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Abstract: Thick ellipsoids were recently introduced by the authors to represent uncertainty in state
variables of dynamic systems, not only in terms of guaranteed outer bounds but also in terms of an inner
enclosure that belongs to the true solution set with certainty. Because previous work has focused on
the definition and computationally efficient implementation of arithmetic operations and extensions of
nonlinear standard functions, where all arguments are replaced by thick ellipsoids, this paper introduces
novel operators for specifically evaluating quasi-linear system models with bounded parameters as well
as for the union and intersection of thick ellipsoids. These techniques are combined in such a way that a
discrete-time state observer can be designed in a predictor-corrector framework. Estimation results are
presented for a combined observer-based estimation of state variables as well as disturbance forces and
torques in the sense of an unknown input estimator for a hovercraft.

Keywords: set-valued state estimation; ellipsoidal enclosures; outer state enclosures; inner enclosures;
set-valued intersection and union; thick ellipsoids

1. Introduction

Predictor-corrector approaches for the model-based estimation of state variables and
disturbances were presented in several previous research activities [1,2]. These approaches
rely on predicting state enclosures for sets of ordinary differential equations either in
an interval-based form [3,4], perform Taylor series expansions with respect to time as
well as uncertain parameters and initial conditions [5], or employ Taylor model-based
approaches [6,7]. However, these techniques are not directly capable of representing inner
and outer bounds of the estimated domain in a unified manner as they were determined by
means of affine sets [8], combinations of affine arithmetic with automatic differentiation [9],
and data-driven overapproximation techniques for a reachability analysis [10] in current
references. On the one hand, the predictor-corrector methods mentioned above provide
guaranteed outer bounds of all state variables that are consistent with the state equations
as well as with measured output information. Both, state equations and output models,
the latter representing sensor characteristics with bounded noise, may include interval
parameters to reflect limited knowledge and the influence of model simplifications. On
the other hand, however, the lack of information concerning domains that belong to the
exact sets of reachable states makes it impossible to distinguish between the phenomena of
wide state enclosures as a consequence of uncertainty or the result of wide bounds due
to pessimism in numerical evaluations. The latter aspect is well-known in the frame of
interval analysis and denoted as overestimation that can be traced back to the so-called
dependency effect (numerous variables are treated as independent despite underlying
physical or mathematical correlations) or to the wrapping effect (complex-shaped solution
sets are replaced conservatively by more simple outer bounds which are subsequently
propagated further) [11–14].
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From this description, it becomes obvious that it is desirable to express uncertainty
on the bounds of the domains of reachable states in the frame of simulation and state
estimation techniques. Recently, corresponding set representations were developed which
allow to express either a notion of variables certainly belonging to a solution set or certainly
not belonging to the set (denoted as a relative distance measure interval arithmetic [15]); alter-
natively, the notion of thick intervals, thick boxes, thick functions, and thick ellipsoids can
be seen as an approach to handle this kind of uncertainty on set boundaries [16]. Moreover,
combinations of fuzzy and interval methods as those presented in [17] represent other
currently investigated techniques that aim at expressing uncertainty on state boundaries.

Especially the use of ellipsoids as enclosures for reachable sets [18,19] is a promising
approach because such domains naturally arise as descriptions of provable stability do-
mains for nonlinear dynamic systems if the corresponding analysis is performed with the
help of quadratic Lyapunov functions. Moreover, propagating ellipsoids over a dynamic
system model with sufficient smoothness properties typically leads again to a solution set
with boundaries that can effectively be described by enclosing ellipsoids if the domains
of interest are sufficiently small. For a proof of this property, see [20], where it has been
shown that the Hausdorff distance between the true solution and the ellipsoidal enclosure
reduces at least linearly for decreasing domain sizes.

Computations of ellipsoidal enclosures inherently have the property of a constant
complexity if they are applied recursively. In addition, their enclosure quality enhances
automatically for reducing domain sizes which is in contrast to the propagation of poly-
topic and zonotopic domains [21,22]. There, the number of vertices of the solution sets—
especially after intersecting the results of measurement-based innovation steps with the
outcome of state prediction stages—tends to increase in each time step. This leads to the
necessity to employ specific techniques to reduce the complexity at least after a certain
number of evaluation steps [23]. Although these polytopic and zonotopic techniques
help to reduce overestimation, a constant complexity over subsequent time steps for the
evaluation of dynamic systems can typically only be observed if the solutions are restricted
to domains with a fixed number of vertices such as axis-aligned intervals or parallelepipeds
as a special kind of preconditioned interval boxes after a linear change of coordinates.

Previous work of the authors has focused on the development of thick ellipsoid
function evaluations [20] and recursive simulation approaches [24], where the inner bounds
represent the domains of certainly reachable states and the outer bounds reflect the worst-
case uncertainty. So far, only extensions of sufficiently smooth function evaluations (the
basic arithmetic operations of addition, subtraction, multiplication and division) as well
as the evaluation of nonlinear standard functions (such as trigonometric or exponential
functions) were investigated. In order to implement state estimation schemes, it is further
necessary to define outer and inner solution enclosures in ellipsoidal form for union and
intersection operators. These operators are investigated in more detail in this paper so that
they form the basis for the implementation of a discrete-time state estimation procedure.
The estimator’s structure resembles the one of a discrete-time Kalman filter [25] or of
suitable generalizations for nonlinear systems [26–29], where a state prediction stage is
employed to forecast future reachable states and this a-priori knowledge is subsequently
refined in an innovation (i.e., correction) stage as soon as measured data become available.

In Section 2 of this paper, a review of thick ellipsoids as a representation of uncertain
state domains for dynamic systems is given. Based on their introduction, inner and outer
union as well as intersection operators are derived and summarized in Section 3 which
form the basis for state estimation in the frame of (quasi-)linear discrete-time system
models. The corresponding novel, thick ellipsoid state estimation procedure is derived in
Section 4 before a representative benchmark scenario for state and disturbance estimation
of a hovercraft model is discussed in Section 5. Finally, this article is concluded by an
outlook on future work in Section 6.



Algorithms 2021, 14, 88 3 of 30

2. Thick Ellipsoids

Thick ellipsoids were introduced by the authors in [20,24] to represent conservative
outer bounds of the domains of reachable states of dynamic systems in parallel with
inner bounds which represent those states that belong to the reachable solutions with
absolute certainty. Geometrically, a thick ellipsoid can be understood as an ellipsoid
with an uncertain boundary as illustrated in the left-hand side of Figure 1 that allows for
enclosing a complexly shaped domain Ak according to

E I
k ⊆ Ak ⊆ EO

k . (1)

The previous publications [20,24] focused on propagating this ellipsoidal domain via
a nonlinear map

xk+1 = f(xk) (2)

so that the true outputs Ak+1 after performing a state prediction according to (2) are again
enclosed by a thick ellipsoid in a computationally cheap manner. For that reason, linear
matrix inequalities are only employed in offline phases for the derivation of the proposed
solution technique. Our procedure avoids the search for the globally optimal (i.e., tightest
possible) solution of state prediction (and also the subsequent innovation stages) by a
replacement of the online use of linear matrix inequalities or complex minmax optimization
tasks by low-dimensional optimizations. Classically, the task of finding ellipsoidal state
enclosures would be solved by using the aforementioned, often time-consuming techniques
in each time step if the approaches published in [19,30–32] were applied directly. However,
for the goal of a reduction of the computational effort and, hence, for a simplification of
real-time implementability, we propose low-dimensional optimization procedures which
avoid the search for the typically large number of degrees of freedom if the optimal inner
and outer ellipsoids E I

k and EO
k , respectively, were computed.

In the following, we recapitulate the mathematical definitions of thick ellipsoids
together with binary operators and function extensions. Note, similar concepts were also
introduced in [16] for so-called thick intervals (which represent scalar interval variables
with uncertain lower and upper bounds) as well as thick boxes as the Cartesian product
of thick intervals. A closely related concept is the so-called type-2 interval arithmetic
discussed in detail in [15].

µ1,k x1,k

x2,k

µ2,k µ2,k+1

µ1,k+1 x1,k+1

x2,k+1

E I
k

EO
k

Ak

xk+1 = f(xk)

EO
k+1

E I
k+1

Ak+1

Figure 1. Definition of a thick ellipsoid ((E))k enclosing the domain Ak and its mapping via the system
model (2).

