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Abstract: Efficient exact parameterized algorithms are an active research area. Such algorithms exhibit
a broad interest in the theoretical community. In the last few years, implementations for computing
various parameters (parameter detection) have been established in parameterized challenges, such as
treewidth, treedepth, hypertree width, feedback vertex set, or vertex cover. In theory, instances, for
which the considered parameter is small, can be solved fast (problem evaluation), i.e., the runtime is
bounded exponential in the parameter. While such favorable theoretical guarantees exists, it is often
unclear whether one can successfully implement these algorithms under practical considerations. In
other words, can we design and construct implementations of parameterized algorithms such that
they perform similar or even better than well-established problem solvers on instances where the
parameter is small. Indeed, we can build an implementation that performs well under the theoretical
assumptions. However, it could also well be that an existing solver implicitly takes advantage of a
structure, which is often claimed for solvers that build on SAT-solving. In this paper, we consider
finding one solution to instances of answer set programming (ASP), which is a logic-based declarative
modeling and solving framework. Solutions for ASP instances are so-called answer sets. Interestingly,
the problem of deciding whether an instance has an answer set is already located on the second level
of the polynomial hierarchy. An ASP solver that employs treewidth as parameter and runs dynamic
programming on tree decompositions is DynASP2. Empirical experiments show that this solver is
fast on instances of small treewidth and can outperform modern ASP when one counts answer sets.
It remains open, whether one can improve the solver such that it also finds one answer set fast and
shows competitive behavior to modern ASP solvers on instances of low treewidth. Unfortunately,
theoretical models of modern ASP solvers already indicate that these solvers can solve instances
of low treewidth fast, since they are based on SAT-solving algorithms. In this paper, we improve
DynASP2 and construct the solver DynASP2.5, which uses a different approach. The new solver
shows competitive behavior to state-of-the-art ASP solvers even for finding just one solution. We
present empirical experiments where one can see that our new implementation solves ASP instances,
which encode the Steiner tree problem on graphs with low treewidth, fast. Our implementation is
based on a novel approach that we call multi-pass dynamic programming (M-DPSINC). In the paper,
we describe the underlying concepts of our implementation (DynASP2.5) and we argue why the
techniques still yield correct algorithms.

Keywords: parameterized algorithms; fixed-parameter linear time; semi-incidence graph; tree
decompositions; multi-pass dynamic programming
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1. Introduction

Answer set programming (ASP) is a logic-based declarative modeling language and
problem solving framework [1], where a program consists of sets of rules over propositional
atoms and is interpreted under extended stable model semantics [2]. In ASP, problems
are usually modeled in such a way that the stable models answer sets of a program
directly form a solution to the considered problem instance. Computational problems for
disjunctive, propositional ASP such as deciding whether a program has an answer set
are complete for the second level of the polynomial hierarchy [3] and we can solve ASP
problems by encoding it into solving quantified Boolean formulas (QBF) [4,5]. A standard
encoding usually involves an existential part (guessing a model of the program) and a
universal part (minimality check).

Interestingly, when considering a more fine-grained complexity analysis one can take
a structural parameter such as treewidth into account. On that account, one usually defines
a graph representation of an input program such as the primal graph or the incidence
graph and can show that solving ASP is double exponential (upper bound) in the treewidth
of the graph representation and linear in the number of atoms of the input instance [6].
For a tighter conditional lower runtime bound, we can take a standard assumption in
computational complexity, such as the Exponential Time Hypothesis (ETH), into account.
Unsurprisingly, given its classical computational complexity, one can establish that the
runtime of various computational ASP problems is double exponential in the treewidth
(lower bound) in the worst case if we believe that ETH is true [7,8].

Despite the seemingly bad results in classical complexity, researchers implemented
a variety of successful CDCL-based ASP solvers, among them Clasp [9] and WASP [10].
When viewing practical results from a parameterized perspective, one can find a solver (Dy-
nASP2) that build upon ideas from parameterized algorithmics and solves ASP problems
by dynamic programming along tree decompositions [11]. The solver DynASP2 performs
according to the expected theoretical worst case runtime guarantees and runs practically
well if the input program has low treewidth. If we consider counting problems on instances
of low treewidth, runtimes of DynASP2 are even faster than those of Clasp. However,
conditional lower bounds seem to forbid significant improvement under theoretical aspects
unless we design a multi-variate algorithm that takes additional structure into account. In
the following of this paper, we outline how to construct a novel algorithm that additionally
takes a “second parameter” into account.

The solver DynASP2 (i) takes a tree decomposition of a graph representation of the
given input instance and (ii) solves the program via dynamic programming (DP) on the
tree decomposition by traversing the tree exactly once. Both finding a model and checking
minimality are considered at the same time. Once the root node has been reached, complete
solutions (if exist) for the input program can be constructed. Due to the exhaustive nature
of dynamic programming, all potential values are computed locally for each node of the
tree decomposition. In consequence, space requirements can be quite extensive resulting
in long running times. Moreover, in practice, dynamic programming algorithms on tree
decompositions may yield extremely diverging run-times on tree decompositions of the
exact same width [12].

