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Abstract: With the widespread success of deep learning in the two-dimensional field, how to apply
deep learning methods from two-dimensional to three-dimensional field has become a current
research hotspot. Among them, the polygon mesh structure in the three-dimensional representation
as a complex data structure provides an effective shape approximate representation for the three-
dimensional object. Although the traditional method can extract the characteristics of the three-
dimensional object through the graphical method, it cannot be applied to more complex objects.
However, due to the complexity and irregularity of the mesh data, it is difficult to directly apply
convolutional neural networks to 3D mesh data processing. Considering this problem, we propose a
deep learning method based on a capsule network to effectively classify mesh data. We first design a
polynomial convolution template. Through a sliding operation similar to a two-dimensional image
convolution window, we directly sample on the grid surface, and use the window sampling surface
as the minimum unit of calculation. Because a high-order polynomial can effectively represent a
surface, we fit the approximate shape of the surface through the polynomial, use the polynomial
parameter as the shape feature of the surface, and add the center point coordinates and normal vector
of the surface as the pose feature of the surface. The feature is used as the feature vector of the surface.
At the same time, to solve the problem of the introduction of a large number of pooling layers in
traditional convolutional neural networks, the capsule network is introduced. For the problem of
nonuniform size of the input grid model, the capsule network attitude parameter learning method is
improved by sharing the weight of the attitude matrix. The amount of model parameters is reduced,
and the training efficiency of the 3D mesh model is further improved. The experiment is compared
with the traditional method and the latest two methods on the SHREC15 data set. Compared with the
MeshNet and MeshCNN, the average recognition accuracy in the original test set is improved by 3.4%
and 2.1%, and the average after fusion of features the accuracy reaches 93.8%. At the same time, under
the premise of short training time, this method can also achieve considerable recognition results
through experimental verification. The three-dimensional mesh classification method proposed in
this paper combines the advantages of graphics and deep learning methods, and effectively improves
the classification effect of 3D mesh model.

Keywords: capsule network; pooling; three-dimensional recognition; feature extraction

1. Introduction

As one of the most representative neural networks in the field of deep learning tech-
nology, convolutional neural networks have made many breakthroughs in popular tasks
such as image classification and semantic segmentation. Three-dimensional image data
contain more information than 2D image data; they are richer and have better illumination
invariance and posture invariance, so how to apply deep learning to the representation of
three-dimensional models has become a research hotspot in the field of digital geometry [1].
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1.1. Problem Description and Existing Work

At present, the data formats of three-dimensional model recognition methods mainly
include the voxel form, the point cloud form and the three-dimensional grid representation.

For voxel representation, 3DShapeNets [2] proposed by Wu et al. and VoxNet [3]
proposed by Maturana and Scherer et al. both directly learn on voxels and divide the space
into regular cubes. However, due to the sparseness of voxel data, it introduces additional
computational cost, which limits the method from being applied to complex datasets.
FPNN [4] proposed by Li et al., Vote3D [5] proposed by Wang and Posner et al. and the
Octtree-based convolutional neural network (OCNN) [6] proposed by Wang et al. solve the
problem of the sparseness of voxel data. Compared with two-dimensional convolution, the
use of three-dimensional convolution adds a spatial dimension, the memory requirements
become too large, and the entire method is limited by the size of the input data.

For point cloud representation, due to the disorder of the point cloud data, the usual
network framework is not suitable for a direct application of the point cloud data. Qi et al.
proposed PointNet [7] in 2017, which solved the problem through a symmetric function, but
it ignored the point cloud local information. Qi and others later proposed PointNet++ [8],
an improved version of PointNet, which added an aggregation operation with neighbors to
solve this problem. Because the point cloud data structure is too simple, for two compact
nonconnected surfaces, the local surface cannot be distinguished simply by the Euclidean
distance, so it cannot represent a complex model well.