Definition 1 (Thick ellipsoid). Define a thick ellipsoid ((E)) = ((E))
(

µ, Γ,
[
ρ ; ρ

])
as a subset of

the power set P(Rn) so that

((E)) =
{
A ∈ P(Rn)

∣∣ E I ⊆ A ⊆ EO
}

(3)
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with

E I=

{
x ∈ Rn ∣∣ (x− µ)T

(
ρΓ
)−T(

ρΓ
)−1

(x− µ) ≤ 1
}

,

EO=
{

x ∈ Rn ∣∣ (x− µ)T(ρΓ)−T(ρΓ)−1(x− µ) ≤ 1
} (4)

and 0 ≤ ρ ≤ ρ.

Definition 2. (Thick ellipsoid binary operators and function extensions). A thick ellipsoid extension
of the binary operators � ∈ {+,−, ·, /,∪,∩} (For the case of division, the value zero is assumed
not to belong to the denominator expression in analogy to classical interval arithmetic [11]) satisfies
the relation 

A ∈ ((A))
B ∈ ((B))
C = A � B

=⇒ C ∈ ((A)) � ((B)) . (5)

The quantity ((C)) = ((A)) � ((B)) is also a thick ellipsoid, which is typically neither minimal with
respect to its width nor uniquely defined. Analogously, ((f)) is a thick ellipsoid function extension of
f : Rn 7→ Rm, if {

A ∈ ((A))
B = f(A)

=⇒ B ∈ ((B)) = ((f))((A)) . (6)

For the implementation of algorithms that allow for evaluating nonlinear mapping
functions (2) with the help of thick ellipsoids, the reader is referred to [20,24]. In this paper,
we impose a specific, (quasi-)linear structure of the considered system models, so that the
thick ellipsoid function evaluation can be simplified by a newly derived simulation scheme
according to Section 3.1.

3. Union and Intersection of Thick Ellipsoid Enclosures

Parameter-dependent quasi-linear system models in the form

xk+1 = A(xk, pk) · xk (7)

with pk ∈
[
p

k
; pk

]
, where p

j,k
≤ pj,k ≤ pj,k, j ∈ {1, . . . , m}, are a special case of the

nonlinear system representation introduced in (2).
In many cases, they arise if discrete-time state equations (2) with an equilibrium state

at xk+1 = xk = 0 are re-written by means of symbolic formula manipulation in which the
dependence on the state vector xk is factored out from the system model (2). In such cases,
it needs to be ensured that all entries of A(xk, pk) are well-defined because they do not
contain any singularities after factoring out the state vector xk and are, therefore, finite
for the complete operating domain of interest. In addition, these models arise if centered-
form representations of nonlinear system models are computed either by determining
interval extensions of the system’s Jacobian or by means of techniques for slope arithmetic.
For details concerning these latter two options, the reader is referred to [33–35].

3.1. Mapping of Thick Ellipsoidal Domains via (Quasi-)Linear System Models

In general, the evaluation of system models in the form (7) is possible with the
help of the general solution approach presented in [20,24] if an augmented state vector
is introduced that contains not only the actual state variables xk but also the parameter
vector pk in terms of discretized integrator disturbance models for which pk+1 = pk
holds. However, the examples investigated in [24] have shown that doing so leads to
conservativeness of the solutions. The reason for this observation is that the parameters pk
become correlated with the state vector xk so that their outer bounds start to expand despite
the aforementioned assumption of uncertain but temporally constant values. Hence,
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the methods summarized in this subsection (together with the intersection operators
included in the state estimator according to Section 4) resolve the corresponding issue
by introducing uncertain parameters as entries in the system matrix. When doing so,
their enclosures may even be reset at each sampling instant k to new interval bounds. As
shown subsequently, this option allows for analogously dealing with (outer) state bounds
influencing the dynamics matrix A(xk, pk).

For the sake of compactness, the short-hand notation Ak = A(xk, pk) ∈ [Ak] is used in
the following to denote an interval matrix containing the worst-case outer range bounds of
all matrix entries at a specific time instant k.

3.1.1. Outer Bounds

Given an ellipsoid

Ek =
{

xk ∈ Rn ∣∣ xT
k ·Q

−1
k · xk ≤ 1

}
(8)

that is described by a positive definite shape matrix Qk = QT
k � 0 and centered at the

origin xk = 0 of the state space, it is desired to enclose the exact (generally non-ellipsoidal)
solution set of the mapping (7) in terms of a guaranteed outer ellipsoidal bound

EO
k+1 =

{
xk+1 ∈ Rn

∣∣∣∣ 1
α2

O,k+1
· xT

k+1 ·Q
−1
k+1 · xk+1 ≤ 1

}
(9)

with degrees of freedom concerning the choice of the shape matrix Qk+1 and its stretch param-
eter αO,k+1 > 0. The latter will be computed by means of a simple line-search optimization
procedure to avoid the necessity for an online solution of linear matrix inequalities.

With the help of the free matrix variable Rk, the shape matrix of the predicted ellipsoid
is described by

Qk+1 = QT
k+1 = Ãk ·Rk · ÃT

k � 0 , Rk = RT
k � 0 , (10)

where Ãk is some invertible point matrix typically satisfying

Ãk ∈ [Ak] . (11)

This definition is inherited from the propagation of a representative point in the interior of
Ek which was chosen to be its midpoint in [20,24].

Remark 1. Possible choices for the parameterization of the matrices Rk and Ãk introduced in (10)
and (11) are discussed in the illustrating example in Section 3.1.3.

Assuming regularity of A(xk, pk) ·Qk ·AT(xk, pk) for all xk ∈ Ek, pk ∈ [pk], the exact
solution of the mapping (7) is defined by

E∗k+1 =
{

xk+1 ∈ Rn ∣∣ xT
k+1 ·

(
Ak ·Qk ·AT

k

)−1
· xk+1 ≤ 1 ,

where Ak = A(xk, pk) with xk ∈ Ek , pk ∈ [pk]
}

,
(12)

where E∗k+1 ⊆ E
O
k+1 needs to be satisfied for (9) to represent a guaranteed outer bound of

the solution domain. Note, even if this regularity assumption does not hold, the following
Theorem 1 remains true.
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Theorem 1 (Guaranteed outer bound). The ellipsoid EO
k+1 according to Equation (9) is a guar-

anteed outer bound for E∗k+1 if the matrix inequality

Mk+1 :=

[
−Q−1

k AT(xk, pk) · Ã−T
k

Ã−1
k ·A(xk, pk) −α2

O,k+1Rk

]
� 0 (13)

holds for all xk ∈ Ek and pk ∈ [pk].

Proof. Without any assumptions on the regularity of A(xk, pk) ·Qk ·AT(xk, pk), the relation
E∗k+1 ⊆ E

O
k+1 is satisfied, if mapping the domain EO

k+1 one time step back leads to a domain
Sk that is a superset of the ellipsoid Ek according to Sk ⊇ Ek with

Sk =
{

xk ∈ Rn ∣∣ xT
k ·A

T(xk, pk) ·
1

α2
O,k+1

·
(

Ãk ·Rk · ÃT
k

)−1
·A(xk, pk) · xk ≤ 1 ,

where xk ∈ Ek , pk ∈ [pk]
}

.
(14)

Geometrically speaking, this means that the level curve of height 1 of the quadratic
form in (8), which corresponds to the bound of the ellipsoid Ek, must be an inner bound for
the level curve of identical height of Sk. This condition corresponds to the scalar inequality

xT
k ·A

T(xk, pk) ·
1

α2
O,k+1

·
(

Ãk ·Rk · ÃT
k

)−1
·A(xk, pk) · xk ≤ xT

k ·Q
−1
k · xk (15)

for all xk ∈ Ek and pk ∈ [pk].
Factoring out the vector xk to the left and right of (15) turns this scalar inequality into

the matrix inequality

AT(xk, pk) ·
1

α2
O,k+1

·
(

Ãk ·Rk · ÃT
k

)−1
·A(xk, pk)−Q−1

k � 0 , (16)

which (for the choice of a regular matrix Ãk) is equivalent to the condition

AT(xk, pk) · Ã−T
k ·

(
α2

O,k+1Rk

)−1
· Ã−1

k ·A(xk, pk)−Q−1
k � 0 . (17)

Removing the difference of the two matrices in (17) with the help of the Schur com-
plement formula [36,37] leads to Equation (13) which completes the proof of Theorem 1.