In this paper, we propose a multi-traversal approach (M-DPSINC) for dynamic program-
ming on tree decompositions as well as a new implementation (DynASP2.5). (The source
code of our solver is available at https://github.com/daajoe/dynasp/releases/tag/v2.5.0.)
In contrast to the approach described above, M-DPSINC traverses the given tree decomposi-
tion multiple times. Starting from the leaves, we compute and store (i) sets of atoms that
are relevant for the existential part (finding a model of the program) up to the root. Then
we go back again to the leaves and compute and store (ii) sets of atoms that are relevant for
the universal part (checking for minimality). Finally, we go once again back to the leaves
and (iii) link sets from past Traversals (i) and (ii) that might lead to an answer set in the
future. As a result, we allow for early cleanup of candidates that do not lead to answer
sets. Theoretically, such an algorithm resembles a multi-variate view on instances, even
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though we have a dynamic parameter, which we cannot simply compute before running
the solvers.

Furthermore, we present technical improvements (including working on tree decom-
positions that do not have to be nice) and employ dedicated customization techniques for
selecting tree decompositions. Our improvements are main ingredients to speedup the solv-
ing process for dynamic programming algorithms. Experiments indicate that DynASP2.5 is
competitive even for finding one answer set using the Steiner tree problem on graphs with
low treewidth. In particular, we are able to solve instances that have an upper bound on
the incidence treewidth of 14 (whereas DynASP2 solved instances of treewidth at most 9).

1.1. Contributions

Our main contributions can be summarized as follows:

1. We present a new dynamic programming algorithm on a graph representation that is
somewhat in-between the incidence and primal graph and show its correctness.

2. We establish a novel fixed-parameter linear algorithm (M-DPSINC), which works in
multiple traversals and computes existential and universal parts separately.

3. We present an implementation (DynASP2.5) and an experimental evaluation.

1.2. Related Work

Jakl, Pichler, and Woltran [6] have considered ASP solving when parameterized by
the treewidth of a graph representation and suggested fixed-parameter linear algorithms.
Fichte et al. [11] have established additional algorithms and presented empirical results
on an implementation that is dedicated to counting answer sets for the full ground ASP
language. The present paper extends their work by a multi-traversal dynamic programming
algorithm. Algorithms for particular fragments of ASP [13] and for further language
extensions of ASP [14] were proposed, including lower bounds [15]. Compared to general
systems [16], our approach directly treats ASP. Bliem et al. [17] have introduced a general
multi-traversal approach and an implementation (D-FLATˆ2) for dynamic programming
on tree decompositions solving subset minimization tasks. Their approach allows to
specify dynamic programming algorithms by means of ASP. In a way, one can see ASP in
their approach as a meta-language to describe table algorithms (See Algorithm 1 for the
concept of table algorithms.), whereas our work presents a dedicated algorithm to find
an answer set of a program. In fact, our implementation extends their general ideas for
subset minimization (disjunctive rules) to also support weight rules. However, due to
space constraints we do not report on weight rules in this paper. Beyond that, we require
specialized adaptions to the ASP problem semantics, including three valued evaluation
of atoms, handling of tree decompositions that can be not nice, and optimizations in join
nodes to be competitive. Abseher, Musliu, and Woltran [18] have presented a framework
that computes tree decompositions via heuristics, which is also used in our solver. Other
tree decomposition systems can be found on the PACE challenge track A website [19]. Note
that improved heuristics for finding a tree decomposition of smaller width (if possible)
directly yields faster results for our solver. Other parameters than treewidth have been
considered in the literature, however, mostly in a theoretical context [20,21], some also
consider just improving on solving the universal part [22], or take multiple parameters into
account [23].

1.3. Journal Version

This paper is an extended and updated version of a paper that appeared in the
proceedings of the 12th International Symposium on Parameterized and Exact Computation
(IPEC’17). The present paper provides a higher level of detail, in particular regarding proofs
and examples. We extend its previous versions in the following way. Additionally, we
provide comprehensive details on the entire setting of our empirical work, present full
listings of encodings, and include results for several runs with varying tree decompositions.
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2. Preliminaries
2.1. Tree Decompositions

We assume that the reader is familiar with basic notions in graph theory [24,25], but
we will fix some basic terminology below. An undirected graph or simply a graph is a
pair G = (V, E) where V 6= ∅ is a set of vertices and E ⊆ {{u, v} ⊆ V | u 6= vs.} is a set
of edges. We denote an edge {v, w} by uv or vu. A path of length k is a graph with k + 1
pairwise distinct vertices v1, . . . , vk+1, and k distinct edges vivi+1 where 1 ≤ i ≤ k. A path
is called simple if all its vertices are distinct. A graph G is called a tree if any two vertices in
G can be connected by a unique simple path.

Let G = (V, E) be a graph; T = (N, F, n) a rooted tree with a set N of nodes, a set F of
edges, and a root n ∈ N; and χ : N → 2V a function that maps each node t ∈ N to a set of
vertices. We call the sets χ(·) bags. Then, the pair T = (T, χ) is a tree decomposition (TD)
of G if the following conditions hold:

1. for every vertex v ∈ V there is a node t ∈ N with v ∈ χ(t);
2. for every edge e ∈ E there is a node t ∈ N with e ⊆ χ(t); and
3. for any three nodes t1, t2, t3 ∈ N whenever t2 lies on the unique path from t1 to t3,

then we have χ(t1) ∩ χ(t3) ⊆ χ(t2).

