +O
(

e5
k

)]
. (7)

With (3), (6), and (7), we calculate the divided difference operator defined in (2), obtaining

f [xk, yk] = f ′(ξ)
[
1 + C2ek +

(
C2

2 + C3

)
e2

k −
(

2C3
2 − 3C2C3 − C4

)
e3

k +O
(

e4
k

)]
. (8)

Then, substituting (3), (4), (6), and (8) in the second step of family (1), we have

zk = ξ +
(

C3
2 − C2C3

)
e4

k +O
(

e5
k

)
. (9)

Using Taylor series once again, similar to (3), to expand f (zk) around ξ, we get

f (zk) = f ′(ξ)
[(

C3
2 − C2C3

)
e4

k +O
(

e5
k

)]
. (10)

Replacing (4) and (8) in uk and vk of family (1), we have

uk = C2ek −
(

3C2
2 − 2C3

)
e2

k +
(

8C3
2 − 10C2C3 + 3C4

)
e3

k +O
(

e4
k

)
, (11)

vk = 1 + C2ek − 2
(

C2
2 − C3

)
e2

k + 3
(

C3
2 − 2C2C3 + C4

)
e3

k +O
(

e4
k

)
. (12)

Finally, substituting (4), (9)–(12) in the third step of family (1), we get

xk+1 = ξ + (1− α− γ)C2

(
C2

2 − C3

)
e4

k +O
(

e5
k

)
, (13)

being the error equation

ek+1 = (1− α− γ)C2

(
C2

2 − C3

)
e4

k +O
(

e5
k

)
, (14)

and the proof is finished.

From Theorem 1, it follows that the new triparametric family of iterative methods has
an order of convergence of four for any real or complex values of the parameters α, β, and
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γ. However, convergence can be speed-up if only one parameter is held and the family is
reduced to an uniparametric iterative scheme. The latter can be seen in Theorem 2.

Theorem 2. Let f : I ⊆ R → R be a sufficiently differentiable function on an open interval I
and ξ ∈ I a simple root of the nonlinear equation f (x) = 0. Suppose that f (x) is continuous and
sufficiently differentiable in an environment of the simple root ξ, and x0 is an initial estimate close
enough to ξ. Then, the sequence {xk}k≥0 obtained by using the expression (1) converges to ξ with
an order of convergence of six, provided that β = 1 + α and γ = 1− α, being its error equation

ek+1 =
(

6C5
2 − 7C3

2C3 + C2C2
3

)
e6

k +O
(

e7
k

)
,

where ek = xk − ξ, Cq =
1
q!

f (q)(ξ)
f ′(ξ)

and q = 2, 3, ...

Proof. Let ξ be a simple root of f (x) (that is, f (ξ) = 0 and f ′(ξ) 6= 0) and xk = ξ + ek.
Using Taylor expansion of f (xk) and f ′(xk) around ξ, we have

f (xk) = f (ξ + ek)

= f (ξ) + f ′(ξ)ek +
1
2!

f ′′(ξ)e2
k + · · ·+

1
6!

f (vi)(ξ)e6
k +O(e

7
k)

= f ′(ξ)

[
ek +

1
2!

f ′′(ξ)
f ′(ξ)

e2
k + · · ·+

1
6!

f (vi)(ξ)

f ′(ξ)
e6

k +O(e
7
k)

]
= f ′(ξ)

[
ek + C2e2

k + C3e3
k + C4e4

k + C5e5
k + C6e6

k +O(e
7
k)
]
,

(15)

and
f ′(xk) = f ′(ξ + ek)

= f ′(ξ) + f ′′(ξ)ek +
1
2!

f ′′′(ξ)e2
k + · · ·+

1
5!

f (vi)(ξ)e5
k +O(e

6
k)

= f ′(ξ)

[
1 +

f ′′(ξ)
f ′(ξ)

ek +
1
2!

f ′′′(ξ)
f ′(ξ)

e2
k + · · ·+

1
5!

f (vi)(ξ)

f ′(ξ)
e5

k +O(e
6
k)

]
= f ′(ξ)

[
1 + 2C2ek + 3C3e2

k + 4C4e3
k + 5C5e4

k + 6C6e5
k +O(e

6
k)
]
,

(16)

where Cq =
1
q!

f (q)(ξ)
f ′(ξ)

, q = 2, 3, ...

Dividing (15) by (16), we get

f (xk)

f ′(xk)
= ek − C2e2

k + 2
(

C2
2 − C3

)
e3

k −
(

4C3
2 − 7C2C3 + 3C4

)
e4

k+(
8C4

2 − 20C2
2C3 + 6C2

3 + 10C2C4 − 4C5

)
e5

k −
(

16C5
2 − 52C3

2C3+

28C2
2C4 − 17C3C4 + C2

(
33C2

3 − 13C5

)
+ 5C6

)
e6

k +O
(

e7
k

)
.

(17)

Replacing (17) in the first step of family (1), we have

yk = ξ + C2e2
k − 2

(
C2

2 − C3

)
e3

k +
(

4C3
2 − 7C2C3 + 3C4

)
e4

k−(
8C4

2 − 20C2
2C3 + 6C2

3 + 10C2C4 − 4C5

)
e5

k +
(

16C5
2 − 52C3

2C3+

28C2
2C4 − 17C3C4 + C2

(
33C2

3 − 13C5

)
+ 5C6

)
e6

k +O
(

e7
k

)
.

(18)
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Using Taylor expansion again, similar to (15), to expand f (yk) around ξ, we get

f (yk) = f ′(ξ)
[
C2e2

k − 2
(

C2
2 − C3

)
e3

k +
(

5C3
2 − 7C2C3 + 3C4

)
e4

k−

2
(

6C4
2 − 12C2

2C3 + 3C2
3 + 5C2C4 − 2C5

)
e5

k +
(

28C5
2 − 73C3

2C3+

34C2
2C4 − 17C3C4 + C2

(
37C2

3 − 13C5

)
+ 5C6

)
e6

k +O
(

e7
k

)]
.

(19)

With (15), (18), and (19), we calculate the divided difference operator defined in (2),
obtaining

f [xk, yk] = f ′(ξ)
[
1 + C2ek +

(
C2

2 + C3

)
e2

k −
(

2C3
2 − 3C2C3 − C4

)
e3

k+(
4C4

2 − 8C2
2C3 + 2C2

3 + 4C2C4 + C5

)
e4

k +
(
−8C5

2 + 20C3
2C3−

11C2
2C4 + 5C3C4 + C2

(
−9C2

3 + 5C5

)
+ C6

)
e5

k +O
(

e6
k

)]
.