Remark 2. As stated before, the quasi-linear system matrix A(xk, pk) is bounded by an element-wise
defined interval matrix A(xk, pk) ∈ [Ak] =

[
Ak ; Ak

]
. Therefore, a conservative solution to the

matrix inequality in Theorem 1 can be determined by searching for a state- and parameter-independent,
strictly positive definite matrix α2

O,k+1Rk that satisfies the interval-valued matrix inequality

Mk+1 ∈ [Mk+1] =

[
−Q−1

k [Ak]
T · Ã−T

k
Ã−1

k · [Ak] −α2
O,k+1Rk

]
� 0 . (18)

This matrix inequality can be cast into a linear one by the substitution

PO
k+1 =

(
PO

k+1

)T
= α2

O,k+1Rk � 0 (19)

to make standard routines for linear matrix inequalities such as the MATLAB toolbox SEDUMI in
combination with YALMIP [38,39] applicable if (18) is further replaced by the convex combination
of a finite number of extremal realizations with the help of the ideas given in [40,41]. The extremal
realizations can be obtained by computing an interval extension of the state- and parameter-
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dependent system matrix A(xk, pk) with the help of toolboxes such as INTLAB [42] for MATLAB

and determining all matrix entries that have a non-zero diameter. Then, it is possible to represent (
18) by the convex polytope

D =
{
Mk+1

∣∣∣Mk+1(ξ) =
nv

∑
v=1

ξv ·Mv,k+1 ;
nv

∑
v=1

ξv = 1 ; ξv ≥ 0
}

, (20)

which is only used in the following example for the sake of comparison with the proposed method,
where for the list of all nv = 2n2

interval vertices formed of Ak and Ak the corresponding extremal
realizations

Mv,k+1 =

[
−Q−1

k AT
v,k · Ã

−T
k

Ã−1
k ·Av,k −PO

k+1

]
, v ∈ {1, . . . , nv} , (21)

are defined and need to be negative semi-definite with Mv,k+1 � 0. Note, this formulation of
all (21) directly accounts for the structural symmetry of (18). A (nearly) optimal solution can
be obtained by minimizing trace

{
PO

k+1

}
, cf. [43,44], which can be employed as a substitute for

the optimization task involving the logarithm of the shape matrix determinant according to ([45],
Apprndix C).

To avoid the necessity to solve linear matrix inequalities in each temporal discretization
step of a dynamic system, the following Theorem 2 describes a relaxed version of the
solution procedure after a-priori fixing the matrix Rk, for example, by setting Rk = Qk.

Theorem 2 (Eigenvalue criterion for outer ellipsoidal bounds). For a fixed combination of the
shape and stretch parameters Rk and αO,k+1, respectively, EO

k+1 is a guaranteed outer enclosure of
the solution set E∗k+1, if

λi(mid([Mk+1])) + ρ(rad([Mk+1])) ≤ 0 (22)

holds for all i ∈ {1, . . . , 2n}, where λi(mid([Mk+1])) is the i-th eigenvalue of 1
2 ·
(
Mk+1 +Mk+1

)
and ρ(rad([Mk+1])) the spectral radius of 1

2 ·
(
Mk+1 −Mk+1

)
.

Proof. Due to the structural symmetry of [Mk+1], all possible eigenvalues λi(Mk+1) of
Mk+1 ∈ [Mk+1] are guaranteed to be real-valued. According to Rohn [46,47], interval
bounds for the range of each eigenvalue are given by the enclosures

λi(Mk+1) ∈ [λi,M] = λi(mid([Mk+1])) + [−1 ; 1] · ρ(rad([Mk+1])) (23)

located on the real axis of the complex plane. If sup([λi,M]) ≤ 0 holds for all i ∈ {1, . . . , 2n},
Theorem 1 is satisfied due to the negative semi-definiteness of the interval matrix (18).

Remark 3. To enhance the efficiency of the enclosure technique, the eigenvalue bounds from (23)
can be combined with the upper eigenvalue bound λmax,M obtained from the Gershgorin circle
criterion [48]

λmax,M ≤ max
i∈{1,...,2n}

{
sup

{
[Mi,i] +

2n

∑
j=1,j 6=i

∣∣[Mi,j
]∣∣}} . (24)

If this is not efficient, all vertices of the interval matrix (18) could be tested for negative semi-definiteness.

Remark 4. The optimal, i.e., smallest volume ellipsoid after fixing the matrix Rk, for example,
by the choice Rk = Qk, is obtained with the help of Theorem 2 if the parameter αO,k+1 > 0 is
minimized by a line search procedure so that (22) remains satisfied. For αO,k+1 → ∞, the outer
bound becomes infinitely large.
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3.1.2. Inner Bounds

Inner ellipsoidal bounds

E I
k+1 =

{
xk+1 ∈ Rn ∣∣ 1

α2
I,k+1

· xT
k+1 ·Q

−1
k+1 · xk+1 ≤ 1

}
(25)

with the shape matrix defined in (10) describe domains that are guaranteed to belong to
the solution set according to E I

k+1 ⊆ E
∗
k+1 are characterized by the following Theorem 3.

Theorem 3 (Guaranteed inner bound). The ellipsoid E I
k+1 according to Equation (25) is a

guaranteed outer bound for E∗k+1 if the matrix inequality

N k+1 :=

 α−2
I,k+1 ·R

−1
k

(
Ã−1

k ·A(xk, pk)
)−T(

Ã−1
k ·A(xk, pk)

)−1
Qk

 � 0 (26)

holds for all xk ∈ Ek and pk ∈ [pk].

Proof. The proof of Theorem 3 follows a similar reasoning as the proof of Theorem 1. If the
matrix A(xk, pk) ·Qk ·AT(xk, pk) has full rank for all xk ∈ Ek and pk ∈ [pk], E I

k+1 ⊆ E
∗
k+1

holds, if the level curve of height 1 of the quadratic form in (25), which corresponds to
the bound of the ellipsoid E I

k+1, is fully contained in the interior of E∗k+1 according to the
scalar inequality

xT
k+1 ·

1
α2

I,k+1
·
(

Ãk ·Rk · ÃT
k

)−1
· xk+1 ≥ xT

k+1 ·
(

A(xk, pk) ·Qk ·AT(xk, pk)
)−1
· xk+1 (27)

This condition corresponds to the matrix inequality

1
α2

I,k+1
·
(

Ãk ·Rk · ÃT
k

)−1
−
(

A(xk, pk) ·Qk ·AT(xk, pk)
)−1
� 0 , (28)

which is equivalent to

1
α2

I,k+1
·R−1

k − ÃT
k ·A

−T(xk, pk) ·Q−1
k ·A

−1(xk, pk) · Ãk � 0 (29)

under the above-mentioned regularity assumption.
Removing the difference of matrices in (29) by the application of the Schur complement

formula completes the proof of Theorem 3.

Remark 5. In analogy to Equation (18), a conservative formulation of Theorem 3 can be given by
the interval-valued matrix inequality

N k+1 ∈ [N k+1] =

 α−2
I,k+1 ·R

−1
k

(
Ã−1

k · [Ak]
)−T(

Ã−1
k · [Ak]

)−1
Qk

 � 0 (30)

for which a common solution after the linearizing variable substitution

P I
k+1 =

(
P I

k+1

)T
= α−2

I,k+1 ·R
−1
k � 0 (31)

needs to be found. An optimization of this solution is possible by a minimization of trace
{
P I

k+1

}
,

(replacing the optimization task involving the logarithm of the shape matrix determinant according
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to [45, Apprndix C]), where for a polytopic representation of the domain [N k+1] according to (21)

the entry-wise defined vertices of the matrix inverse
(

Ã−1
k · [Ak]

)−1
need to be found. A relaxation

into a computationally less expensive eigenvalue test is given by Theorem 4.

Theorem 4 (Eigenvalue criterion for inner ellipsoidal bounds). For a fixed combination of the
shape and stretch parameters Rk and αI,k+1, respectively, E I

k+1 is a guaranteed inner enclosure of
the solution set E∗k+1, if

λi(mid([Nk+1])) + ρ(rad([Nk+1])) ≥ 0 (32)

holds for all i ∈ {1, . . . , 2n}, where the mid and rad operators are defined as in Theorem 2.

Proof. The proof of Theorem 4 results from a direct application of the proof of Theorem 2
after exchanging the sign condition of the respective inequalities, where inf([λi,N ]) ≥ 0
needs to hold for all i ∈ {1, . . . , 2n}.