We call max{|χ(t)| − 1 | t ∈ N} the width of the TD. The treewidth tw(G) of a graph G
is the minimum width over all possible TDs of G. Note that each graph has a trivial
TD (T, χ) consisting of the tree ({n}, ∅, n) and the mapping χ(n) = V. It is well known
that the treewidth of a tree is 1, and a graph containing a clique of size k has at least
treewidth k− 1. For some arbitrary but fixed integer k and a graph of treewidth at most k,
we can compute a TD of width 6 k in time 2O(k

3) · |V| [26]. Given a TD (T, χ) with
T = (N, ·, ·), for a node t ∈ N we say that type(t) is leaf if t has no children; join if t
has children t′ and t′′ with t′ 6= t′′ and χ(t) = χ(t′) = χ(t′′); int (“introduce”) if t has a
single child t′, χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)| + 1; forget (“removal”) if t has a single
child t′, χ(t′) ⊇ χ(t) and |χ(t′)| = |χ(t)|+ 1. If every node t ∈ N has at most two children,
type(t) ∈ {leaf, join, int, forget}, and bags of leaf nodes and the root are empty, then the TD
is called nice. For every TD, we can compute a nice TD in linear time without increasing
the width [26]. Later, we traverse a TD bottom up, therefore, let post-order(T, t) be the
sequence of nodes in post-order of the induced sub-tree T′ = (N′, ·, t) of T rooted at t.

2.2. Answer Set Programming (ASP)

Answer Set Programming, or ASP for short, is a declarative modeling and problem
solving framework that combines techniques of knowledge representation and database
theory. In this paper, we restrict ourselves to so-called ground ASP programs. For a
comprehensive introduction, we refer the reader to standard texts [1,27–29].

2.2.1. Syntax

We consider a universe U of propositional atoms. A literal is an atom a ∈ U or
its negation ¬a. Let `, m, n be non-negative integers such that ` ≤ m ≤ n, a1, . . ., an
distinct propositional atoms, and l a literal. A choice rule is an expression of the form
{a1; . . . ; a`} ← a`+1, . . . , am,¬am+1, . . . ,¬an. A disjunctive rule is of the form a1 ∨ · · · ∨ a` ←
a`+1, . . . , am,¬ am+1, . . ., ¬an. An optimization rule is an expression of the form  l. A
rule is either a disjunctive, a choice, or an optimization rule. For a choice or disjunctive
rule r, let Hr := {a1, . . . , a`}, B+

r := {a`+1, . . . , am}, and B−r := {am+1, . . . , an}. Usually, if
B−r ∪ B+

r = ∅ we write for a rule r simply Hr instead of Hr ← . For an optimization rule r,
if l = a1, let B+

r := {a1} and B−r := ∅; and if l = ¬a1, let B−r := {a1} and B+
r := ∅. For a

rule r, let at(r) := Hr ∪ B+
r ∪ B−r denote its atoms and Br := B+

r ∪ {¬b | b ∈ B−r } its body.
Let a program P be a set of rules, and at(P) :=

⋃
r∈P at(r) denote its atoms. Furthermore,

let CH(P), DISJ(P), and OPT(P) denote the set of all choice, disjunctive, and optimization
rules in P, respectively.
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2.2.2. Semantics

A set M ⊆ at(P) satisfies a rule r if (i) (Hr ∪ B−r ) ∩M 6= ∅ or B+
r 6⊆ M for r ∈ DISJ(P)

or (ii) r ∈ CH(P) ∪OPT(P). Hence, choice and optimization rules are always satisfied.
M is a model of P, denoted by M � P, if M satisfies every rule r ∈ P. The reduct rM

(i) of a choice rule r is the set {a ← B+
r | a ∈ Hr ∩M, B−r ∩M = ∅} of rules, and (ii) of

a disjunctive rule r is the singleton {Hr ← B+
r | B−r ∩M = ∅}. PM :=

⋃
r∈P rM is called

GL reduct of P with respect to M. A set M ⊆ at(P) is an answer set of P if (i) M � P and
(ii) there is no M′ ( M such that M′ � PM, that is, M is subset minimal with respect to PM.
We call cst(P, M) := |{r | r ∈ P, r is an optimization rule, (B+

r ∩M)∪ (B−r \M) 6= ∅}| the
cost of answer set M for P. An answer set M of P is optimal if its cost is minimal over all
answer sets.

Intuitively, a choice rule of the form {a1; . . . ; a`} ← a`+1, . . . , am,¬am+1, . . . ,¬an al-
lows us to conclude that if all atoms a`+1, . . . , am are in an answer set M and there is
no evidence that any atom of am+1, . . . , an is in M (so subset-minimality with respect to
the reduct forces that am+1, . . . , an 6∈ M), we can conclude that any subset of the atoms
a1, . . . , a` can be in M. In other words, the atoms a1, . . . , a` are “excluded” from subset
minimization. A disjunctive rule of the form a1 ∨ · · · ∨ a` ← a`+1, . . . , am,¬ am+1, . . ., ¬an
allows us to conclude that if all atoms a`+1, . . . , am are in M and there is no evidence that
any atom of am+1, . . . , an is in M, we can conclude that a subset of the atoms a1, . . . , a` can
be in M, however, remains subject to subset minimization with respect to the reduct. The
meaning of optimization rules is simply that we minimize the cardinality of a set M of
atoms with respect to the literals in M that occur in any minimization rule positively and
not in M for those that occur in any minimization rules negatively.