(20)

Then, substituting (15), (16), (18), and (20) in the second step of family (1), we have

zk = ξ +
(

C3
2 − C2C3

)
e4

k − 2
(

2C4
2 − 4C2

2C3 + C2
3 + C2C4

)
e5

k+(
10C5

2 − 30C3
2C3 + 12C2

2C4 − 7C3C4 + 3C2

(
6C2

3 − C5

))
e6

k +O
(

e7
k

)
.

(21)

Using Taylor series once again, similar to (15), to expand f (zk) around ξ, we get

f (zk) = f ′(ξ)
[(

C3
2 − C2C3

)
e4

k − 2
(

2C4
2 − 4C2

2C3 + C2
3 + C2C4

)
e5

k+(
10C5

2 − 30C3
2C3 + 12C2

2C4 − 7C3C4 + 3C2

(
6C2

3 − C5

))
e6

k +O
(

e7
k

)]
.

(22)

Replacing (16) and (20) in uk and vk of family (1), we have

uk = C2ek −
(

3C2
2 − 2C3

)
e2

k +
(

8C3
2 − 10C2C3 + 3C4

)
e3

k +
(
−20C4

2 + 37C2
2C3−

8C2
3 − 14C2C4 + 4C5

)
e4

k +
(

48C5
2 − 118C3

2C3 + 51C2
2C4 − 22C3C4+

C2

(
55C2

3 − 18C5

)
+ 5C6

)
e5

k +O
(

e6
k

)
,

(23)

vk = 1 + C2ek − 2
(

C2
2 − C3

)
e2

k + 3
(

C3
2 − 2C2C3 + C4

)
e3

k +
(
−3C4

2 + 11C2
2C3−

4C2
3 − 8C2C4 + 4C5

)
e4

k +
(
−10C3

2C3 + 14C2
2C4 + C2

(
11C2

3 − 10C5

)
+

5(−2C3C4 + C6)
)

e5
k +O

(
e6

k

)
.

(24)

Finally, substituting (16) and (21)–(24) in the third step of family (1), we get

xk+1 = ξ + (1− α− γ)C2

(
C2

2 − C3

)
e4

k +
(
(−4 + 6α− β + 5γ)C4

2+

(8− 10α + β− 9γ)C2
2C3 − 2(1− α− γ)C2

3 − 2(1− α− γ)C2C4

)
e5

k+(
(10− 22α + 9β− 14γ)C5

2 − (30− 53α + 15β− 39γ)C3
2C3+

2(6− 8α + β− 7γ)C2
2C4 − 7(1− α− γ)C3C4+

C2

(
(18− 25α + 4β− 21γ)C2

3 − 3(1− α− γ)C5

))
e6

k +O
(

e7
k

)
,

(25)
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being the error equation

ek+1 = (1− α− γ)C2

(
C2

2 − C3

)
e4

k +
(
(−4 + 6α− β + 5γ)C4

2+

(8− 10α + β− 9γ)C2
2C3 − 2(1− α− γ)C2

3 − 2(1− α− γ)C2C4

)
e5

k+(
(10− 22α + 9β− 14γ)C5

2 − (30− 53α + 15β− 39γ)C3
2C3+

2(6− 8α + β− 7γ)C2
2C4 − 7(1− α− γ)C3C4+

C2

(
(18− 25α + 4β− 21γ)C2

3 − 3(1− α− γ)C5

))
e6

k +O
(

e7
k

)
.

(26)

To cancel the factors accompanying e4
k and e5

k in (26), it must be satisfied that α+ γ = 1,
6α− β + 5γ = 4 and 10α− β + 9γ = 8. It is easy to show that this system of equations has
infinite solutions for

β = 1 + α and γ = 1− α, (27)

where α is a free parameter. Therefore, replacing (27) in (26), we obtain

ek+1 =
(

6C5
2 − 7C3

2C3 + C2C2
3

)
e6

k +O
(

e7
k

)
, (28)

and the proof is finished.

From Theorem 2, it follows that, if we only hold parameter α in (1), the new tripara-
metric family of iterative methods is reduced to an uniparametric family with an order of
convergence of six for any real or complex values of the parameters α, β and γ, as long
as (27) is satisfied. Therefore, the iterative expression of the new uniparametric family,
dependent only on parameter α and which we will call CMT(α) family, is defined as

yk = xk −
f (xk)

f ′(xk)
,

zk = yk −
f (yk)

2 f [xk, yk]− f ′(xk)
,

xk+1 = zk − (α + (1 + α)uk + (1− α)vk)
f (zk)

f ′(xk)
,

(29)

where uk = 1− f [xk, yk]

f ′(xk)
, vk =

f ′(xk)

f [xk, yk]
, and k = 0, 1, 2, ...

Because of the results obtained with the convergence analysis carried out, from now
on we will only work with CMT(α) family of iterative methods and, to select the best
members of this family, we will use the complex dynamics tools discussed in Section 3.

3. Complex Dynamics Behavior

This topic refers to the study of the behavior of a rational function associated with an
iterative family or method. From the numerical point of view, the dynamical properties
of the referred rational function give us important information about its stability and
reliability. The parameter spaces of a family of methods, built from the critical points, allow
us to understand the performance of the different members of the family, helping us in the
election of a particular one. The dynamical planes show the behavior of these particular
methods in terms of the basins of attraction of their fixed points, periodic points, etc. A
basin of attraction provides us to visually interpret how a method works based on several
initial estimates.

In this section, we present the study of the complex dynamics of CMT (α) family given
in (29). To do this, we construct a rational operator associated with the family, on a generic
low-degree nonlinear polynomial, and we analyze the stability and convergence of the
corresponding fixed and critical points. Then, we construct the parameter spaces of the
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free critical points and generate dynamical planes of some methods of the family for good
and bad values of α, in terms of stability.

3.1. Rational Operator

The rational operator can be built on any nonlinear function; however, we construct
this operator on quadratic polynomials, as the criterion of stability or instability of a method
applied to these polynomials can be generalized for other nonlinear functions.