Remark 6. To enhance the efficiency of the enclosure technique, the eigenvalue bounds from (32) can
be combined with the lower eigenvalue bound λmin,N obtained from the Gershgorin circle criterion

λmin,N ≥ min
i∈{1,...,2n}

{
inf

{
[Ni,i]−

2n

∑
j=1,j 6=i

∣∣[Ni,j
]∣∣}} . (33)

If this is not efficient, all vertices of the interval matrix (30) could be tested for positive semi-
definiteness. However, this is only recommended for sufficiently small values of n.

Remark 7. The optimal, i.e., largest volume ellipsoid after fixing the matrix Rk, for example,
by the choice Rk = Qk, is obtained with the help of Theorem 4 if the parameter αO,k+1 > 0 is
maximized by a line search procedure so that (32) remains satisfied. For αI,k+1 = 0 or non-regular
matrices Ã−1

k · [Ak], the inner ellipsoidal bound is the empty set.

Using identical matrices Rk for the outer and inner ellipsoids, the thick ellipsoid sets
is defined by

((E))k+1 = ((E))k+1

(
0,R

1
2
k · Ãk, [αI,k+1 ; αO,k+1]

)
. (34)

3.1.3. Illustrating Example

As an illustrating example, consider the system model

xk+1 =

[
0.5 p1
p2 0.6

]
· xk (35)

with the independent parameters p1 and p2, where

xk ∈ Ek with Qk =

[
1 0
0 2

]
. (36)

To show the influence of parameter uncertainty on the computed ellipsoidal enclosures,
the following cases are distinguished in Figure 2:

case 1 p1 ∈ [−1 ; 2], p2 ∈ [−1 ; 2];

case 2 p1 ∈ [−0.25 ; 0.5], p2 ∈ [−0.25 ; 0.5];

case 3 p1 ∈ [−0.1 ; 0.2], p2 ∈ [−0.1 ; 0.2].

In the left column of Figure 2, the parameter matrix Rk = Qk is chosen, while it is
set to Rk = Ã−T

k ·Qk · Ã−1
k in the right column, where Ãk is the interval midpoint of the

uncertain system matrix.
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(a) Case 1 with Rk = Qk. (b) Case 1 with Rk = Ã−T
k ·Qk · Ã−1

k .

(c) Case 2 with Rk = Qk. (d) Case 2 with Rk = Ã−T
k ·Qk · Ã−1

k .

(e) Case 3 with Rk = Qk. (f) Case 3 with Rk = Ã−T
k ·Qk · Ã−1

k .

Figure 2. Computation of the thick ellipsoid enclosure ((E))k+1 for the example (35). The exact inner
solution sets are visualized in light gray color, while the dark gray domains consist of the union of
ellipsoid bounds that result from a numerical mapping of a 20× 20 grid for the interval parameters
[p1] and [p2].

Obviously, for the smaller uncertainty in the cases 2 and 3, the first setting is superior.
This is not astonishing because it corresponds to that choice of matrix that would be
employed for the covariance prediction in an Extended Kalman Filter (EKF). As it is well
known, strong deviations from a point-valued system matrix Ak may turn an EKF quite
inaccurate. Then, other choices of the forecasted covariance are often superior, as they
could be determined by the Unscented Kalman Filter technique [27]. This approach was
not investigated here. However, the almost symmetric interval bounds of [Ak] motivate
the second choice of Rk, which corresponds to Qk+1 = Qk.

Moreover, it should be pointed out that the case 1 in Figure 2a,b corresponds to a scenario
in which the inner bound is empty, the case 2 in Figure 2c,d to a scenario in which the inner
bound just appears due to the matrix [Ak] containing purely regular realizations; finally,
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Figure 2e,f show the case of small uncertainty with a clearly visible inner solution set, where
the proposed one-parameter optimization task from the previous subsections provides results
that are close to the solution of the robust linear matrix inequality design, where Rk is not
predefined but rather optimized with the help of the matrices PO

k+1 and P I
k+1 to obtain

independent outer and inner enclosures (dashed and dotted lines, respectively).

3.2. Dikin Ellipsoids for the Intersection of Ellipsoids

The intersection of two ellipsoidal (state) domains is a fundamental operation for the
estimation of state variables in a bounded-error framework. For that reason, this section
introduces corresponding procedures that are readily applicable to thick ellipsoids, starting
with the well-known case of two ellipsoids with identical midpoints. These results are further
generalized to the case, where the ellipsoid midpoints may be different from each other.

3.2.1. Intersection of Ellipsoids with Identical Midpoints

Outer as well as inner ellipsoidal representations for the intersection of various ellip-
soidal domains were investigated in numerous publications. Especially, the reference [49]
gives a thorough overview of a large number of applicable techniques that can be cast
into computationally feasible optimization problems. Basically, all of these routines are
based on the use of linear matrix inequalities. At each intersection stage, such linear matrix
inequalities need to be solved when computing so-called inner and outer bounds by means
of a technique that is based on findings of Löwner and John [50]. Analogously, this holds
for the Nerimovski approximation [51] that is compared with the first option in [49].

To avoid the necessity for solving linear matrix inequalities explicitly during online
applications (note, these matrix inequalities are exploited for the offline proof of the validity
of the following enclosure relations), a conservative approximation based on the so-called
Dikin ellipsoids [49] is considered in this paper. These ellipsoids can be applied to describe
inner and outer bounds for the intersection Ik of m ellipsoids

Ei,k =
{

xk ∈ Rn ∣∣ xT
k ·Q

−1
i,k · xk ≤ 1 , i ∈ {1, . . . , m}

}
(37)

with an identical center located in the origin of the state space. The following relations for
the shape matrices hold equally for identical non-zero center points.

Using the results of ([49], [Lemma 5]), the inner and outer bounds are given by

ED,I,k ⊆ Ik ⊆ ED,O,k (38)

with ED,I,k = E2
D,k and ED,O,k = E2m

D,k, respectively, where

E r
D,k =

{
xk ∈ Rn ∣∣ xT

k · r
−1 ·Q−1

D,k · xk ≤ 1
}

(39)

is defined for the common shape matrix

Q−1
D,k = 2

m

∑
i=1

Q−1
i,k . (40)

This definition of inner and outer ellipsoidal enclosures corresponds to a thick ellipsoid
introduced in the Definitions 1 and 2 in the form

((E))D,k = ((E))D,k

(
0, ΓD,k,

[√
2 ;
√

2m
])

with ΓD,k = Q
1
2
D,k . (41)

Although these enclosures are generally suboptimal, we restrict ourselves to these
Dikin ellipsoids due to their computational inexpensive evaluation which is advantageous
if real-time state estimation procedures are desired. A generalization to the case of ellipsoids
with different midpoints is presented in the following subsection.
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Efficient techniques that allow for checking whether the intersection of two ellipsoids
is empty were published in [52,53]. This check is especially interesting if the thick ellipsoid
state observer technique derived in the following section is applied to tasks in the area
of fault detection. There, the case that a predicted state domain does not intersect with
those domains that are compatible with sensor data typically indicates failures of system
components, actuators, or sensors. This corresponds to the fact that the investigated
(nominal) system model is proven to be infeasible.

A further related technique, however, not only relying on ellipsoidal state enclosures
was very recently derived in [54]. There, outer bounds for the domains of reachable states
are characterized by ellipsoids, while disturbances are bounded by zonotopes that may
become degenerate if one or more coordinates are unbounded. This property of degeneracy
will be picked up again in Section 3.2.3, where an example is presented in which only
partial state measurements are available in the thick ellipsoid framework.

3.2.2. Generalization to the Intersection of Ellipsoids with Different Midpoints

An extension of the technique for computing Dikin ellipsoids to a scenario in which
two ellipsoids with different centers are intersected, is based on the following three-
stage procedure:

Step 1 Determine the common center point for the desired inner and outer bounds of the
intersection that must be included in all ellipsoids to be intersected;

Step 2 Determine initial approximations of the shape matrices for the inner and outer
bounds according to Section 3.2.1;

Step 3 For non-empty inner bounds, correct the outer enclosure so that the inner and outer
ellipsoid surfaces become parallel to each other and, thus, form a thick ellipsoid ((E)).

Step 3* As an alternative to Step 3, the initial outer enclosure remains fixed and the inner
ellipsoid surface is adapted to become parallel to each other to form a thick ellipsoid ((E)).