Example 1. Consider program

P = {

rab︷ ︸︸ ︷
{eab};

rbc︷ ︸︸ ︷
{ebc};

rcd︷ ︸︸ ︷
{ecd};

rad︷ ︸︸ ︷
{ead};

rb︷ ︸︸ ︷
ab ← eab;

rd︷ ︸︸ ︷
ad ← ead;

rc1︷ ︸︸ ︷
ac ← ab, ebc;

rc2︷ ︸︸ ︷
ac ← ad, ecd;

r¬c︷ ︸︸ ︷
← ¬ac}.

The set A = {eab, ebc, ab, ac} is an answer set of P, since {eab, ebc, ab, ac} is the only minimal
model of PA = {eab ←; ebc ←; ab ← eab; ad ← ead; ac ← ab, ebc; ac ← ad, ecd}. Then,
consider program R = {a ∨ c ← b; b ← c,¬g; c ← a; b ∨ c ← e; h ∨ i ← g,¬c; a ∨
b; g ← ¬i; c; {d} ← g}. The set B = {b, c, d, g} is an answer set of R since {b, c, d, g} and
{a, c, d, g} are the minimal models of RB = {a ∨ c← b; c← a; b ∨ c← e; a ∨ b; g; c; d← g}.

In this paper, we mainly consider the output answer set problem, that is, output an
answer set for an ASP program. The decision version of this problem is Σp

2 -complete. When
sketching correctness, we also consider the following two problems: listing all optimal
answer sets of P, ENUMASP for short; and we the entailment problem of listing every
subset-minimal model M of F with sol ∈ M, or ENUMMINSAT1, for a given propositional
formula F and an atom sol.

2.3. Graph Representations of Programs

In order to use TDs for ASP solving, we need dedicated graph representations of
programs. The incidence graph I(P) of P is the bipartite graph that has the atoms and rules
of P as vertices and an edge a r if a ∈ at(r) for some rule r ∈ P [11]. The semi-incidence
graph S(P) of P is a graph that has the atoms and rules of P as vertices and (i) an edge a r
if a ∈ at(r) for some rule r ∈ P as well as (ii) an edge a b for disjoint atoms a, b ∈ Hr
where r ∈ P is a choice rule. Since for every program P the incidence graph I(P) is a
subgraph of the semi-incidence graph, we have that tw(I(P)) ≤ tw(S(P)). Furthermore,
by definition of a TD and the construction of a semi-incidence graph that head atoms of
choice rules, respectively, occur in at least one common bag of the TD.
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2.4. Sub-Programs

Let T = (T, χ) be a nice TD of graph representation S(P) of a program P. Furthermore,
let T = (N, ·, n) and t ∈ N. The bag-program is defined as Pt := P ∩ χ(t). Further, the
set at≤t := {a | a ∈ at(P) ∩ χ(t′), t′ ∈ post-order(T, t)} is called atoms below t, the program
below t is defined as P≤t := {r | r ∈ Pt′ , t′ ∈ post-order(T, t)}, and the program strictly below
t is P<t := P≤t \ Pt. It holds that P≤n = P<n = P and at≤n = at(P).

Example 2. Figure 1 (upper) illustrates the semi-incidence graph of program P from Example 1.
Figure 1 (lower) shows a tree decomposition of this graph. Intuitively, the tree decomposition enables
us to evaluate P by analyzing sub-programs and combining results agreeing on ac. Indeed, for
the given TD of Figure 1 (left), P≤t6 = {rab, rb} and at≤t6 = {eab, ab}, P≤t23 = {rad, rd} and
at≤t23 = {ead, ad}, as well as P<t29 = {rad, rcd, rd}.

eab ead ebc ecd

rb rd rc1 rc2 r¬c

ab ad ac

∅t1

eabt2

rab, eabt3

eabt4

rb, eabt5

rb, eab, ab t6rbc, ebc, abt10

rc1, ebc, abt12

rc1, act15

∅ t18

rad, ead t20

rd, ead, ad t23

rcd, ecd, ad t27

rc2, ecd, ad t29

rc2, ac t32

r¬c, ac t34

∅ t36T:

Figure 1. Semi-Incidence graph of the program given in Example 1 (upper) and a tree decomposition
of this graph (lower). The dashed lines indicate that where nodes have been omitted, which would
be required to make the tree decomposition nice.

3. A Single Traversal DP Algorithm

A dynamic programming based ASP solver, such as DynASP2 [11], splits the input
program P into “bag-programs” based on the structure of a given nice tree decomposition
for P and evaluates P in parts, thereby storing the results in tables for each TD node. More
precisely, the algorithm works in the following steps:

1. Construct a graph representation G(P) of the given input program P.
2. Compute a TD T of the graph G(P) by means of some heuristic, thereby decom-

posing G(P) into several smaller parts and fixing an ordering in which P will
be evaluated.
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3. For every node t ∈ T in the tree decomposition T = ((T, E, n), χ) (in a bottom-
up traversal), run an algorithm A, which we call table algorithm, and compute a
“table” A-Tabs[t], which is a set of tuples (or rows for short). Intuitively, algorithm A
transforms tables of child nodes of t to the current node, and solves a “local problem”
using bag-program Pt. The algorithm thereby computes (i) sets of atoms called (local)
witness sets and (ii) for each local witness set M subsets of M called counter-witness
sets [11], and directly follows the definition of answer sets being (i) models of P and
(ii) subset minimal with respect to PM.

4. For root n interpret the table A-Tabs[n] (and tables of children, if necessary) and print
the solution to the considered ASP problem.