Proposition 1. Let p(x) = (x− a)(x− b) be a generic quadratic polynomial with roots a, b ∈ R.
Therefore, the rational operator Rα(x) associated with CMT(α) family given in (29) and applied on
p(x), is

Rα(x) =
x6(x6 + 5x5 + 12x4 + 19x3 + 21x2 + 14x + α + 5

)
(α + 5)x6 + 14x5 + 21x4 + 19x3 + 12x2 + 5x + 1

, (30)

with α ∈ C an arbitrary parameter. Furthermore, if α ∈ {−77,−1, 1, 5}, Rα(x) is simplified
as shown

R−77(x) = −
x6(x5 + 6x4 + 18x3 + 37x2 + 58x + 72

)
72x5 + 58x4 + 37x3 + 18x2 + 6x + 1

, (31)

R−1(x) =
x6(x4 + 3x3 + 5x2 + 6x + 4

)
4x4 + 6x3 + 5x2 + 3x + 1

, (32)

R1(x) =
x6(x4 + 4x3 + 7x2 + 8x + 6

)
6x4 + 8x3 + 7x2 + 4x + 1

, (33)

R5(x) =
x6(x4 + 5x3 + 11x2 + 14x + 10

)
10x4 + 14x3 + 11x2 + 5x + 1

. (34)

Proof. Let p(x) = (x− a)(x− b) be a generic quadratic polynomial with roots a, b ∈ R.
We apply the iterative scheme given in (29) on p(x) and obtain a rational function Ap,α(x)
which depends on the roots a, b ∈ R and a parameter α ∈ C. Then, if we use Möbius
transformation (see in [7–9]) in Ap,α(x) with

h(w) =
w− a
w− b

,

that satisfies h(∞) = 1, h(a) = 0 and h(b) = ∞, we get

Rα(x) =
(

h ◦ Ap,α ◦ h−1
)
(x) =

x6(x6 + 5x5 + 12x4 + 19x3 + 21x2 + 14x + α + 5
)

(α + 5)x6 + 14x5 + 21x4 + 19x3 + 12x2 + 5x + 1
, (35)

which only depends on an arbitrary parameter α ∈ C. Furthermore, if we factor numerator
and denominator of (35), it is easy to show that for α ∈ {−77,−1, 1, 5} some roots coincide
and simplify Rα(x), as it is observed in Equations (31)–(34), and the proof is finished.

From Proposition 1, for four values of α the rational operator Rα(x) is simpler, so
there will be fewer fixed and critical points that can improve the stability of the associated
methods. This will be seen in Sections 3.2 and 3.3.

3.2. Analysis and Stability of Fixed Points

We calculate the fixed points of the rational operator Rα(x) given in (30) and analyze
their stability.

Proposition 2. The fixed points of Rα(x) are the roots of the equation Rα(x) = x. That is, x = 0,
x = ∞ and the following strange fixed points:

• ex1 = 1 (if α 6= −77), and
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• exi(α) that correspond to the 10 roots of polynomial x10 + 6x9 + 18x8 + 37x7 + 58x6− (α−
67)x5 + 58x4 + 37x3 + 18x2 + 6x + 1, where i = 2, ..., 11.

The total number of different fixed points varies with the value of α:

• If α ∈ C and α /∈ {−77,−1, 1, 5, 307}, then Rα(x) has 13 fixed points.
• If α = −77, then ex1 = 1 is not a fixed point and Rα(x) has 12 fixed points.
• If α ∈ {−1, 1, 5}, then Rα(x) has 11 fixed points.
• If α = 307, then ex1 = ex2 = ex3 = 1 and Rα(x) has 11 fixed points.

The pairs of conjugated strange fixed points, satisfying exi =
1

exj
for i 6= j, are ex2 and ex3,

ex4 and ex5, ex6 and ex9, ex7 and ex8, and ex10 and ex11.

From Proposition 2, we establish there is a minimum of 11 and a maximum of 13 fixed
points. Of these, 0 and ∞ correspond to the roots of the original quadratic polynomial
p(x), and the strange fixed point ex1 = 1 (if α 6= −77) corresponds to the divergence of the
original method, before Möbius transformation.

Proposition 3. The stability of the strange fixed point ex1 = 1, ∀α ∈ Cr {−77}, verifies:

(i) If
∣∣∣∣ 384
77 + α

∣∣∣∣ < 1, then ex1 is an attractor.

(ii) If
∣∣∣∣ 384
77 + α

∣∣∣∣ > 1, then ex1 is a repulsor.

(iii) If
∣∣∣∣ 384
77 + α

∣∣∣∣ = 1, then ex1 is parabolic.

ex1 is never a superattractor because
∣∣∣∣ 384
77 + α

∣∣∣∣ 6= 0. The superattracting fixed points that

satisfy |R′α(x)| = 0 are x = 0, x = ∞ and the following strange fixed points:

• ex4, ex5 for α = −0.949874± 0.16946i,
• ex6, ex9 for α = 2.40285± 1.11088i, and
• ex10, ex11 for α = 178.653.

The repulsive fixed points, which always satisfy |R′α(x)| > 1, are the strange fixed points ex2
and ex3.

It is clear that 0 and ∞ are always superattracting fixed points, but the stability of the
rest of fixed points depends on the values of parameter α. From Proposition 3, there are
6 strange fixed points that can become superattractors for certain values of α. This means
that there would be a basin of attraction of the strange fixed point and it could cause the
method not to converge to the solution.

Figure 1 shows the stability surface of the strange fixed point ex1. In this figure, the
zones of attraction (yellow surface) and repulsion (gray surface) are observed, being the
first one much greater than the second one. Note that for values of α inside disk, ex1 is
a repulsor; and, for off-disk values of α, ex1 is an attractor. Therefore, it is in our interest
to always work inside the disk because the strange fixed point ex1 = 1 comes from the
divergence of the original method and, therefore, it is better for the performance of the
iterative method that the divergence is repulsive.

From Proposition 2, the study of the stability of strange fixed points is reduced
by a half. This is because each pair of conjugated strange fixed points exhibits the same
stability characteristics. Furthermore, due to Proposition 3, ex2 and ex3 are always repulsors
regardless of the value of α. Thus, Figure 2 shows the stability surfaces of the remaining
8 strange fixed points, which can be attracting or repulsive depending on the value of α,
for analysis.
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Figure 1. Stability surface of ex1 = 1 (in gray color, the complex area where the fixed point is repulsive,
being attracting in the rest).

3.3. Analysis of Critical Points

We calculate the critical points of the rational operator Rα(x) given in (30).