As a heuristic approach for the computation of the common center point µ̃k in Step 1
of two ellipsoids that are described by the midpoints µ1,k and µ2,k as well as the shape
matrices Q1,k and Q2,k, respectively, the first one is interpreted as the prior knowledge in
the innovation step of a Kalman filter [25,55] and the second one as the corresponding
information of the state measurement.

Under this assumption, one obtains the Kalman gain matrix

Lk = Q1,k · (Q1,k + Q2,k)
−1 (42)

with the updated ellipsoid midpoint

µ̃k = µ1,k + Lk · (µ2,k − µ1,k) (43)

that is now used for the solution of the Steps 2 and 3 listed above.
For both ellipsoids i ∈ {1, 2} to be intersected, scaling factors ξi > and ζi > are

determined which represent the minimum and maximum distances of the new midpoint
from the ellipsoid surface according to

ξi,k = 1−
∥∥∆µi,k

∥∥ and ζi = 1 +
∥∥∆µi,k

∥∥ , (44)

with
∆µi,k = Q−

1
2

i,k · (µ̃k − µi,k) (45)

and
∥∥∆µi,k

∥∥ as the Euclidean norm of the vector-valued argument.
In such a way, both ellipsoids to be intersected can be enclosed by thick ellipsoids

((E))i,k = ((E))i,k
(
µ̃k, Γ̃i,k, [ξi,k ; ζi,k]

)
with Γ̃i,k = Q

1
2
i,k . (46)
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The initial inner approximation of the shape matrix of the resulting intersection is
given by

QI
k = 2 ·

(
2 ·
((

ξ2
1,k ·Q1,k

)−1
+
(

ξ2
2,k ·Q2,k

)−1
))−1

(47)

according to the previous subsection, while its outer counterpart results in

QO′
k = 4 ·

(
2 ·
((

ζ2
1,k ·Q1,k

)−1
+
(

ζ2
2,k ·Q2,k

)−1
))−1

. (48)

Usually, these two shape matrices are not proportional to each other in an element-
wise sense. Hence, the inner shape matrix QI

k is inflated in Step 3 according to the following
theorem so that it contains the outer ellipsoid with certainty.

Theorem 5 (Thick interval representation of the Dikin intersection of ellipsoids with differ-
ent midpoints). The thick Dikin ellipsoid

((E))D,k = ((E))D,k

(
µ̃k, ΓD,k,

[
1 ;
(

min
i∈{1,...,n}

{
λi

((
QO′

k

)−1
·QI

k

)})− 1
2
])

with ΓD,k =
(

QI
k

) 1
2 .

(49)
represents guaranteed inner and outer bounds of the intersection of two ellipsoids with different
midpoints if all parameters are chosen according to Equations (42)–(48).

Proof. The validity of the inner bound is a direct consequence of ([49], [Lemma 5]) and the
construction of the matrix (45) as a guaranteed underapproximation of the domains to be
intersected. The outer bound of (49) is represented by the shape matrix

QO
k = α2

O,k+1 ·Q
I
k . (50)

It results from Equation (16) after setting Ak = I, Ãk = I, Qk = QO′
k , and Rk = QI

k
which yields

α−2
O,k+1 · I �

(
QO′

k

)−1
·QI

k . (51)

This inequality is satisfied if

α−2
O,k+1 ≤ min

i∈{1,...,n}

{
λi

((
QO′

k

)−1
·QI

k

)}
, (52)

where the expression in curly brackets denotes the minimum eigenvalue of the correspond-
ing matrix product. Taking the square root of the inverse of this expression completes the
proof of Theorem 5.

The alternative solution according to Step 3* is given by the thick ellipsoid enclosure

((E))∗D,k = ((E))∗D,k

(
µ̃k, Γ∗D,k,

[(
max

i∈{1,...,n}

{
λi

((
QI

k

)−1
·QO′

k

)})− 1
2

; 1

])
with Γ∗D,k =

(
QO′

k

) 1
2 , (53)

which is a direct consequence of Theorem 5 by searching for an ellipsoid parallel to the outer
bound that is guaranteed to belong to the interior of the one with the shape matrix QI

k.

Remark 8. Due to the fact that the relation

max
i∈{1,...,n}

{
λi

((
QI

k

)−1
·QO′

k

)}
= min

i∈{1,...,n}

{
λi

((
QO′

k

)−1
·QI

k

)}−1
> 0 (54)
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holds for arbitrary positive definite matrices QI
k and QO′

k , the ratio between the volumes of the outer
and inner ellipsoids in Equations (49) and (53) is identical. Hence, the variant (49) is typically
preferred if thick ellipsoids with maximum volume inner enclosures are desired, while (53) provides
tighter outer bounds.

Remark 9. For ellipsoids with identical midpoints µ̃k = µ1,k = µ2,k, the ellipsoid of Theorem 5 is
identical to the one in (41) if the midpoint parameter µ̃k is used instead of the value 0 in (41).

3.2.3. Illustrating Example

In this subsection, various examples for the intersection of ellipsoids and the result
interpretation by means of the thick ellipsoids ((E))D,k and ((E))∗D,k, respectively, are summa-
rized. Figure 3a deals with the application of the intersection procedure of Section 3.2.1 for
two ellipsoids identically centered at the origin with the shape matrices

Q1,k =

[
1 0
0 8

]
and Q2,k =

[
4 −5
−5 8

]
. (55)

Here, both enclosures ((E))D,k and ((E))∗D,k are identical. Moreover, the fact that the
ellipsoid midpoints are identical results in inner and outer enclosures E I

D,k and EO
D,k that

are quite close to the optimal ellipsoidal result representation.
To visualize the procedure of Section 3.2.2 for the case of two different midpoints

µ1,k =
[
0 0

]T and µ2,k =
[
1 2

]T (56)

either with the shape matrices (55) or with the new shape matrices

Q1,k =

[
1 0
0 8

]
and Q2,k = 4 ·

[
4 −5
−5 8

]
, (57)

the results in Figure 3c,d are presented. These results confirm the observation described in
Remark 8 that the use of Equation (49) leads to tighter inner bounds, while Equation (53)
possesses the better outer bounds. Depending on the application to detect states belonging
to the solution set with certainty or proving in a guaranteed way that specific state domains
are not reachable in the frame of a safety or feasibility test, either the first or the second
option should be preferred.

However, the observed larger distance between the resulting inner and outer bounds
in comparison with Figure 3a gives rise to the assumption that further improvements of the
solution could be possible. This could either be done by means of the procedures in [49]
or by intersecting the newly obtained outer bounds of both ((E))D,k and ((E))∗D,k. Note, also
the choice of the common ellipsoid midpoint represents a degree of freedom that can be
investigated in future work together with possibilities to intersect the enlarged dashed-
dotted bounds (which correspond to the outer ellipsoid surfaces of (46)) in a recursive
manner with both ((E))D,k and ((E))∗D,k.

Interestingly, the proposed intersection procedures can also be applied to the case
where one of the original ellipsoids becomes degenerate. In practice, this is the case for a
pure measurement of a single state variable. This case is considered in Figure 4, where in all

subplots the matrices Q1,k from Equations (55) and (57) were replaced with Q−1
1,k =

[
1 0
0 0

]
,

corresponding to
∣∣x1,k

∣∣ ≤ 1.
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(a) Case according to Section 3.2.1 with the
shape matrices (55).

(b) Case according to Section 3.2.2 with the
initial ellipsoid parameterization (55), (56), en-
closure definition (53).

(c) Case according to Section 3.2.2 with the
initial ellipsoid parameterization (56), (57), en-
closure definition (49).

(d) Case according to Section 3.2.2 with the
initial ellipsoid parameterization (56), (57), en-
closure definition (53).

Figure 3. Intersection of ellipsoids E1,k and E2,k with identical and different midpoints. Inner bound
of the resulting thick ellipsoid: E I

D,k; outer bound: EO
D,k (∗ symbols denote the solution enclosure

according to Equation (53)).