Algorithm 1: Algorithm DPA(T ) for Dynamic Programming on TD T for ASP [11].

In: Table algorithm A, nice TD T = (T, χ) with T = (N, ·, n) of G(P) according to A.
Out: A-Tabs: maps each TD node t ∈ T to some computed table τt.

1 for iterate t in post-order(T,n) do
2 Child-Tabst := {A-Tabs[t′] | t′ is a child of t in T}
3 A-Tabs[t]← A(t, χ(t), Pt, at≤t, Child-Tabst)

An Algorithm on the Semi-Incidence Graph

Next, we propose a new table algorithm (SINC) for programs without optimization
rules. Since our algorithm trivially extends to counting and optimization rules by earlier
work [11], we omit such rules. The table algorithm SINC employs the semi-incidence
graph and is depicted in Algorithm 2. DPSINC merges two earlier algorithms for the primal
and incidence graph [11] resulting in slightly different worst case runtime bounds (c.f.,
Proposition 1).

Algorithm 2: Table algorithm SINC(t, χt, Pt, at≤t, Child-Tabst).
In: Bag χt, bag-program Pt, atoms-below at≤t, child tables Child-Tabst of t. Out: Tab. t.
/* We use the following abbreviations
For set S and element s, we let S+

s := S ∪ {s} and S−s := S \ {s}. */

1 if type(t) = leaf then t := {〈∅, ∅, ∅〉}
2 else if type(t) = int, a ∈ χt \ Pt is introduced and τ′ ∈ Child-Tabst then

3 τt := {〈M+
a , σ ∪ SatPr(Ṗ(t)

t , M+
a ),

4 {〈C+
a , ρ ∪ SatPr(Ṗ(t,M+

a )
t , C+

a )〉 | 〈C, ρ〉 ∈ C} ∪
5 {〈C, ρ ∪ SatPr(Ṗ(t,M+

a )
t , C)〉 | 〈C, ρ〉 ∈ C} ∪ {〈M, σ ∪ SatPr(Ṗ(t,M+

a )
t , M)〉}〉

6 | 〈M, σ, C〉 ∈ τ′}
7 ∪ {〈M, σ ∪ SatPr(Ṗ(t)

t , M),

8 {〈C, ρ ∪ SatPr(Ṗ(t,M)
t , C)〉 | 〈C, ρ〉 ∈ C}〉 | 〈M, σ, C〉 ∈ τ′}

9 else if type(t) = int, r ∈ χt ∩ Pt is introduced and τ′ ∈ Child-Tabst then

10 τt := {〈M, σ ∪ SatPr({ṙ}(t), M),
11 {〈C, ρ ∪ SatPr({ṙ}(t,M), C)〉 | 〈C, ρ〉 ∈ C}〉 | 〈M, σ, C〉 ∈ τ′}

12 else if type(t) = forget, a 6∈ χt is the forgotten atom and τ′ ∈ Child-Tabst then
13 τt := {〈M−a , σ, {〈C−a , ρ〉 | 〈C, ρ〉 ∈ C}〉 | 〈M, σ, C〉 ∈ τ′}

14 else if type(t) = forget, r 6∈ χt is the forgotten rule and τ′ ∈ Child-Tabst then
15 τt := {〈M, σ−r ,

{
〈C, ρ−r 〉 | 〈C, ρ〉 ∈ C, r ∈ ρ

}
〉 | 〈M, σ, C〉 ∈ τ′, r ∈ σ}

16 else if type(t) = join and τ′, τ′′ ∈ Child-Tabst with τ′ 6= τ′′ then
17 τt := {〈M, σ′ ∪ σ′′,
18 {〈C, ρ′ ∪ ρ′′〉 | 〈C, ρ′〉 ∈ C ′, 〈C, ρ′′〉 ∈ C ′′}∪
19 {〈M, ρ ∪ σ′′〉 | 〈M, ρ〉 ∈ C ′} ∪
20 {〈M, σ′ ∪ ρ〉 | 〈M, ρ〉 ∈ C ′′}〉 | 〈M, σ′, C ′〉 ∈ τ′, 〈M, σ′′, C ′′〉 ∈ τ′′}



Algorithms 2021, 14, 81 8 of 28

Our table algorithm SINC computes and stores (i) sets of atoms (witnesses) that are
relevant for the SAT part (finding a model of the program) and (ii) sets of atoms (counter-
witnesses) that are relevant for the UNSAT part (checking for minimality). In addition, we
need to store for each set of witnesses as well as its set of counter-witnesses satisfiability
states (sat-states for short). For the following reason: By Definition of TDs and the semi-
incidence graph, it is true for every atom a and every rule r of a program that if atom a
occurs in rule r, then a and r occur together in at least one bag of the TD. In consequence, the
table algorithm encounters every occurrence of an atom in any rule. In the end, on removal
of r, we have to ensure that r is among the rules that are already satisfied. However, we
need to keep track whether a witness satisfies a rule, because not all atoms that occur in a
rule occur together in exactly one bag. Hence, when our algorithm traverses the TD and an
atom is forgotten we still need to store this sat-state, as setting the forgotten atom to a certain
truth value influences the satisfiability of the rule. Since the semi-incidence graph contains
a clique on every set A of atoms that occur together in choice rule head, those atoms A occur
together in a common bag of any TD of the semi-incidence graph. For that reason, we do not
need to incorporate choice rules into the satisfiability state, in contrast to the algorithm for
the incidence graph [11]. We can see witness sets together with its sat-state as witness. Then,
in Algorithm 2 (SINC) a row in the table τt is a triple 〈M, σ, C〉. The set M ⊆ at(P) ∩ χ(t)
represents a witness set. The family C of sets concerns counter-witnesses, which we will
discuss in more detail below. The sat-state σ for M represents rules of χ(t) satisfied by a
superset of M. Hence, M witnesses a model M′ ⊇ M where M′ � P<t ∪ σ. We use binary
operator ∪ to combine sat-states, which ensures that rules satisfied in at least one operand
remain satisfied. We compute a new sat-state σ from a sat-state and satisfied rules, formally,
SatPr(Ṙ, M) := {r | (r, R) ∈ Ṙ, M � R} for M ⊆ χ(t) \ Pt and program Ṙ(r) constructed
by Ṙ, mapping rules to local-programs as given in the following definition.