The mesh representation is a collection of points, faces, and edges, which are topologi-
cally combined through triangular patches, which can accurately express the neighborhood
information of the points and has the natural advantage of expressing the complex surface
of the object. However, the grid data are more complicated and the ordinary convolution
operation cannot be directly applied to the mesh model, and there are currently few deep
learning methods based on the mesh model. Hanocka, Hertz et al. proposed MeshCNN [9]
in 2019 to define the convolution with an edge as the center of two triangles. The ratio of the
dihedral angle, the inner angle, and the height of the triangle to the bottom edge is used as
a five-dimensional feature vector, which is pooled by edge folding to apply the convolution
network to the grid structure. Feng et al. proposed Mesh-Net (2019) [10], taking triangular
patches as the smallest unit; extracting its center point coordinates, normal vectors, neigh-
borhood polygon index and other features; designing a convolutional neural network for
classification; and achieving a recognition rate of 91.9% for the ModelNet40 data set. Yang
et al. proposed a mesh grid-based convolution framework PFCNN [11], which constructed
a new translation structure by using multiple directions of parallel frame field to encode
plane connections on the surface to ensure the translation of convolution. Degeneration
is more accurate than surface-based CNN in terms of fine-scale feature learning. In 2020,
Wang et al. proposed the first method of grid pose conversion through style conversion [12],
through spatial adaptive instance normalization (SPAdaIN) To simulate image pixels and
mesh vertices. Learn the pose characteristics of each vertex in the source mesh and use
the affine transformation learned from the target mesh vertices to transform it, thereby
effectively transferring the pose of the source mesh to the target mesh Geshang.Qiao et al.
proposed LaplacianNet [13] in 2020, which performs multi-scale pooling on the basis of
Laplacian spectral clustering, and uses grid pooling blocks to utilize global information
after pooling, and introduces a The correlation network is used to calculate the correlation
matrix, which aggregates global features by multiplying with the matrix of clustering
features, and achieves good results on the ShapeNet and COSEG data sets. Litany et al.
proposed a learning-based method to complete the three-dimensional graph generation
and completion [14]. The reference shape and latent space parameters are constructed by
training a graph convolutional variational autoencoder. When inferring, only the decoder
and part of the missing shape are used as input, and correspond to the reference shape,
reconstruction human body and face mesh.

Most of the above methods use CNN to complete classification and segmentation
or other tasks. Although the CNN is successful on most tasks, it also has some limita-
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tions, mainly due to its data routing process. In the process of data forward propagation,
CNN uses operations such as maximum pooling or average pooling to obtain image
transformation invariance, more compact representation, and better noise and clustering
robustness [15]. MeshNet, for example, uses maximum pooling in the aggregation module
to provide a form of translation invariance, resulting in the loss of valuable spatial infor-
mation between neural layers. These pooling operations discard high-level features. The
relative positional relationship between the other parameter information of the layer and
the encoded features. For example, for the “Picasso problem” in image recognition (an
image that has all the correct parts but does not have the correct spatial relationship), CNN
will still recognize the face, but will not care. The composition of the structural relationship
between the parts that make up the face.

1.2. Motivation and Contribution

In order to overcome the above problems of CNN, Hinton et al. proposed a new
algorithm called capsule network [16]. Routing replaces the maximum pooling down
sampling in CNN, saves feature information of different dimensions, and reuses the output
of some of these capsules to form a more stable high-order capsule representation [17],
which better preserves the space of features information. At present, experiments have
verified the advantages of capsule network compared with CNN in two-dimensional image
classification [18]. In terms of application, Iesmantas et al. applied the capsule network
based on binary classification to the detection of breast cancer [19]. Jaiswal et al. designed
a capsule-based GAN [20]. Yang et al. applied the capsule network to the text domain [21].
Nguyen et al. applied the capsule network to digital media forensics [22].

Recently, the capsule network has gradually been applied to the point cloud field to
promote the development of computer graphics. Based on the combination of Euclidean,
eigenvalues and geometrical space features, a dynamic capsule graph convolution network
DCG-Net [23] was proposed. As the first method of using the capsule network architecture
for point cloud edge detection, EDC-Net [24] is based on the extracted feature graph, by
applying the attention module to the main capsule, and redesigning the loss function to
obtain better results. Aiming at CNNs cannot sufficiently address the spatial relationship
between features and require large amounts of data for training, the 3D point capsule
networks [25] by Zhao and the method by Ahmad [26] were proposed. They extended
the capsule network to the three-dimensional field by 3D convolution and verified its
effectiveness through experiments.