Proposition 4. The critical points of Rα(x) are the roots of the equation R′α(x) = 0. That is,
x = 0, x = ∞ and the following free critical points:

• cr1 = −1,
• cr2 = −i,
• cr3 = i, and
• cri(α) that correspond to the 6 roots of polynomial (6α + 30)x6 + (α + 103)x5 + (2α +

206)x4 + (−6α + 246)x3 + (2α + 206)x2 + (α + 103)x + 6α + 30, where i = 4, ..., 9.

The total number of different critical points varies with the value of α:

• If α ∈ C and α /∈ {−77,−5,−1, 1, 5}, then Rα(x) has 11 critical points.
• If α ∈ {−77,−5,−1}, then Rα(x) is simplified or reduced and has 9 critical points.
• If α ∈ {1, 5}, then Rα(x) is simplified and has 7 critical points.

The pairs of conjugated free critical points, satisfying cri =
1

crj
for i 6= j, are cr2 and cr3, cr4

and cr5, cr6 and cr7, and cr8 and cr9.

From Proposition 4, we establish there is a minimum of 7 and a maximum of 11 critical
points. Of these, 0 and ∞ correspond to the roots of the original quadratic polynomial p(x).
The free critical points cr1 = −1, cr2 = −i, and cr3 = i are pre-images of the strange fixed
point ex1 = 1. Therefore, the stability of cr1, cr2, and cr3 will correspond to the stability of
ex1 (see Section 3.2). Moreover, the dynamical study of the free critical points is reduced
by a half because each pair of conjugated free critical points presents the same stability
characteristics. This will be seen in Section 3.4.
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(a) ex4 and ex5

(b) ex6 and ex9

(c) ex7 and ex8

(d) ex10 and ex11

Figure 2. Stability surfaces of 8 strange fixed points (in gray color, the complex area where each fixed
point is repulsive, being attracting in the rest).
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3.4. Parameter Spaces

The dynamical behavior of operator Rα(x) depends on the values of parameter α. The
parameter space is defined as a mesh in the complex plane where each point of this mesh
corresponds to a different value of α. Its graphical representation shows the convergence
analysis of a method of CMT (α) family associated with this α using one of the free critical
points cr(α) given in Proposition 4 as initial estimate. The resulting graphic is made in
Matlab R2020a programming package with a resolution of 1000 × 1000 pixels. If a method
converges to any of the roots starting from cr(α) in a maximum of 80 iterations with a
tolerance of 10−3, the pixel is colored red; in other cases, the pixel is colored black.

Each value of α that belongs to the same connected component of the parameter space
results in subsets of schemas with similar dynamical behavior. Therefore, it is interesting to
find regions of the parameter space as stable as possible (red regions), because these values
of α will give us the best members of the family in terms of numerical stability.

CMT(α) family has a maximum of 9 free critical points. Of these, cr1, cr2, and cr3 have
the same parameter space which corresponds to the stability surface of ex1 (see Figure 1),
because they are pre-images of this point. The remaining free critical points, cr4 to cr9, are
conjugated in pairs (see Proposition 4), which gives rise to 3 different parameter spaces.
These parameter spaces, named P1 (for x = cr4, cr5), P2 (for x = cr6, cr7), and P3 (for
x = cr8, cr9), are shown in Figure 3.

From Figure 3b,c, we observe that the parameter spaces P2 and P3 have similar charac-
teristics; then, we can select any of them for analysis.

On the one hand, if we choose values of α inside the stability regions (red regions)
of the parameter spaces, for example, α = −1, 0, 1, the methods associated with these
parameters will show good dynamical behavior in terms of numerical stability. Further-
more, note that these particular values of α simplify the iterative scheme of CMT(α) family
given in (29) by canceling a term in its third step. This is especially useful to improve the
computational efficiency of the associated method because the processing times required
to reach the solution are reduced (see Section 4).

On the other hand, if we choose values of α outside the stability regions (black regions)
of the parameter spaces, for example α = −300, 200, 400, the methods associated with
these parameters will show poor dynamical behavior in terms of numerical stability.

The methods associated with the values of α treated above are discussed in Section 3.5.

3.5. Dynamical Planes

We begin this section by presenting how we generate a dynamical plane that will
allow us to see the stability of a method for a specific value of α. This is defined as a mesh
in the complex plane where each point of this mesh corresponds to a different value of the
initial estimate x0. Its graphical representation shows the convergence of the method to
any of the roots starting from x0 with a maximum of 50 iterations and a tolerance of 10−3.
Fixed points are illustrated with a white circle “#”, critical points with a white square “�”
and attractors with a white asterisk “∗”. Moreover, the basins of attraction are depicted
in different colors. The resulting graphic is made in Matlab R2020a with a resolution of
1000 × 1000 pixels.

Here, we study the stability of some CMT(α) family methods through the use of
dynamical planes. We will consider the methods proposed in Section 3.4 for values of α
inside and outside the stability regions of the parameter spaces.

On the one hand, examples of methods inside the stability region are given for
α = −1, 0, 1. Their dynamical planes with some convergence orbits in yellow are shown in
Figure 4. Note that all three methods present only two basins of attraction associated with
the roots: the basin of 0 colored in orange and the basin of ∞ colored in blue. Furthermore,
there are no black areas of non-convergence to the solution. Consequently, these methods
show good dynamical behavior: they are very stable. Of these methods, the best member
of CMT(α) family is for α = 1, as it has fewer strange fixed points and free critical points.
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(a) P1 for x = cr4, cr5

(b) P2 for x = cr6, cr7

(c) P3 for x = cr8, cr9

Figure 3. Parameter spaces of free critical points (in red color, the complex area where the corre-
sponding critical point converges to 0 or ∞, that is, the stability region).
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(a) α = −1

(b) α = 0

(c) α = 1

Figure 4. Dynamical planes for methods inside the stability region (basin of attraction of 0 in orange
color; in blue color, the basin of ∞).

On the other hand, examples of methods outside the stability region are given for
α = −300, 200, 400. Their dynamical planes with some convergence orbits in yellow are
shown in Figure 5. Note that all three methods present more than two basins of attraction,
that is, there are other basins of attraction that do not correspond to the roots. The basins of 0
and ∞ are colored in orange and blue, respectively, and the other basins are colored in black,
red, and green. Figure 5a shows the convergence to an attracting periodic orbit of period 2.
Figure 5b,c shows the convergence to an attracting strange fixed point. Furthermore, let us
remark that in the three figures the basin of 0 is very small, due to the presence of the other
basins of attraction, which reduces the chances of convergence to the solution. Likewise,
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there are black areas of slow convergence of the methods. Consequently, these methods
have poor dynamical behavior: they are unstable.