Definition 1. Let P be a program, T = (·, χ) be a TD of S(P), t be a node of T and R ⊆ Pt. The
local-program R(t) is obtained from R ∪ {← Br | r ∈ R is a choice rule, Hr ( at≤t} (We require
to add {← Br | r ∈ R is a choice rule, Hr ( at≤t} in order to decide satisfiability for corner cases
of choice rules involving counter-witnesses of Line 3 in Algorithm 2.) by removing from every rule
all literals a,¬a with a 6∈ χ(t). We define Ṙ(t) : R→ 2R(t)

by Ṙ(t)(r) := {r}(t) for r ∈ R.

After we explained how to obtain models, we describe how to compute counter-
witnesses. Family C consists of rows (C, ρ) where C ⊆ at(P) ∩ χ(t) is a counter-witness
set in t to M. Similar to the sat-state σ, the sat-state ρ for C under M represents whether
rules of the GL reduct PM

t are satisfied by a superset of C. We can see counter-witness
sets together with its sat-state as counter-witnesses. Thus, C witnesses the existence of
C′ ( M′ satisfying C′ � (P<t ∪ ρ)M′ since M witnesses a model M′ ⊇ M where M′ � P<t.
In consequence, there exists an answer set of P if the root table contains 〈∅, ∅, ∅〉. We
require local-reducts for deciding satisfiability of counter-witness sets.

Definition 2. Let P be a program, T = (·, χ) be a TD of S(P), t be a node of T , R ⊆ Pt

and M ⊆ at(P). We define local-reduct R(t,M) by [R(t)]
M

and Ṙ(t,M) : R → 2R(t,M)
by

Ṙ(t,M)(r) := {r}(t,M), r ∈ R.

Definitions 1 and 2 together with Algorithm 2 provides the formal description of our
algorithm to solve ASP instances by means of dynamic programming on tree decomposi-
tions of the semi-incidence graph of the input instance. In the following section, we argue
for correctness of our algorithm.

3.1. Correctness and Runtime of Algorithm 2 (SINC)

Next, we provide insights into the correctness and runtime of Algorithm 2 (SINC).
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Proposition 1. Let P be a program and k := tw(S(P)). Then, the algorithm DPSINC is correct
and runs in time O(22k+2 · ‖S(P)‖).

Proof (Idea/Main Arguments). Previous works [6,11] established the correctness and run-
time guarantees on the primal and incidence graph, respectively. Since the semi-incidence
graph introduces a clique only for choice rule and the algorithm on the semi-incidence
graph follows the algorithm on the incidence graph for non-choice rules and the one for
the primal graph for choice rules, we immediately obtain correctness and runtime results
as the cases never overlap.

The remainder of this sections provides details on proving the statement above. The
correctness proof investigates each node type separately. We have to show that a tuple at
a node t guarantees existence of an answer set for the program P≤t, proving soundness.
Conversely, we have to show that each answer set is indeed evaluated while traversing the
tree decomposition, which provides completeness. We employ this idea using the notions
of (i) partial solutions consisting of partial models and the notion of (ii) local partial solutions.

Definition 3. Let P be a program, T = (T, χ) be a tree decomposition of the semi-incidence
graph S(P) of P, where T = (N, ·, ·), and t ∈ N be a node. Further, let M, C ⊆ at≤t be sets and
σ ⊆ P≤t be a set of rules. The tuple (C, σ) is a partial model for t under M if the following
conditions hold:

1. C � (P<t)M,
2. for r ∈ P≤t we require:
3. (a) for disjunctive rule r ∈ P≤t, we have B−r ∩M 6= ∅ or B+

r ∩ at≤t 6⊆ C or Hr ∩C 6= ∅
if and only if r ∈ σ;

(b) for choice rule r ∈ Pt, we have B−r ∩M 6= ∅ or B+
r ∩ att 6⊆ C or both Hr ⊆ att and

Hr ∩ (M \ C) = ∅ if and only if r ∈ σ.

Definition 4. Let P be a program, T = (T, χ) where T = (N, ·, n) be a tree decomposition of
I(P), and t ∈ N be a node. A partial solution for t is a tuple (M, σ, C) where (M, σ) is a partial
model under M and C is a set of partial models (C, ρ) under M with C ( M.

The following lemma establishes correspondence between answer sets and partial
solutions.