These studies proved the effectiveness of the capsule network in many fields. However,
due to the complex 3D mesh model data, no capsule network has been applied to 3D mesh
processing, which prompted us to continue to develop a method for effective analysis of
3D mesh data.

This paper proposes a three-dimensional mesh classification method based on capsule
network, 3D Mesh Capsule Networks (MeshCaps), to expand the application field of
capsule network. As the first method to apply capsule network to three-dimensional mesh
structure, MeshCaps is similar to traditional multilayer neural networks can run directly on
irregular grids, and can extract high-level features through a multilayer network structure.

In MeshCaps, the mesh surface is convolved through the designed convolution tem-
plate. Since the polynomial can effectively express a surface and the representation is more
concise, the convolution kernel is designed as a high-order equation, and the polynomial
fitting is used in the window. In the surface method, the high-order equation parameters
are used as the local features of the window surface, which enables this method to deal
with the complexity and irregular shape of the grid according to the surface unit.

In addition, considering the inconsistency of the input size of the three-dimensional
grid model, a capsule network that shares the weights of the pose matrix is introduced, and
the concept of the capsule network is extended to the three-dimensional grid model. Based
on these ideas, this paper designs a network structure in which is included a polynomial
template convolution kernel used to learn feature descriptors of the patch unit and a
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capsule network used to aggregate and classify adjacent hidden layer features. Compared
with the latest method MeshCNN based on edge folding for convolution pooling, it is
expected that the improved capsule network will achieve better classification results under
more expressive polynomial features.

1.3. Structure of the Paper

The rest of this paper is organized as follows. In Section 2, we give a technical
description of the two-dimensional capsule network problem. The proposed 3D Mesh
model classification algorithm is described in Section 3. In Section 4, we introduce and
discuss the experimental results. Finally, Section 5 summarizes the work and provides
guidance for future work.

2. 2D Capsule Networks

As mentioned earlier, the goal of this article is to study and design a network architec-
ture for a three-dimensional grid, which is based on a capsule network. First, let’s introduce
the characteristics of the capsule network.

The capsule network is composed of multiple capsule layers, where the capsule is
an independent logical unit and represents a whole or part of the whole through a vector.
Compared with the traditional CNN input and output in the form of scalar, the input and
output of the capsule network are in the form of vector. Each dimension of the vector can
be expressed as a feature pattern (such as deformation, posture, reflectivity, texture, etc.),
and the norm of the feature vector is used to express the confidence of the entity’s existence.
It can not only perform feature detection based on statistical information, but also learn to
understand the positional relationship between the part and the whole and understand the
representation mode of the dimension in the feature vector.

The capsule network performs a large number of operations inside the capsule and
uses the protocol routing algorithm to output a high-dimensional vector upwards to ensure
that the capsule output is sent to the corresponding high-level capsule in the next layer.
The operation method in a single capsule is shown in Figure 1. When the layer capsule
passes the feature vector learned and predicted by itself to the higher-level capsule, if the
prediction is consistent, the corresponding c value increases, and the higher-level capsule
is activated. With the continuous iteration of the dynamic routing mechanism, it can train
various capsules into units that learn different dimensions to identify the correct category
of the image.

Figure 1. The calculation process in a capsule.

Unlike the maximum pooling of CNN, the capsule network does not discard the
information about the precise position of the entity in the area. Before the capsule is
passed to the next layer, a transformation of the pose matrix W must be performed, and
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the parameters of W are learned through gradient descent. In order to make the network
have the ability to identify features from multiple angles. For low-level capsules, the
position information is “encoded”. As the hierarchical structure is improved, more and
more position information is “compressed and encoded” into the real-valued components
of the capsule output vector.