Due to the fact that the basic formula (40) for computing Dikin ellipsoids only makes use
of the inverted shape matrices, the solution procedure remains applicable for the degenerate
case. This is a crucial requirement to use this intersection approach in cases in which only
a subset to the state variables appears in the system’s output equation when considering
state estimation procedures according to the following two sections. In Figure 4b,c, the new
ellipsoid midpoint µ̃k results from the following adapted Kalman gain

Lk = Q2,k ·
[

1
0

]
·
([

1 0
]
·Q2,k ·

[
1
0

]
+ σ2

1,k

)−1

, where Q−1
1,k =

[
σ−2

1,k 0
0 0

]
(58)

with the updated ellipsoid midpoint

µ̃k = µ2,k + Lk ·
([

1 0
]
· (µ1,k − µ2,k)

)
, (59)

for which all remaining parameter values are defined in (56) and (57).
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(a) Case according to Section 3.2.1 with Q2,k
according to (55).

(b) Case according to Section 3.2.2 with the
initial ellipsoid parameterization (56), (57), en-
closure definition (49).

(c) Case according to Section 3.2.2 with the
initial ellipsoid parameterization (56), (57), en-
closure definition (53).

Figure 4. Intersection of an ellipsoid E1,k with the degenerate ellipsoid E2,k (vertical strip) with
identical and different midpoints. Inner bound of the resulting thick ellipsoid: E I

D,k; outer bound:
EO

D,k (∗ symbols denote the solution enclosure according to Equation (53)).

3.3. Thick Ellipsoid Union of Two Ellipsoids with Different Midpoints
3.3.1. General Solution Procedure

The thick ellipsoid union of two ellipsoids with different midpoints is a direct conse-
quence of the procedure in Section 3.2.2. Firstly, the shape matrix QI

k of the thick ellipsoid

((E))U,k = ((E))U,k(µ̃k, ΓU,k, [1 ; ηk]) with ηk = η∗k ≥ 1 and ΓU,k =
(

QI
k

) 1
2 (60)

is determined as in Equation (47). The remaining degree of freedom η∗k can be found
according to the work of John [50]. For that purpose, specific points on the ellipsoids to be
merged were extracted in [24] with subsequently inflating the inner bound by the factor
η∗k ≥ 1 until all points are included in its interior.

To avoid the extraction of individual points, which has to be performed with sufficient
care so that the new outer bound is guaranteed to be conservative, Equation (50) with ζ j,k
given in (44) is generalized to find the maximum scaling

η∗k = max
j∈{1,2}

{(
min

i∈{1,...,n}

{
λi

((
ζ2

j,k ·Qj,k

)−1
·QI

k

)})− 1
2
}

(61)

so that all outer bounds of the thick ellipsoids in (46) are guaranteed to be contained in
the union.
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Remark 10. This inflation operation generalizes naturally to an arbitrary integer number j of
ellipsoids to be merged after they have been converted into representations with a common midpoint.

As an alternative parameterization (similar to the computation of the intersection
of ellipsoids), both outer and inner bounds can be tuned by an alternative option. For
that purpose, firstly define an approximation to the resulting shape matrix of the union
according to the covariance prediction of a Kalman filter, where the state equation in
the Kalman filter corresponds to computing the mean value of the data from each of the
ellipsoids, with

Q̃k =
1
4
· (Q1,k + Q2,k) . (62)

Then, the scaling factors according to (49) and (53) yield the shape matrices

QO,∗
k = Q̃k ·

(
ηO

k

)2
, ηO

k = max
j∈{1,2}

{(
min

i∈{1,...,n}

{
λi

((
ζ2

j,k ·Qj,k

)−1
· Q̃k

)})− 1
2
}

(63)

for the outer bound as well as

QI,∗
k = Q̃k ·

(
ηI

k

)2
, ηI

k =

(
max

i∈{1,...,n}

{
λi

((
QI

k

)−1
· Q̃k

)})− 1
2

(64)

for the inner bound.
Together, they result in the thick ellipsoid

((E))∗U,k = ((E))∗U,k

(
µ̃k, Γ∗U,k,

[
ηI

k ; ηO
k

])
with ηk = η∗k ≥ 1 and Γ∗U,k =

(
Q̃k
) 1

2 . (65)

3.3.2. Illustrating Example

Using the same examples as in (55)–(57), the procedure from Section 3.3.1 is visualized
in Figure 5. Due to the fact that the outer hull in Figure 5c is more conservative than neces-
sary (computed by means of Equation (60)), the alternative procedure from Equation (65) is
preferable in the considered example. More complex options for computing optimal outer
ellipsoidal enclosures typically need to employ the solution of matrix inequalities and/or
minmax optimization problems in each evaluation step. Due to the resulting computational
effort, such options are not further considered for the desired online application in this
paper. However, the reader is referred to [19,30,56] for related work.

(a) Union of ellipsoids with identical mid-
points, cf. (55).

(b) Union of ellipsoids with the initial ellip-
soid parameterization (55), (56), enclosure defi-
nition (65).

Figure 5. Cont.
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(c) Union of ellipsoids with the initial ellip-
soid parameterization (56), (57), enclosure defi-
nition (60).

(d) Union of ellipsoids with the initial ellip-
soid parameterization (56), (57), enclosure defi-
nition (65).

Figure 5. Union of ellipsoids E1,k and E2,k with identical and different midpoints. Inner bound of the
resulting thick ellipsoid: E I

U,k; outer bound: EO
U,k (∗ symbols denote the solution enclosure according

to Equation (65)).

4. Thick Ellipsoid State Estimation Algorithm

As shown in Figure 6, the thick ellipsoid state estimation procedure consists of two
stages. Prediction steps, which are based on the (uncertain) discrete-time state equation,
are executed up to the point of time at which a new measurement becomes available. There,
a measurement-based correction of the a-priori knowledge resulting from the previous
state prediction is performed. This corrected state information then serves in a recursive
manner as the input for a subsequent state prediction.

EO
kE I

k

xk+1 = f (xk)

Prediction
Correction

((E))k+1

((E))m,k+1

∩

((E))′k+1

Figure 6. Thick ellipsoid state estimation algorithm consisting of prediction and correction stages.

4.1. Thick Ellipsoid Prediction Step

For state estimation purposes, typically thick ellipsoids have to be considered in the
prediction step according to Section 3.1 which have a non-zero midpoint. Their propagation
then consists of separating the state equation as illustrated in Figure 7 into a part that
depends on an ellipsoid centered at the origin and an offset term that accounts for the
non-zero center according to

xk+1 = A(xk, pk) · x̌k + Ãk · µk +
(
A(xk, pk)− Ãk

)
· µk , (66)
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where

xk ∈ ((E))k

(
µk, Γk,

[
ρ

k
; ρk

])
, (67)

x̌k ∈ ˇ((E))k

(
0, Γk,

[
ρ

k
; ρk

])
, (68)

Ãk = A(µk, mid([pk])) , and (69)

pk ∈ [pk] =
[
p

k
; pk

]
with mid([pk]) =

1
2
·
(

p
k
+ pk

)
. (70)

((E))k

x1,k

x2,k

((
Ě
))
k

x̌1,k

x̌2,k

µk

x1,k

x2,k

A (xk,pk)

Ãk +
(
A (xk,pk)− Ãk

)

((
Ě
))′
k+1

x̌1,k+1

x̌2,k+1

+

µk+1

x1,k+1

x2,k+1

((E))k+1

x1,k+1

x2,k+1

Figure 7. Separation of the state equations according to (66)–(70) into the mapping of an origin-
centered ellipsoid and the verified treatment of non-zero offset terms.

Then, the following steps are executed during the state prediction:

1. Propagate the inner bound of the thick ellipsoid (68) and extract the inner hull of the
image set that is obtained by applying the mapping

x̌k+1 = A(xk, pk) · x̌k . (71)

Denote the corresponding shape matrix of the inner ellipsoid by Q̌I
k+1. This matrix is

related to the shape matrix α2
I,k+1 ·Qk+1 in Equation (25) by

Q̌I
k+1 = α2

I,k+1 · ρ
2
k
· Γk · ΓT

k . (72)

2. Propagate the outer bound of the thick ellipsoid (68) and extract the outer hull of the
image set that is obtained by applying the mapping (71). Denote the corresponding
shape matrix of the outer ellipsoid by Q̌O

k+1. This matrix is related to the shape matrix
α2

O,k+1 ·Qk+1 in Equation (9) by

Q̌O
k+1 = α2

O,k+1 · ρ
2
k · Γk · ΓT

k . (73)

3. Compute interval bounds for the term

bk =
(
A(xk, pk)− Ãk

)
· µk ∈ [bk] (74)

with xk, Ãk, and pk defined according to (67), (69), and (70) and deflate the inner ellip-
soid bound as well as inflate the outer bound according to the procedure described
in [20,24] with

QI
k+1 = (1− ρI,k+1)

2 · Q̌I
k+1 , ρI,k+1 = sup

{∥∥∥α−1
I,k+1 · ρ

−1
k
· Γ−1

k · [bk]
∥∥∥} (75)

and

QO
k+1 = (1 + ρO,k+1)

2 · Q̌O
k+1 , ρO,k+1 = sup

{∥∥∥α−1
O,k+1 · ρ

−1
k · Γ

−1
k · [bk]

∥∥∥} . (76)

Note, for ρI ≥ 1, the inner bound becomes the empty set.
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4. Compute the updated ellipsoid midpoint as

µk+1 = Ãk · µk . (77)

5. Finally, determine the predicted thick ellipsoid set

xk+1 ∈ ((E))k+1

(
µk+1, Γk+1,

[
ρ

k+1
; ρk+1

])
, (78)

where

ρ
k+1

= ρ
k
· αI,k+1 · (1− ρI,k+1) ,

ρk+1 = ρk · αO,k+1 · (1 + ρO,k+1) , and

Γk+1 = Ãk · Γk .