(a) α = −300

(b) α = 200

(c) α = 400

Figure 5. Dynamical planes for methods outside the stability region (basin of attraction of 0 in orange
color; in blue color, the basin of ∞; in green or red color, the basin of attracting strange fixed points).
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4. Numerical Results

Here, we perform several numerical tests in order to check the theoretical convergence
and stability results of CMT(α) family obtained in previous sections. To do this, we use
some stable and unstable methods of (29). These methods are applied on five nonlinear
test functions, whose expressions and corresponding roots are

f1(x) = sin (x)− x2 + 1, ξ ≈ −0.6367326508,

f2(x) = cos (x)− x exp (x) + x2, ξ ≈ 0.6391540963,

f3(x) = x3 + 4x2 − 10, ξ ≈ 1.3652300134,

f4(x) =
√

x2 + 2x + 5− 2 sin (x)− x2 + 3, ξ ≈ 2.3319676559,

f5(x) =
√

x4 + sin
( π

x2

)
− 3

16
, ξ ≈ −0.9059869793.

Thus, we performed two experiments. In a first experiment, we carried out a effi-
ciency analysis of CMT(α) family through a comparative study between one of its stable
methods and five different methods given in the literature: Newton of order 2, Ostrowski
of order 4, and three other methods of order 6 proposed by Alzahrani et al. in [10] (ABA),
Chun and Ham in [11] (CH), and Amat et al. in [12] (AHR). In a second experiment, we
carried out a stability analysis of CMT (α) family using six of its methods obtained with
three good and three bad values of parameter α, in terms of stability.

In the development of the numerical tests we start the iterations with different initial
estimates: close (x0 ≈ ξ), far (x0 ≈ 10ξ), and very far (x0 ≈ 100ξ) to the root ξ, respectively.
This allows us to measure, to some extent, how demanding the methods are relative to the
initial estimation for finding a solution.

The calculations are developed in Matlab R2020a programming package using variable
precision arithmetics with 200 digits of mantissa. For each method, we analyze the number
of iterations (iter) required to converge to the solution, so that the stopping criteria |xk+1 −
xk| < 10−100 or | f (xk+1)| < 10−100 are satisfied. Note that |xk+1 − xk| represents the error
estimation between two consecutive iterations and | f (xk+1)| is the residual error of the
nonlinear test function. This stopping criterium does not need the exact solution, on the
contrary of absolute error, and differs from recent ones as CESTAC (see in [13]) in the
absence of additional calculations or functional evaluations, as f (xk+1) is needed for the
following iteration and its absolute values is an efficient control element of the proximity
to the exact root, where f is zero. Indeed, although a precision of one hundred exact digits
is not usually necessary in the applications, we employ this value in the stopping criterium
as it is useful to check the robustness and effectiveness of the numerical methods.

To check the theoretical order of convergence (p), we calculate the approximate com-
putational order of convergence (ACOC) given by Cordero and Torregrosa in [14]. In the
numerical results presented below, if the ACOC vector inputs do not stabilize their values
throughout the iterative process, it is marked as “-”; and, if any of the methods used does
not reach convergence in a maximum of 50 iterations, it is marked as “nc”.

To illustrate the computational efficiency of each used method, the processing time
(tcpu) in seconds required by the iterative scheme to converge to the solution is measured.
This value is determined as the arithmetic mean of 10 runs of the method.

4.1. First Experiment: Efficiency Analysis of CMT (α) Family

In this experiment, we carried out a comparative study between a stable method of
CMT (α) family and the methods of Newton, Ostrowski, ABA, CH and AHR, in order
to contrast their numerical performances in nonlinear equations. We consider as a stable
member of CMT (α) family the method associated with α = 1, that is, CMT(1).
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Thereby, in Tables 1–3 we show the numerical results of the six known methods,
considering close, far, and very far initial estimates. Furthermore, in Figure 6 we show
graphics that summarize these results for the number of iterations (iter) and the processing
time (tcpu).

Therefore, from the results of the first experiment we conclude that CMT(α) family has
an excellent numerical performance considering a stable member (α = 1) as a representative.
This conclusion has been made based on the following aspects from Tables 1–3: CMT (1)
method has the lowest error and lowest number of iterations (iter). However, the mean
of the execution time (tcpu) varies according to the nonlinear test function used and the
inherent complexity that the iterative scheme of the method presents on the nonlinear
function. In several cases, the tcpu of the CMT (1) method is significantly lower than the
6th order ABA, CH and AHR methods. The theoretical convergence order is also verified
by the ACOC, which is close to 6.

Table 1. Numerical performance of iterative methods in nonlinear equations for x0 close to ξ.

Function Method |xk+1− xk| | f (xk+1)| iter ACOC tcpu

f1 CMT(1) 7.6395× 10−19 1.8769× 10−110 3 5.5148 0.1257
x0 = −1.6 Newton 3.2063× 10−84 7.2243× 10−168 8 2 0.1225

Ostrowski 3.6277× 10−39 2.1775× 10−155 4 3.9988 0.1036
ABA 6.3941× 10−19 5.2542× 10−111 3 5.5472 0.1201
CH 3.9619× 10−19 3.095× 10−112 3 5.5336 0.1173
AHR 6.9779× 10−86 0 4 5.9989 0.1381

f2 CMT(1) 1.1915× 10−19 3.2336× 10−114 4 6.0717 0.2913
x0 = −0.4 Newton 6.977× 10−101 9.2573× 10−201 10 2 0.2747

Ostrowski 3.6009× 10−28 5.8295× 10−111 4 3.9993 0.1899
ABA 6.593× 10−46 0 4 6.0055 0.4278
CH 4.0133× 10−50 6.8135× 10−208 5 5.9951 0.5636
AHR 1.4561× 10−73 0 10 5.9991 0.7038

f3 CMT(1) 5.868× 10−64 0 7 5.9957 0.4654
x0 = 0.4 Newton 3.2665× 10−83 8.6382× 10−165 10 2 0.2818