Under the Coil-100 rotating data set, this paper did a preliminary experiment to
compare the recognition ability of LeNet [27] and the capsule network for objects at
different angles. Among them, LeNet consists of two 5 × 5 convolution kernels and three
fully connected layers. The capsule network follows the network design in the original
paper. Select 0, 30, 60, 90, 120, 160, and 180 degree images as the training data, set the initial
learning rate to 0.001, and batch size to 64 to train 50 epochs, and test the classification of
different objects at 225–355 angles.

As shown in Figure 2, LeNet has misjudgments for the images in the third column of
the first row and the fourth column of the second row. For objects with different angles,
the capsule network can still accurately identify objects with low confidence. obj79_355◦

indicates the 79th type of image rotated by 355 degrees, and the red and green text indicate
the results of the capsule network and LeNet classification respectively.

Figure 2. Capsule network and LeNet’s ability to classify rotating objects.

Compared with the two-dimensional image, the data of the three-dimensional model
is more complicated. This paper designs a capsule network framework for the three-
dimensional mesh model.

3. 3D Mesh Capsule Networks

This section introduces the design of MeshCaps in detail. First, the overall network
architecture is introduced. According to the characteristics of the grid data, in order to
directly apply the convolution to the grid data, while considering the simplicity of the
expression of the parameter equation, we design the convolution template in the form of
a parameter equation. The input data is reorganized by extracting features through the
polynomial convolution kernel, and the corresponding weight value is calculated according
to the relative position of the vertices in the local space to capture the fine geometric changes
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in the local area of the grid. The improved multilayer capsule network structure classifies
the features of the fusion shape and posture.

3.1. MeshCaps Framwork

The MeshCaps network structure is shown in Figure 3, and the training is divided into
two stages. (1) Convolution feature mapping stage: the polynomial template is used as a
convolution kernel to perform feature extraction operations on the entire model, and finally
the convolution feature map at this stage is generated. (2) The training phase of the capsule
network: the capsule network is composed of a capsule composition layer, a primary
capsule layer, and a Mesh capsule layer, and the final output is used for classification.
Compared with the ordinary capsule network, MeshCaps adds a capsule composition
layer to map polynomial parameter features to the primary capsule layer extracts more
representative features; at the same time, weight sharing is used to train the pose trans-
formation matrix between the capsule layers, which no longer depends on the size of the
input model.

Figure 3. Network framework.

In the Figure 3, the box of feature extraction is the polynomial fitting of the surface
element through the generalized least squares method(GLS), and the polynomial parame-
ters are used as the surface features. For the convenience of comparison, the polynomial
function F(X,Y,Z) is visualized in the feature extraction box of Figure 3. N represents the
number of window surfaces, K represents the number of neighborhood points, N X 10 rep-
resents N surface elements, each surface is represented by a 10-dimensional high-order
equation parameter, d represents the primary capsule dimension, and c represents the
number of categories.

3.2. Local Shape Feature Extraction

We try to apply a more concise and light weight feature extraction method to the
network model. Given a three-dimensional deformation target mesh model M, The local
surface window of the 3D mesh model is defined as taking the vertex of the mesh model as
the center of the window, using breadth-first search to get the front K-1 Neighbor vertices,
the selected vertex and the edge between the vertices form a connected local mesh surface,
that is, a local surface window Mwin(vi) =

{
Vvi

win, Evi
win
}

, where:

Vv
win =

{
vj
∣∣(xj, yj, zj

)}
, j = 1, 2, . . . K (1)
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Ewin = {(va, vb)|va, vbεVwin} (2)

K is the size of the convolution template window. For the selection of the k value,
multiple sets of experiments have been carried out, and the best k value is 152, that is, the
size of the convolution window is 152.

In order to avoid the influence of rigid transformation and nonrigid transformation,
a local coordinate system is established in the window and the absolute coordinates of
the vertices in the window are converted to the coordinate representation in the local
coordinate system. Considering that the local surface in the window is relatively simple,
the local coordinates in the window the system uses high-order polynomial equations to
describe its shape, such as Formula (3):

Mwin = (v|F(vx, vy, vz, vd|
→
θ ) = 0) (3)

where F is a continuous function used to describe the shape of the local grid window.
→
θ is

the parameter representation function of the grid. vx, vy and vz are the coordinates of the
vertices in the window in the local coordinate system.