(79)

Remark 11. In cases where the inner ellipsoid becomes the empty set, purely the outer ellipsoid
hull is further propagated to represent worst-case outer state enclosures.

4.2. Thick Ellipsoid Correction Step

The correction step of the thick ellipsoid state estimator at the point k + 1 is given by
the application of Theorem 5 with the following step-by-step procedure (in this description,
we prefer the version of maximized inner bounds to reduce the likelihood of empty inner
enclosures; however, the task of minimizing the outer volume can be stated in full analogy):

1. Determine the inner shape matrix on the basis of Equation (47) according to

QI′
k+1 = 2 ·

(
2 ·
((

ξ2
1,k+1 ·Q

I
k+1

)−1
+
(

ξ2
2,k+1 ·Qm,k+1

)−1
))−1

, (80)

where (based on the change of the ellipsoids’ midpoint positions according to (43))
QI

k+1 from (75) is the inner bound of the previous prediction; Qm,k+1 characterizes
the measurement uncertainty (possibly given in terms of a degenerate ellipsoid).

2. Use Equation (48) to determine the intermediate outer bound

QO′
k+1 = 4 ·

(
2 ·
((

ζ2
1,k+1 ·Q

O
k+1

)−1
+
(

ζ2
2,k+1 ·Qm,k+1

)−1
))−1

(81)

with QO
k+1 from (76).

3. Finally, Equation (49) yields the thick Dikin ellipsoid as the result of the measurement-
based correction step.

4.3. Visualization of the Thick Ellipsoid State Estimation Procedure

To visualize the individual steps of the thick ellipsoid state estimation procedure, the
test example [

x1,k+1
x2,k+1

]
=

[
1 0.05

−0.01x1,k 0.95

]
·
[

x1,k
x2,k

]
(82)

is investigated. At the initial point of time k = 0, all possible system states are included in
the set

((E))0 = ((E))0(µ0, Γ0, [1 ; 1]) with µ0 =

[
1
1

]
and Γ0 =

([
1 0.9

0.9 1

]) 1
2

. (83)

The corresponding ellipsoid is shown as the dash-dotted line in Figure 8a. Performing a
single prediction step leads to a shift in the ellipsoid midpoint according to Equation (77).
Moreover, the nonlinearity in the system model (82) causes the resulting distance between
the inner and outer bounds of the predicted ellipsoid ((E))1. Now, this ellipsoid is intersected
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with the measurement information that is highlighted by the vertical strip in Figure 8a,b.
According to Figure 8b, the correction step leads again to a shift of the midpoint of the new
thick ellipsoid ((E))′1 according to Equations (58) and (59). The inner bound of ((E))′1 is always
fully contained in the band of possible state measurements ((E))m,1, while its outer bound
becomes tighter than the result of the preceding state prediction.

Now, the result ((E))′1 serves as the input for the subsequent state prediction. For the
sake of a compact notation and for compatibility with Figures 6 and 7, the prime symbol
is suppressed in Figure 8c, where the prediction from k = 1 to k = 2 is shown. After
this prediction, the next correction step can be executed according to Figure 8d. Note,
tight measurement tolerances or strongly nonlinear dependencies in the system model
(re-written into the quasi-linear form) may lead to empty inner bounds after either the
prediction or the correction step. Then, a slightly modified algorithm could be used. Instead
of interpreting the inner bound as the state domain that is guaranteed to belong to the
reachable solution set after the execution of all computations until the current instant k,
it can be used to determine a measure for the precision of the sequence of prediction and
correction steps at a single point of time k. For that purpose, it is necessary to initialize the
inner bound of ((E))k with the same scaling parameter as the outer bound (cf. the interval
parameter with identical bounds in (83)) and to use it in analogy to the initialization of the
ellipsoid in Figure 8a.

(a) Prediction step from k = 0 to k = 1. (b) Correction step at k = 1.

(c) Prediction step from k = 1 to k = 2. (d) Correction step at k = 2.

Figure 8. Visualization of the thick ellipsoid state estimation procedure for the example system in (82).

5. Application Scenario: State and Disturbance Estimation for an Underactuated Hovercraft

As a more complex benchmark application, consider the motion of an underactuated
hovercraft in its body-fixed coordinate frame [57,58]. In these coordinates, it is desired to
employ the ellipsoid techniques summarized in the previous sections to compute guaran-
teed outer state enclosures in the presence of bounded noise and disturbances. Moreover,
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the thick ellipsoid state estimation algorithm of Section 4 is employed to reconstruct bounds
on external disturbances.

5.1. Modeling

According to Figure 9, denote the surge and sway velocities by x1 and x2, respectively,
and the hovercraft’s yaw rate by x3 in a body-fixed coordinate frame. For the following
derivation of the equations of motion, assume that the translational velocities are summa-
rized in the vector V =

[
x1 x2 0

]T , while the angular velocity vector W with respect to

the ship’s center of gravity (COG) is given by W =
[
0 0 x3

]T . In this formulation, the
dynamics associated with the motion in heave, roll, and pitch are neglected by setting the
corresponding vector entries to zero.

COG

Figure 9. Definition of the velocity components in a body-fixed coordinate systems, velocity-
proportional damping as well as disturbance forces and torques.

As also shown in [59,60], a force and torque balance in all degrees of freedom yields
the equations of motion

d
dt

(
∂E
∂V

)
+ W×

(
∂E
∂V

)
= F and

d
dt

(
∂E
∂W

)
+ V×

(
∂E
∂V

)
+ W×

(
∂E
∂W

)
= T ,

(84)

where

E =
1
2
·

VT ·

m11 0 0
0 m22 0
0 0 m33

 ·V + WT ·

J11 0 0
0 J22 0
0 0 J33

 ·W
 (85)

is the total kinetic energy of the ship (under the assumption of purely diagonal mass and
inertia matrices [60]) with the strictly non-negative entries mii ≥ 0 and Jii ≥ 0, i ∈ {1, 2, 3}.
For a hovercraft, it can be assumed that m11 = m22 = m corresponds to the mass of the ship,
without additional hydrodynamic effects, while J33 = Jr is the mass moment of inertia of
the vessel in the direction of x3.

Defining further the vectors

F =

u1 − cx1 − d1
−cx2 − d2

0

 and T =

 0
0

u2 − crx3 − d3

 (86)
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of non-conservative, external generalized forces and torques with the control inputs u1 and
u2 and independent, velocity-proportional damping effects in each coordinate with the
coefficient c > 0 for both translational degrees of freedom as well as cr > 0 for the rotary
motion, the equations of motion (84) simplify to

ẋ1
ẋ2
ẋ3
ḋ1
ḋ2
ḋ3

 =



− c
m x3 0 1

m 0 0
−x3 − c

m 0 0 1
m 0

0 0 − cr
J 0 0 1

J
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


·



x1
x2
x3
d1
d2
d3

+



1
m 0
0 0
0 1

J
0 0
0 0
0 0


·
[

u1
u2

]
, (87)

where di, i ∈ {1, 2, 3}, represent external disturbances according to Figure 9 due to wind
and currents. These disturbances are included in the state equations (87) by means of
integrator disturbance models.