Ostrowski 1.3665× 10−51 5.077× 10−204 5 3.9999 0.1682
ABA 2.5625× 10−27 4.3729× 10−160 5 5.8933 0.224
CH 2.4971× 10−24 4.0266× 10−142 9 5.8498 0.4374
AHR 2.1589× 10−36 0 12 5.9521 0.5912

f4 CMT(1) 1.2572 ×10−32 3.2096× 10−195 3 5.717 0.6075
x0 = 1.3 Newton 7.2803× 10−95 1.2821× 10−189 7 2 0.4947

Ostrowski 1.0395× 10−64 1.5574× 10−207 4 4 0.535
ABA 4.7735× 10−26 8.9685× 10−156 3 5.9419 0.598
CH 1.6112× 10−32 1.7919× 10−194 3 5.6961 0.6046
AHR 3.0816× 10−22 1.1423× 10−131 3 5.6812 0.4497

f5 CMT(1) 2.5535× 10−53 6.4242× 10−207 6 5.9132 1.2222
x0 = −1.9 Newton 3.4167× 10−84 8.1562× 10−167 8 2 0.6295

Ostrowski 4.1408× 10−38 2.4627× 10−142 4 4.0146 0.5521
ABA 5.637× 10−65 1.9467× 10−208 5 6.0107 0.9561
CH 1.0828× 10−43 1.0707× 10−207 6 6.2212 1.1314
AHR 5.6988× 10−26 4.6285× 10−106 4 5.7855 0.5939
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4.2. Second Experiment: Stability Analysis of CMT(α) Family

In this experiment, we carried out a stability analysis of CMT (α) family considering
some values of α inside the stability regions of the parameter spaces (α = −1, 0, 1) and
outside of them (α = −300, 200, 400).

Thus, in Tables 4–9 we show the numerical performance of iterative methods associ-
ated with these values of α for close, far, and very far initial estimations. The results for
α = 1 were already presented in the first experiment; however, these are presented again
due to the different conditions in which each experiment was performed.

On the one hand, from Tables 4–6 we observe that the methods associated with
α = −1, 0, 1 always converge to the solution, although the number of iterations (iter)
needed differs for any initial estimate and nonlinear test function. Thus, in estimations
close to the root, the methods converge to ξ with a minimum iter of 3 and a maximum of 7.
When the initial guess is far from the root, they converge to ξ with a minimum iter of 4 and
a maximum of 22. When the starting estimations are very far from the root, the iterative
schemes converge to ξ with a minimum iter of 6 and a maximum of 37.

Table 2. Numerical performance of iterative methods in nonlinear equations for x0 far from ξ.

Function Method |xk+1− xk| | f (xk+1)| iter ACOC tcpu

f1 CMT(1) 4.3721× 10−23 6.595× 10−136 4 5.7093 0.163
x0 = −6 Newton 4.549× 10−85 1.4542× 10−169 10 2 0.1527

Ostrowski 7.5454× 10−40 4.0753× 10−158 5 3.9989 0.1487
ABA 6.5662× 10−25 6.1621× 10−147 4 5.775 0.1607
CH 9.4464× 10−24 5.6868× 10−140 4 5.7326 0.1811
AHR 9.9786× 10−85 0 5 5.9988 0.1578

f2 CMT(1) 6.0086× 10−60 0 16 5.9975 0.9939
x0 = −6 Newton 2.9103× 10−57 1.6107× 10−113 12 2 0.2714

Ostrowski 1.7318× 10−82 6.8135× 10−208 8 4 0.3234
ABA 2.9737× 10−18 6.4713× 10−106 10 - 0.6234
CH 4.8167× 10−51 0 14 5.9955 0.8618
AHR 1.0711× 10−58 0 6 5.9971 0.3006

f3 CMT(1) 4.2145× 10−24 1.1268× 10−140 10 5.8416 0.4353
x0 = −14 Newton nc nc nc nc nc

Ostrowski 2.3325× 10−76 0 37 4 0.9868
ABA 9.1479× 10−18 9.0509× 10−103 24 6.2542 1.1023
CH 5.0027× 10−98 0 17 5.9997 0.7088
AHR nc nc nc nc nc

f4 CMT(1) 4.6353× 10−98 2.3361× 10−207 5 5.9995 0.978
x0 = −23 Newton 9.6577× 10−79 1.3216× 10−156 10 2 0.683

Ostrowski 8.1672× 10−31 5.8293× 10−122 5 3.9956 0.6646
ABA 1.3364× 10−69 2.3361× 10−207 5 5.9961 0.9691
CH 4.543× 10−99 2.3361× 10−207 5 5.9996 0.9597
AHR 1.7793× 10−56 2.3361× 10−207 5 5.9898 0.6951

f5 CMT(1) 3.9117× 10−41 9.6363× 10−207 5 6.1766 0.9564
x0 = −9 Newton 1.2423× 10−55 1.9722× 10−109 9 2 0.615

Ostrowski 2.9225× 10−29 1.7446× 10−112 5 3.9821 0.6514
ABA 2.0254× 10−31 5.3498× 10−181 5 5.5153 0.9702
CH 6.524× 10−29 3.5709× 10−159 6 6.2558 1.1451
AHR 1.6141× 10−41 9.7687× 10−148 12 5.8222 1.592
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Table 3. Numerical performance of iterative methods in nonlinear equations for x0 very far from ξ.

Function Method |xk+1− xk| | f (xk+1)| iter ACOC tcpu

f1 CMT(1) 6.8586× 10−80 0 6 5.9981 0.2413
x0 = −60 Newton 3.1826× 10−73 7.1179× 10−146 13 2 0.2003

Ostrowski 1.2267× 10−100 0 7 4 0.1793
ABA 1.3417× 10−77 0 6 5.9978 0.273
CH 1.4971× 10−82 0 6 5.9984 0.2776
AHR 8.7686× 10−61 3.8934× 10−208 7 5.992 0.2246

f2 CMT(1) 5.9893× 10−27 5.2167× 10−158 6 6.0379 0.3503
x0 = −60 Newton 1.6537× 10−59 5.201× 10−118 15 2 0.3125