During the experiment, it was found that when the local window size is set very
small, the grid shape is basically the same, and when K increases, the grid in the window
becomes more complicated. Only the local m coordinate information of the vertex, vx, vy,
vz is not enough to describe the grid shape. Therefore, we want to introduce the geodesic
distance to improve the expression of a polynomial function. However, the calculation
of the geodesic distance is a time-consuming operation, which affects the performance of
the entire network, so the block distance vd is used as an approximate expression of the
geodesic distance.

vd = |x− xm|+ |y− ym|+ |z− zm| (4)

Among them, the block distance of a point (x, y, z) in the convolution window is
expressed as the block distance between the point and the center point (xm, ym, zm) of the
surface unit.

For a grid window, assuming the relative coordinates of the vertices in the window
vc =

(
vx, vy, vz, vd

)
, the window fitting function is as Formula (5):

F(vc|
→
θ ) = z − (θ0 + θ1 ∗ x + θ2 ∗ y + θ3 ∗ d

+θ4 ∗ x2 + θ5 ∗ y2 + θ6 ∗ d2

+θ7 ∗ xy + θ8 ∗ xd + θ9 ∗ yd)
(5)

The window fitting function F(vc|
→
θ ) = 0, which is a continuous function used to

describe the shape of the local window. Encode the local triangle set information, describe

the local shape of the patch, and capture the shape transformation of the grid window.
→
θ is

the parameter representation of the grid. Where x, y, z, d represent vx, vy, vz, vd, vz is the
z in the formula, which is the z-axis coordinate of the point on the grid, which is used to
measure the fitting error. The entire function F after fitting can be used as an approximate
representation of the local grid.

The surface fitting results are shown in Figure 4. The blue scatter plot represents the
distribution of vertices in the grid window, and the red surface represents the result of
fitting using a polynomial function. The fitting error is the mean error L f of all vertices of
the surface.

L f =
1
N

V

∑
v

F(vx, vy, vz, vd|
→
θ ) (6)
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Figure 4. Mesh shape and second-order polynomial fitting.

In the fitting process, in order to avoid the influence of different positions and postures
of the surface on the feature layer, the mesh is first positively definite. The center point
is aligned with the origin of the three-dimensional coordinate system, and the normal
vector is horizontal to the z-axis of the three-dimensional coordinate system. The equation

parameters
→
θ = (θ0, θ1, · · · θ9) are solved by the generalized least squares method (GLS).

It can be seen from Figure 5 that each model Mj can be represented by n parameter

equations after sliding convolution through the window, and the parameters
→
θ can be used

as the shape feature descriptor of a certain mesh fragment under the window. At the same
time, in order to introduce the surface pose information, after extracting the shape features
of the mesh surface, the coordinates of the center point and the normal vector of the surface
are added, so that the network can learn the direction information of the surface.

Figure 5. Polynomial feature extraction of mesh model.
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3.3. Mesh Capsule Networks

The traditional capsule network first uses the convolutional layer for feature extraction,
and then gradually integrates it into deeper features through the capsule layer and uses
them for classification results. However, because the result of feature extraction in the
previous article is a shallow feature, certain spatial information is retained, and contains
less semantic information, so after the feature extraction module, a capsule composition
layer is added to map the equation parameter feature vector output to the primary capsule
layer. For the convolutional feature layer, each patch is represented as a 10 polynomial
of dimensional parameters. Through three one-dimensional convolutions, the number of
channels is continuously increased to extract features of higher dimensions, and at the same
time, each convolution uses a normalization layer to speed up the training and convergence
of the network.