For the following simulation, a linear state feedback controller

[
u1
u2

]
= −

[
k11 k12 k13
k21 k22 k23

]
·

x1
x2
x3

 , (88)

corresponding to a feedback of the actual velocity, is parameterized by means of pole
assignment to decelerate the hovercraft up to standstill at the desired operating point
x1 = x2 = x3 = 0.

For the use of the proposed ellipsoidal state estimation scheme, that will be applied
to the closed-loop system, the state equations are discretized in time with the step size T
according to



x1,k+1
x2,k+1
x3,k+1
d1,k+1
d2,k+1
d3,k+1

 =


I + T ·



− c+k11
m x3,k − k12

m − k13
m − 1

m 0 0
−x3,k − c

m 0 0 − 1
m 0

− k21
J − k22

J − cr+k23
J 0 0 1

J
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




·



x1,k
x2,k
x3,k
d1,k
d2,k
d3,k

 . (89)

The (normalized) parameters used for the following simulations are: c = 0.01, m = 5,
J = 0.8, cr = 0.01, k11 = 0.5, k12 = 1.5, k13 = 0, k21 = 0, k22 = 0, k23 = 0.1, and T = 0.1.

As measured system outputs, all three velocities (surge, sway, and yaw) are assumed to
be available. For the simulation, they are described by the three independent sensor models

1
δ2

i
· (xi,k − ymi,k)

2 ≤ 1 , (90)

where ymi,k, i ∈ {1, 2, 3}, are the data provided by the velocity sensors and δi > 0 their
corresponding maximum uncertainty. Besides filtering the velocity signals, the proposed
observer is used to reconstruct the ranges of the disturbance inputs di that are compatible
with the system model and the sensor data. Due to the assumption of constant but uncertain
disturbances, see Equations (87) and (89), it is permitted to intersect disturbance estimates
at a specific time step k with those of previous steps and to employ those intersected results
as virtual measurements in analogy to the sensor models (90).

In the system model (89), the influence of the yaw rate x3 on the system matrix during
the state prediction is accounted for by an interval parameter that corresponds to its
estimated range from the preceding correction step.

Without any modification, the proposed method is capable of handling imprecisely damp-
ing coefficients c ∈ [c ; c] and cr ∈ [cr ; cr] or uncertain masses and mass moments of inertia.
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5.2. Simulation Results

To illustrate the performance of the thick ellipsoid state estimation algorithm of
Section 4, two different levels of uncertainty are compared for the sensor models (90).
These are

δ2
i = 0.005 (91)

and
δ2

i = 0.0001 . (92)

with the help of these parameters, bounded measurement noise (in the sense of scaled
uniformly distributed random numbers) has been generated for the simulations presented
in this section.

Moreover, we assume true initial system states x0 randomly chosen from the interior
of an ellipsoid centered at

µ∗0 =
[
2 0.1 0.01 0.1 0 0

]T (93)

with the diagonal shape matrix

Q∗0 = diag
{[

1 1 0.1 1 1 1
]}

. (94)

The hovercraft’s external disturbances originate from setting d1 = −0.25 and d3 = 0.05.
The state estimation procedure is initialized with an ellipsoid (containing the true initial

state) with the same shape matrix (94) and the shifted center µ0 = µ∗0 −
[
0 0 0 0.1 0 0

]T.
Figures 10 and 11 display the evolution of the outer state enclosures for k = 1000 steps

of the estimation algorithm from Figure 6 in the left columns. In the right columns of these
figures, an enlarged view is given which compares outer and inner bounds of the thick
ellipsoid after the first prediction step, the propagation of the prediction results in terms
of outer bounds and the respective corrected ellipsoids after accounting for the measured
data. In addition, the measured and true state values are depicted.

Throughout this section, the intersection of the predicted ellipsoids with the de-
generate information according to (90) is performed by the application of formula (53).
The gap between the outer and inner enclosures for k = 1 indicates the non-negligible
influence of nonlinearities for sufficiently uncertain values of x3,k. For the sake of fore-
casting the domains of reachable states, only the outer bounds are investigated further in
Figures 12 and 13. It can be seen that the smaller measurement uncertainty (92) leads to
reduced uncertainty in the state reconstruction. Most noticeable, however, is the fact that
the observer becomes also applicable to reconstruct bounds for the disturbance d3,k in this
case which are tighter than their initialization and consistent with the system model as
well as the uncertain state observations, cf. Figure 13d.

The disturbance estimation was performed as described at the end of the previous
subsection by intersecting the current estimate for the disturbance (after the correction
step) with the previously obtained best disturbance bounds.

For the case of temporally varying disturbances, this procedure has to be modified. Instead
of intersecting the bounds from previous time steps, it would be necessary to account for worst-
case variations of the disturbance during the prediction step by inflating the corresponding
domains similarly to the influence of process noise in a Kalman filter implementation.

For the time-invariant case, future work can also aim at disturbance reconstruction by
accounting for the estimates over a window of multiple time steps k and to find a common
solution for the resulting set of algebraic constraints which are obtained when evaluating
the state Equations (89) in which both xi,k and xi,k+1 are replaced by the outcomes of the
respective correction steps.
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(a) Outer ellipsoidal enclosures for the
velocities x1,k and x2,k.

(b) Enlarged view of the ellipsoidal en-
closures of x1,k and x2,k.

(c) Outer ellipsoidal enclosures for the
velocities x1,k and x3,k.

(d) Enlarged view of the ellipsoidal en-
closures of x1,k and x3,k.

Figure 10. State estimation for the case of large uncertainties (91).

(a) Outer ellipsoidal enclosures for the
velocities x1,k and x2,k.

(b) Enlarged view of the ellipsoidal en-
closures of x1,k and x2,k.

(c) Outer ellipsoidal enclosures for the
velocities x1,k and x3,k.

(d) Enlarged view of the ellipsoidal en-
closures of x1,k and x3,k.

Figure 11. State estimation for the case of small uncertainties (92).
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(a) Estimated bounds
[
x1,k
]

vs. measured
and true velocities ym1,k and x1,k.

(b) Estimated bounds
[
x2,k
]

vs. mea-
sured and true velocities ym2,k and x2,k.

(c) Estimated bounds
[
x3,k
]

vs. measured
and true velocities ym3,k and x3,k.

(d) Estimated bounds
[
d3,k
]

vs. true dis-
urbance d3,k = 0.05.

Figure 12. Comparison of the estimation results with noisy measurements and true system states for
the case of large uncertainties (91).
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(a) Estimated bounds
[
x1,k
]

vs. measured
and true velocities ym1,k and x1,k.

(b) Estimated bounds
[
x2,k
]

vs. mea-
sured and true velocities ym2,k and x2,k.

(c) Estimated bounds
[
x3,k
]

vs. measured
and true velocities ym3,k and x3,k.

(d) Estimated bounds
[
d3,k
]

vs. true dis-
urbance d3,k = 0.05.

Figure 13. Comparison of the estimation results with noisy measurements and true system states for
the case of small uncertainties (92).

6. Conclusions and Outlook on Future Work

In this paper, a thick ellipsoid state estimation procedure was presented which allows for
a computation of outer and (if the uncertainties are not too large) inner ellipsoidal enclosures.
The advantage of the presented technique over other ellipsoidal bounding approaches such as
those in [19,56] is the applicability to general (differentiable) nonlinear state equations (in this
paper, in quasi-linear form) as well as its reduced complexity by using a solution technique
in which complex minmax optimization procedures are replaced by simple one-parameter
optimizations which only require the online computation of eigenvalues.

In future work, a combination of stochastic and set-valued uncertainty models can
be investigated using the novel thick ellipsoid definitions. Other existing techniques such
as those presented in [61] also make use of a Kalman filter-like structure. However, they
are mainly focused on linear measurement equations. This can be circumvented by the
proposed technique if the system’s output equations are reformulated in a quasi-linear
form and the influence of nonlinearities is mapped onto the uncertainty that represents the
measurement noise.

In addition, the simulation results in Section 5 have shown that the observer approach
is capable of reconstructing bounded disturbances. This property can be exploited in future
work also for an observer-based parameter identification. Finally, the thick ellipsoid-based
state prediction can be employed directly for a numerical evaluation of classical Luenberger-
like observers and Extended Kalman Filters. With these results, it will become possible
to perform a stability analysis of these estimation schemes when applied to nonlinear
dynamic systems. The procedure will be similar to the one proposed in [33], where a
centered-form representation of discrete-time dynamic systems was employed for the
derivation of stability contractors.
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