Observation 1. Let P be a program, T = (T, χ) be a tree decomposition of the semi-incidence
graph S(P) of program P, where T = (·, ·, n), and χ(n) = ∅. Then, there exists an answer set M
for P if and only if there exists a partial solution u = (M, σ, ∅) with σP for root n.

Proof. Given an answer set M of P we construct u = (M, σ, ∅) with σ := P such that u is
a partial solution for n according to Definition 4. For the other direction, Definition 3 and
Definition 4 guarantee that M is an answer set if there exists some tuple u. In consequence,
the observation holds.

Next, we define local partial solutions to establish a notion that corresponds to the
tuples obtained in Algorithm 2 but on in relation to solutions that we are interested in.

Definition 5. Let P be a program, T = (T, χ) a tree decomposition of the semi-incidence
graph S(P), where T = (N, ·, n), and t ∈ N be a node. A tuple u = 〈M, σ, C〉 is a local
partial solution for t if there exists a partial solution û = (M̂, σ̂, Ĉ) for t such that the following
conditions hold:

1. M = M̂ ∩ χ(t),
2. σ = σ̂, and
3. C = {〈Ĉ ∩ χ(t), ρ̂t,M̂,Ĉ〉 | (Ĉ, ρ̂) ∈ Ĉ}.
We denote by ût the local partial solution u for t given partial solution û.
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The following observation provides justification that it suffices to store local partial
solutions instead of partial solutions for a node t ∈ N.

Observation 2. Let P be a program, T = (T, χ) a tree decomposition of S(P), where T =
(N, ·, n), and χ(n) = ∅. Then, there exists an answer set for P if and only if there exists a local
partial solution of the form 〈∅, ∅, ∅〉 for the root n ∈ N.

Proof. Since χ(n) = ∅, every partial solution for the root n is an extension of the local
partial solution u for the root n ∈ N according to Definition 5. By Observation 1, we obtain
that the observation is true.

In the following, we abbreviate atoms occurring in bag χ(t) by att, i.e., att := χ(t) \ Pt.

Lemma 1 (Soundness). Let P be a program, T = (T, χ) a tree decomposition of semi-incidence
graph S(P), where T = (N, ·, ·), and t ∈ N a node. Given a local partial solution u′ of child table
τ′ (or local partial solution u′ of table τ′ and local partial solution u′′ of table τ′′), each tuple u of
table τt constructed using table algorithm SINC is also a local partial solution.

Proof. Let u′ be a local partial solution for t′ ∈ N and u a tuple for node t ∈ N such that u
was derived from u′ using table algorithm SINC. Hence, node t′ is the only child of t and t
is either removal or introduce node.

Assume that t is a removal node and r ∈ Pt′ \ Pt for some rule r. Observe that
u = 〈M, σ, C〉 and u′ = 〈M, σ′, C ′〉 are the same in witness M. According to Algorithm 2
and since u is derived from u′, we have r ∈ σ′ Similarly, for any 〈C′, ρ′〉 ∈ C ′, r ∈ ρ′. Since
u′ is a local partial solution, there exists a partial solution û′ of t′, satisfying the conditions
of Definition 5. Then, û′ is also a partial solution for node t, since it satisfies all conditions
of Definitions 3 and 4. Finally, note that u = (û′)t since the projection of û′ to the bag χ(t)
is u itself. In consequence, the tuple u is a local partial solution.

For a ∈ att′ \ att as well as for introduce nodes, we can analogously check the lemma.
Next, assume that t is a join node. Therefore, let u′ and u′′ be local partial solutions

for t′, t′′ ∈ N, , respectively, and u be a tuple for node t ∈ N such that u can be derived
using both u′ and u′′ in accordance with the SINC algorithm. Since u′ and u′′ are local
partial solutions, there exists partial solution û′ = (M̂′, σ̂′, Ĉ ′) for node t′ and partial
solution û′′ = (M̂′′, σ̂′′, Ĉ ′′) for node t′′. Using these two partial solutions, we can construct
û = (M̂′ ∪ M̂′′, σ̂′ ] σ̂′′, Ĉ ′ ./ Ĉ ′′) where ./ (·, ·) is defined in accordance with Algorithm 2
as follows:

Ĉ ′ ./ Ĉ ′′ :={(Ĉ′ ∪ Ĉ′′, ρ̂′ ] ρ̂′′) | (Ĉ′, ρ̂′) ∈ Ĉ ′, (Ĉ′′, ρ̂′′) ∈ Ĉ ′′, Ĉ′ ∩ att = Ĉ′′ ∩ att}∪
{(Ĉ′ ∪ M̂′′, ρ̂′ ] σ̂′′) | (Ĉ′, ρ̂′) ∈ Ĉ ′, Ĉ′ ∩ att = M̂′′ ∩ att}∪
{(M̂′ ∪ Ĉ′′, σ̂′ ] ρ̂′′) | (Ĉ′′, ρ̂′′) ∈ Ĉ ′′, M̂′ ∩ att = Ĉ′′ ∩ att}.

Then, we check all conditions of Definitions 3 and 4 in order to verify that û is a partial
solution for t. Moreover, the projection ût of û to the bag χ(t) is exactly u by construction
and hence, u = ût is a local partial solution.

Since we have provided arguments for each node type, we established soundness in
terms of the statement of the lemma.