Ostrowski 8.0088× 10−72 0 8 4 0.2956
ABA 2.9305× 10−56 0 10 6.0024 0.5679
CH 8.4413× 10−48 0 7 5.994 0.399
AHR 6.4484× 10−60 0 7 5.9974 0.318

f3 CMT(1) 3.7145× 10−76 0 13 5.9983 0.6398
x0 = −140 Newton nc nc nc nc nc

Ostrowski 6.9267× 10−37 3.3507× 10−145 49 3.999 1.216
ABA 7.5885× 10−54 0 11 5.9907 0.4246
CH 4.8283× 10−28 2.1045× 10−164 21 5.8989 0.8005
AHR 3.4494× 10−58 6.2295× 10−207 12 5.9928 0.3997

f4 CMT(1) 9.2602× 10−68 2.3361× 10−207 6 5.9954 1.0547
x0 = −230 Newton 8.9492× 10−96 1.1348× 10−190 14 2 0.8454

Ostrowski 7.8874× 10−37 5.0705× 10−146 7 3.9985 0.8196
ABA 2.5587× 10−21 9.9754× 10−126 6 6.2382 1.0537
CH 2.2055× 10−60 2.3361× 10−207 6 6.0079 1.0555
AHR nc nc nc nc nc

f5 CMT(1) 2.8545× 10−38 1.0707× 10−207 6 6.2665 1.0249
x0 = −90 Newton 9.6307× 10−58 6.4804× 10−114 12 2 0.7181

Ostrowski 6.1241× 10−52 6.9183× 10−202 8 3.9999 0.9291
ABA 1.2306× 10−20 2.1729× 10−114 6 6.8491 1.0378
CH 3.4946× 10−26 1.6995× 10−147 6 5.7567 1.0301
AHR 8.5778× 10−51 1.0901× 10−182 25 5.902 3.0345

On the other hand, from the results shown in Tables 7–9, we see that the methods
associated with α = −300, 200, 400 do not always converge to the solution, confirming the
conclusions obtained in the dynamical analysis. The convergence highly depends on the
initial estimation and the nonlinear test function used. Thus, for estimations close to the
root, these methods do not converge to the solution in up to 2 test functions. Moreover, for
estimations far and very far from the root, they do not converge to the solution even for
any function.

Consequently, we conclude that the methods for α = −1, 0, 1 are stable, have the
lowest processing times (tcpu), and always converge to the solution for any initial estimate
and nonlinear test function used. The methods for α = −300, 200, 400 are unstable, chaotic,
have the highest tcpu, and tend not to converge to the solution according to the initial
estimate and the nonlinear test function used. With this, the theoretical results obtained in
previous sections about the dynamical behavior of CMT(α) family are verified.
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(a) Number of iterations for x0 close to ξ

(b) Processing time for x0 close to ξ

(c) Number of iterations for x0 far from ξ

(d) Processing time for x0 far from ξ

(e) Number of iterations for x0 very far from ξ

(f) Processing time for x0 very far from ξ

Figure 6. Numerical results of the first experiment.
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Table 4. Numerical performance of CMT (−1) method in nonlinear equations.

Function x0 |xk+1− xk| | f (xk+1)| iter ACOC tcpu

Close to ξ
f1 −1.6 1.8646× 10−19 2.7591× 10−114 3 5.5559 0.1216
f2 −0.4 1.3898× 10−46 0 4 6.0038 0.2775
f3 0.4 9.0583× 10−50 0 5 5.9873 0.2321
f4 1.3 1.9771× 10−32 7.3778× 10−194 3 5.6791 0.6628
f5 −1.9 4.057× 10−47 1.606× 10−206 6 6.0586 1.2462

Far from ξ
f1 −6 1.4965× 10−24 7.3749× 10−145 4 5.7594 0.1606
f2 −6 7.3835× 10−26 1.1396× 10−151 14 - 0.8807
f3 −14 1.009× 10−18 1.3833× 10−108 22 5.7241 0.9937
f4 −23 3.2059× 10−100 2.3361× 10−207 5 5.9996 1.0545
f5 −9 4.5305× 10−85 1.168× 10−207 7 6.0034 1.446

Very far from ξ
f1 −60 1.264× 10−85 0 6 5.9988 0.2385
f2 −60 8.3236× 10−19 2.3391× 10−109 9 6.0055 0.5682
f3 −140 6.8807× 10−19 1.3913× 10−109 10 5.7297 0.4723
f4 −230 1.1069× 10−48 2.3361× 10−207 6 6.0195 1.2992
f5 −90 2.3226× 10−65 1.168× 10−207 6 5.9808 1.3969

Table 5. Numerical performance of CMT (0) method in nonlinear equations.

Function x0 |xk+1− xk| | f (xk+1)| iter ACOC tcpu

Close to ξ
f1 −1.6 3.9254× 10−19 2.9279× 10−112 3 5.5334 0.1219
f2 −0.4 1.0637× 10−28 1.328× 10−168 4 6.0263 0.2689
f3 0.4 4.828× 10−30 2.1036× 10−176 6 5.9174 0.2482
f4 1.3 1.6112× 10−32 1.7919× 10−194 3 5.6961 0.6771
f5 −1.9 3.0345× 10−27 1.8831× 10−154 6 6.5022 1.2896

Far from ξ
f1 −6 8.7386× 10−24 3.5638× 10−140 4 5.7334 0.1602
f2 −6 6.7903× 10−26 8.9867× 10−152 9 - 0.6206
f3 −14 8.1206× 10−24 4.7631× 10−139 11 5.8407 0.491
f4 −23 4.2612× 10−99 2.3361× 10−207 5 5.9996 1.0585
f5 −9 4.1362× 10−41 2.3361× 10−207 6 5.9265 1.2619

Very far from ξ
f1 −60 1.1445× 10−82 0 6 5.9985 0.2395
f2 −60 3.277× 10−54 0 7 5.9966 0.4971
f3 −140 3.695× 10−64 0 37 5.9959 1.6934
f4 −230 5.2233× 10−59 2.3361× 10−207 6 6.0088 1.2644
f5 −90 8.2696× 10−19 2.984× 10−103 6 5.5602 1.2865
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Table 6. Numerical performance of CMT (1) method in nonlinear equations.