As shown in Figure 3, the primary capsule layer has N capsules, and each capsule
has a dimension of d. The capsule composition layer maps feature vectors to the primary
capsule layer P ∈ RN.d, The capsules of each primary capsule layer are expressed as:

pi{i = 1, · · · , pi ∈ Rd} (7)

As a measure of the significant degree of a vector feature, the capsule network is
normalized by a compression function. The capsule value is mapped to the [0,1] range,
so that the length of the capsule vector can represent the probability of this feature, while
preserving the eigenvalues of each dimension in the vector.

v = squash(s) =
‖s‖2

1 + ‖s‖2
s
‖s‖ (8)

v is the output vector of the capsule, and S is the input vector of the capsule. Therefore,
in order to calculate the output of each primary capsule, the activation function is applied.

ui = squash(pi) (9)

Among them ui ∈ Rd is the output of primary capsule.
Because the three-dimensional mesh model data set is different from the two-dimensi-

onal image, the size and size of each model are different in the input dimension, so an
improvement has been made in the capsule network is changing the posture matrix Wij
between the bottom-level capsule and the high-level capsule in the network to the posture
matrix Wj with shared weights The training parameters are reduced, and because the
pose matrix is changed from M × N to M × 1, the network can adapt to the input of
three-dimensional models of different sizes. After all input vectors are mapped through
the same pose matrix, the clustering results are output. Its expression is as follows:

ûij = Wp
j ui (10)

ui is the output vector of the primary capsule layer, which is the pose matrix in the
primary capsule layer, trained by the backpropagation algorithm.

The input of the Mesh capsule layer is the weighted sum of all capsule prediction
vectors uij in the primary capsule layer.

sj = ∑
i

cijuij (11)

where cij is the coupling coefficient that determines the similarity between uj and sj in the
dynamic routing algorithm.

cij =
exp

(
bij
)

∑k exp(bik)
(12)
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The initial logarithm bij is the log prior probability that capsule i should be coupled
with capsule j. The dynamic routing algorithm of MeshCaps is the same as the routing
algorithm in the original formula.

MeshCaps is only applied to three-dimensional mesh classification, so the reconstruc-
tion module and reconstruction loss in the traditional capsule network are discarded in
the training and prediction process, which reduces the complexity of the model and helps
improve the training efficiency of the model. Such as the formula:

Loss =
C

∑
c=0

Lc (13)

Lc = Tcmax
(
0, m+ − ‖vc‖

)2
+ λ(1− Tc)max

(
0, ‖vc‖ −m−

)2 (14)

Among them, c is the category, and Tc is the indicator function of the classification.
If the category c is correctly predicted, Tc is equal to 1, otherwise it is 0. m+ as the upper
bound, that is, it is predicted that the category c exists but does not exist and the recognition
is wrong. m− is the lower bound, that is, it is predicted that class c does not exist but does
exist, and it is not recognized. λ is the proportional coefficient, adjust the proportion of the
two. The parameter settings are as follows: m+ = 0.9, m− = 0.1, λ = 0.5. The total margin
loss Lc is calculated by summing the individual margin loss for all C classes.

4. Experimental Evaluation

To verify the effectiveness of the method, we validated it on the standard 3D de-
formable mesh model dataset SHREC15. The experimental computer was configured
as an Intel (R) Xeon (R) processor with 64 GB memory. The SHREC15 dataset includes
50 categories, 1200 3D mesh models, and 24 models for each class. Each type of model
has rigid transformation and nonrigid transformation. When training the classifier, 20
3D models were randomly selected for each class as training samples, and the rest were
selected as test samples.

4.1. Model Details

The experiment was based on the Pytorch framework design. The model first passed
the feature extraction module, traversed the points in the model, and took the convolution
window with vertex as the center, and the size of the surface is 152. The polynomial
parameters of the convolution were passed through the capsule composition layer, from
three 20-dimensional, 30-dimensional, and 40-dimensional convolution layers. It then
passed through the capsule dimension and the 40-input capsule layer, where the number
of capsules was 50. The output capsule layer obtained a capsule size of 16 as the final
classification output. The final length of each capsule was taken as the probability of the
model belonging to the class. The learning rate of the whole network training period was
not less than 0.001, and the batch size was 10. The accelerated calculation was carried out
using a GPU, and the total training time was 2158 s.

4.2. Accuracy Test

In order to compare the superiority of the classification performance of the proposed
method, this paper compares the traditional manual feature-based classification method
SPH [28] and MeshNet [10], MeshCNN [9] by directly applying deep learning to the new
method of three-dimensional grid classification. Table 1 shows for the classification results
and average accuracy of the different categories of the data set.
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Table 1. SHREC15.