Function x0 |xk+1− xk| | f (xk+1)| iter ACOC tcpu

Close to ξ
f1 −1.6 7.6395× 10−19 1.8769× 10−110 3 5.5148 0.124
f2 −0.4 1.1915× 10−19 3.2336× 10−114 4 6.0717 0.2474
f3 0.4 5.868× 10−64 0 7 5.9957 0.3128
f4 1.3 1.2572× 10−32 3.2096× 10−195 3 5.717 0.7052
f5 −1.9 2.5535× 10−53 6.4242× 10−207 6 5.9132 1.3006

Far from ξ
f1 −6 4.3721× 10−23 6.595× 10−136 4 5.7093 0.1619
f2 −6 6.0086× 10−60 0 16 5.9975 1.0008
f3 −14 4.2145× 10−24 1.1268× 10−140 10 5.8416 0.446
f4 −23 4.6353× 10−98 2.3361× 10−207 5 5.9995 1.0401
f5 −9 3.9117× 10−41 9.6363× 10−207 5 6.1766 1.0393

Very far from ξ
f1 −60 6.8586× 10−80 0 6 5.9981 0.2654
f2 −60 5.9893× 10−27 5.2167× 10−158 6 6.0379 0.3777
f3 −140 3.7145× 10−76 0 13 5.9983 0.5816
f4 −230 9.2602× 10−68 2.3361× 10−207 6 5.9954 1.2349
f5 −90 2.8545× 10−38 1.0707× 10−207 6 6.2665 1.2801

Table 7. Numerical performance of CMT (−300) method in nonlinear equations.

Function x0 |xk+1− xk| | f (xk+1)| iter ACOC tcpu

Close to ξ
f1 −1.6 1.454× 10−49 3.8934× 10−208 4 6.0127 0.1743
f2 −0.4 7.7× 10−75 0 40 6.0006 2.5385
f3 0.4 nc nc nc nc nc
f4 1.3 4.1603× 10−29 3.3384× 10−172 3 5.3365 0.621
f5 −1.9 1.6341× 10−58 2.5794× 10−206 5 5.7418 1.1787

Far from ξ
f1 −6 nc nc nc nc nc
f2 −6 nc nc nc nc nc
f3 −14 3.9697× 10−26 4.0419× 10−151 7 6.0709 0.328
f4 −23 nc nc nc nc nc
f5 −9 2.8218× 10−76 6.0348× 10−207 8 5.9788 1.5886

Very far from ξ
f1 −60 4.4607× 10−32 3.3463× 10−187 9 6.0453 0.3717
f2 −60 nc nc nc nc nc
f3 −140 1.7723× 10−57 0 21 6.0044 0.9822
f4 −230 1.249× 10−29 2.4449× 10−175 39 5.1386 7.4938
f5 −90 6.6349× 10−43 4.8668× 10−209 22 6.0131 4.4952
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Table 8. Numerical performance of CMT (200) method in nonlinear equations.

Function x0 |xk+1− xk| | f (xk+1)| iter ACOC tcpu

Close to ξ
f1 −1.6 2.1496× 10−56 0 4 5.9921 0.1499
f2 −0.4 nc nc nc nc nc
f3 0.4 nc nc nc nc nc
f4 1.3 4.0045× 10−33 1.6998× 10−196 3 5.3325 0.6325
f5 −1.9 1.3149× 10−70 9.6363× 10−207 4 6.0496 0.8213

Far from ξ
f1 −6 6.1599× 10−40 3.8934× 10−208 7 5.9673 0.2711
f2 −6 nc nc nc nc nc
f3 −14 nc nc nc nc nc
f4 −23 4.3946× 10−33 2.9689× 10−196 7 5.339 1.4742
f5 −9 8.369× 10−63 2.9162× 10−205 11 5.964 2.0915

Very far from ξ
f1 −60 1.9877× 10−20 1.8239× 10−118 14 5.7565 0.5598
f2 −60 nc nc nc nc nc
f3 −140 nc nc nc nc nc
f4 −230 2.7541× 10−49 1.5574× 10−207 15 5.9586 3.1228
f5 −90 7.8278× 10−51 9.6363× 10−207 15 6.1663 3.2771

Table 9. Numerical performance of CMT (400) method in nonlinear equations.

Function x0 |xk+1− xk| | f (xk+1)| iter ACOC tcpu

Close to ξ
f1 −1.6 2.9103× 10−44 0 4 5.9805 0.1439
f2 −0.4 nc nc nc nc nc
f3 0.4 nc nc nc nc nc
f4 1.3 1.139× 10−35 1.5574× 10−207 3 5.2494 0.6218
f5 −1.9 5.8131× 10−53 3.1147× 10−207 4 5.754 0.8023

Far from ξ
f1 −6 nc nc nc nc nc
f2 −6 nc nc nc nc nc
f3 −14 nc nc nc nc nc
f4 −23 nc nc nc nc nc
f5 −9 nc nc nc nc nc

Very far from ξ
f1 −60 nc nc nc nc nc
f2 −60 nc nc nc nc nc
f3 −140 nc nc nc nc nc
f4 −230 nc nc nc nc nc
f5 −90 nc nc nc nc nc

5. Conclusions

In this paper, a new family of iterative methods was designed to solve nonlinear equa-
tions from Ostrowski scheme, adding a Newton step with a “frozen” derivative and using
a divided difference operator. This family, named CMT (α, β, γ), has a three-step iterative
expression and three arbitrary parameters which can take any real or complex value.

In the convergence analysis of the new family, we obtained an order of convergence
of four just like the order of the Ostrowski method. However, we managed to speed-up
the convergence to six by setting the parameters β and γ as a function of α, resulting in an
uniparametric CMT (α) family.
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In the dynamical study, we constructed parameters spaces of the free critical points of
the rational operator associated with the uniparametric family. These parameter spaces
allowed us to understand the performance of the different members of the family, help-
ing us to choose stable (for α = −1, 0, 1, ...) and unstable (for α = −300, 200, 400, ...)
methods. Furthermore, we generated dynamical planes to show the behavior of these
particular methods.

From numerical results, the order of convergence is verified by the ACOC, which
is close to 6. The CMT (α) family proved to have an excellent numerical performance
considering stable members as representatives. In general, this family has low errors and
number of iterations to converge to the solution. However, the processing time (tcpu)
varies depending on the nonlinear test functions used and the inherent complexity that
the iterative schemes of the methods present when they are applied to said functions.
In several cases, the tcpu of stable methods is significantly lower than other sixth-order
methods developed so far. Furthermore, the methods for α = −1, 0, 1 proved to be stable,
have the lowest tcpu, and always converge to the solution for any initial estimate and
nonlinear test function used. The methods for α = −300, 200, 400 proved to be unstable,
chaotic, have the highest tcpu, and tend not to converge to the solution according to the
initial estimate and the nonlinear test function used. This verifies the theoretical results
obtained in convergence analysis and dynamical study of CMT(α) family.
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