Network Alien Ants Cat Dog1 Hand Man Shark Santa Pliers Glasses Dog2 Camel Snake Avg

SPH [28] 87.4% 86.2% 90.4% 89.3% 88.6% 89.1% 90.2% 89.4% 87.1% 89.9% 86.7% 88.1% 87.9% 88.2%
MeshNet [10] 89.5% 89.6% 89.6% 91.4% 90.5% 90.8% 90.1% 89.8% 88.0% 91.4% 90.5% 90.3% 89.9% 90.4%
MeshCNN [9] 91.2% 91.4% 92.1% 90.2% 90.5% 91.6% 92.7% 90.5% 91.8% 90.4% 92.3% 93.7% 90.3% 91.7%

Ours-MeshCaps 92.7% 91.2% 91.9% 92.4% 94.2% 92.8% 93.0% 92.9% 94.1% 90.2% 95.3% 92.3% 95.0% 93.8%

Through experiments on different methods, it can be seen from Table 1 that the
classification performance of the MeshCaps algorithm proposed in this paper was higher
than other comparison methods. On the SHREC15 data set, the average accuracy rate
reached 93.8%, which is comparable to the best results of the comparison method. In
comparison, the average accuracy of the proposed method improved by 2.1% on the
SHREC15 dataset. The experimental results show that the proposed 3D grid classification
method based on the capsule network can obtain better results in the classification of 3D
grid data.

In order to further prove the effectiveness of the proposed method and compare the
convergence performance of different methods, it can be intuitively observed from the
curve in Figure 6 that the MeshCaps method had good convergence. In the 15th round
of iteration, the accuracy rate reached 86.63% and the convergence was reached earlier.
The inflection point and the final convergence point prove that the dynamic routing in the
capsule network performed unsupervised clustering of vector features to make the entire
network converge quickly.

Figure 6. Convergence graph of each method.

Because there are too many categories in the SHREC15 dataset, only the confusion
matrix of 13 categories is displayed. As can be seen from Figure 6, MeshCaps was able
to recognize most models. However, there were also several types of models with low
recognition rates, such as glasses. We guess that, due to the use of curved surface units,
the tails of glasses were more similar to pliers, which caused the model to have a higher
misrecognition rate when recognizing these two types of models.
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4.3. Convolution Window Size

In order to verify the optimal results produced by the different sizes of the convolution
window in the proposed method, the convolution window was set to different sizes from
32 to 1024 for training. Figure 7 shows the window size, that is, the number of different
neighborhood points taken as the calculation unit pair.

Figure 7. Convergence graph of each method.

It can be seen from Figure 8 that under the premise that other parameters were fixed,
the optimal convolution window size (shown in Table 2) was in the range of 140–160. When
the window size was 32, 512, and 1024, the classification accuracy was 67.9%, 85.7%, and
54.3%, respectively. This is because when the local window size was set very small, the
grid shape was basically the same, and the difference of various grids was too small, which
affected the effect of feature clustering. When the convolution window was too large,
the grid in the window changed to be even more complicated, increasing the network
complexity and the amount of parameters, making the network easy to overfit. Experiments
on the window size in this range, due to the different order of points of different data
sets and for the SHREC15 data set, an average of 9000 points was experimentally verified
convolution the optimal value of the window size is 152, that is, when 151 points around
the vertex were taken as a calculation window according to the breadth-first search, the
classification accuracy was the highest, and the classification accuracy reached 93.8%.

Figure 8. Convolution window size experiment.
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Table 2. Convolution window size.

Window Size K Acc

140 89.3%
142 91.8%
144 91.6%
146 92.2%
148 92.9%
150 93.0%
151 93.3%
152 93.8%
153 93.5%
154 92.8%
156 93.0%
158 92.2%
160 91.9%

4.4. Model Complexity Comparison

Table 3 compares the time and space complexity of the network with other representa-
tive methods based on classification tasks. The column labeled #params shows the total
number of parameters in the network, and the column labeled FLOPs/sample shows the
input for each input the number of floating-point operations performed by the sample
represents the space and time complexity. Among them, because the capsule network uses
dynamic routing multiple iterations for feature clustering, the number of operations was
higher, but it also made the entire network able to converge quickly. As shown in Figure 7,
only a few iterations of training can achieve high accuracy.

Table 3. Parameter comparison test.

Network Capacity (MB) FLOPs/Sample (M)

MeshCNN [9] 1.323 498
MeshNet [10] 4.251 509
SPH [28] 2.442 435
Ours-MeshCaps 3.342 605

4.5. Influencing Factor Experiment

In MeshCaps, there are two modules. In order to verify the effectiveness of feature
fusion in the feature extraction module and the effectiveness of the capsule network in the
classification module, the capsule network was replaced with a three-layer convolutional
neural network and LeNet for experiments. To compare the classification accuracy, Table 4
shows the classification accuracy of different structures.

Table 4. Network structure comparison.

Network Structure Acc

Feature+3-Layer CNN 89.9%
Feature+LeNet 90.8%
MeshCaps 93.8%

In the case of using the same feature method, MeshCaps achieved an accuracy of 93.8%
compared with different classification network models, which illustrates the superiority of
MeshCaps in the classification task of the SHREC15 data set. For complex data and capsule
network comparison, the multilayer CNN structure has certain advantages. Compared
with MeshCaps, which directly classifies polynomial parameter features through a three-
layer convolutional neural network, the average accuracy reached 89.9%, which is higher
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than the accuracy of SPH method 88.2%, and also proves the effectiveness of the feature
extraction method.

Since the method in this paper is different from the MeshCNN and MeshNet network
structures, there was no pooling operation in the network, and the vertices were directly
selected according to the breadth-first search method to obtain the local surface as an input
unit. Therefore, the method of random sampling of the vertices was simplified during
training, and the sampling points were the quantities shown in Table 5.

Table 5. Impact of sampling point.

Sample Percentage Acc

100% 87.4%
95% 85.8%
90% 91.8%
85% 93.8%
80% 89.5%
75% 79.1%
70% 80.4%%

Because a patch unit is composed of multiple points around a vertex, a too high
sampling percentage will inevitably cause the phenomenon of overlap of the patches,
which affects the entire network training, and a model with a too low sampling ratio is
prone to underfitting. The total number of vertices in the random sampling model was
selected to be 85 % of vertices as input.

In the network design, the center point coordinates, normal vectors and polynomial
parameters were feature fused, and the capsule composition layer was added for feature
mapping. Comparative experiments were done on the influence of the capsule composition
layer and feature fusion. The results are shown in Table 6.

Table 6. Feature fusion and composition layer influence experiment.

Network Structure Acc

Component layer Feature fusion

No No 91.2%
No Yes 91.9%
Yes No 92.3%
Yes Yes 93.8%

The average accuracy of MeshCaps classification without feature fusion and no capsule
composition layer still reached 91.2%, which is higher than the results obtained by the
convolutional neural network method, and proves the certain advantages of the capsule
network for complex data models. After fusing the features, classification of the increase in
accuracy illustrates the effectiveness of feature fusion, but it was lower than the accuracy
of the capsule composition layer and the unfused features, which verifies the importance
of the capsule composition layer in the entire network structure.

5. Conclusions

In this paper, a 3D mesh model recognition algorithm based on an improved capsule
network is proposed. It applies convolution directly to irregular 3D mesh models, extracts
grid feature parameters by polynomial fitting, adds a capsule composition layer, extracts
higher level features, and improves the weight matrix of the capsule to adapt to the
differences in the input sizes of different models. After training, the average recognition
accuracy was 92.3% on the original test set. By comparing with the traditional CNN
network, the effectiveness of the capsule network was verified. Additionally, in comparison
with other deep learning methods based on the grid model, the advantages of the MeshCaps
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convergence speed were verified. In subsequent research, the network can be further
developed for 3D mesh segmentation or combined with a grid generation algorithm to
perform more computer vision tasks.
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