Lemma 2 (Completeness). Let P be a program, T = (T, χ) where T = (N, ·, ·) be a tree
decomposition of the semi-incidence graph S(P) and t ∈ N be a node. Given a local partial solution
u of table t, either t is a leaf node, or there exists a local partial solution u′ of child table τ′ (or
local partial solution u′ of table τ′ and local partial solution u′′ of table τ′′) such that u can be
constructed by u′ (or u′ and u′′, respectively) and using table algorithm SINC.

Proof. Let t ∈ N be a removal node and r ∈ Pt′ \ Pt with child node t′ ∈ N. We show
that there exists a tuple u′ in table τt′ for node t′ such that u can be constructed using u′



Algorithms 2021, 14, 81 11 of 28

by SINC (Algorithm 2). Since u is a local partial solution, there exists a partial solution
û = (M̂, σ̂, Ĉ) for node t, satisfying the conditions of Definition 5. Since r is the removed
rule, we have r ∈ σ̂. By similar arguments, we have r ∈ ρ̂ for any tuple (Ĉ, ρ̂) ∈ Ĉ. Hence,
û is also a partial solution for t′ and we define u′ := ût′ , which is the projection of û onto
the bag of t′. Apparently, the tuple u′ is a local partial solution for node t′ according to
Definition 5. Then, u can be derived using SINC algorithm and u′. By similar arguments,
we establish the lemma for a ∈ att′ \ att and the remaining (three) node types. Hence, the
lemma sustains.

Now, we are in situation to prove the correctness statement in Proposition 1.

Proof of Proposition 1 (Correctness). We first show soundness. Let T = (T, χ) be the
given tree decomposition, where T = (N, ·, n). By Observation 2 we know that there is
an answer set for P if and only if there exists a local partial solution for the root n. Note
that the tuple is of the form 〈∅, ∅, ∅〉 by construction. Hence, we proceed by induction
starting from the leaf nodes. In fact, the tuple 〈∅, ∅, ∅〉 is trivially a partial solution by
Definitions 3 and 4 and also a local partial solution of 〈∅, ∅, ∅〉 by Definition 5. We already
established the induction step in Lemma 1. Hence, when we reach the root n, when
traversing the tree decomposition in post-order by algorithm DPSINC, we obtain only valid
tuples in between and a tuple of the form 〈∅, ∅, ∅〉 in the table of the root n witnesses an
answer set. Next, we establish completeness by induction starting from the root n. Let
therefore, M be an arbitrary answer set of P. By Observation 1, we know that for the
root n there exists a local partial solution of the form 〈∅, ∅, ∅〉 for partial solution 〈M, σ, ∅〉
with r ∈ σ for r ∈ P. We already established the induction step in Lemma 2. Hence, we
obtain some (corresponding) tuples for every node t. Finally, stopping at the leaves n. In
consequence, we have shown both soundness and completeness resulting in the fact that
the correctness statement made in Proposition 1 is true.

Next, we turn our attention to the worst-case runtime bounds claimed in Proposition 1.
First, we give a lemma on worst-case space requirements in tables for the nodes of our
algorithm.

Lemma 3. Given a program P, a tree decomposition T = (T, χ) with T = (N, ·, ·) of the semi-
incidence graph S(P), and a node t ∈ N. Then, there are at most 2k+1 · 2k+1 · 22k+1·2k+1

tuples in
τt using algorithm DPSINC for width k of T .

Proof (Sketch). Let P be the given program, T = (T, χ) a tree decomposition of the semi-
incidence graph S(P), where T = (N, ·, ·), and t ∈ N a node of the tree decomposition.
Then, by definition of a decomposition of the primal graph for each node t ∈ N, we
have |χ(t)| − 1 ≤ k. In consequence, we can have at most 2k+1 many witnesses, and for each
witness a subset of the set of witnesses consisting of at most 22k+1

many counter-witnesses.
In total, we need to distinguish 2k+1 two states for the sat-states σ and for each witness
of a tuple in the table τt for node t. Since for each witness in the table τt for node t ∈ N
we remember rule-states for at most k + 1 rules, we store up to 2k+1 many combinations
per witness. In total we end up with at most 22k+1·2k+1

many counter-witnesses for each
witness and rule-state in the worst case. Thus, there are at most 2k+1 · 2k+1 · 22k+1·2k+1

tuples
in table τt for node t. In consequence, we established the lemma.

Proof of Proposition 1 (Runtime). Let P be a program, S(P) = (V, ·) its semi-incidence
graph, and k be the treewidth of P(P). Then, we can compute in time 2O(k

3) · |V| a tree
decomposition of width at most k [30]. We take such a tree decomposition and compute in
linear time a nice tree decomposition [31]. Let T = (T, χ) be such a nice tree decomposition
with T = (N, ·, ·). Since the number of nodes in N is linear in the graph size and since for
every node t ∈ N the table τt is bounded by 2k+1 · 2k+1 · 22k+1·2k+1

according to Lemma 3,
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we obtain a running time of O(22k+2 · ‖S(P)‖).Consequently, the claimed runtime bounds
in the proposition hold.

3.2. An Extended Example

In Example 3 we give an idea how we compute models of a given program using the
semi-incidence graph. The resulting algorithm MOD is obtained from SINC, by taking
only the first two row positions (red and green parts). The remaining position (blue part),
can be seen as an algorithm (CMOD) that computes counter-witnesses. We assume that
the ith-row in each table τt corresponds to ut.i = 〈Mt.i, σt.i〉.

Example 3. Consider program P from Example 1, which was given by

P = {

rab︷ ︸︸ ︷
{eab};

rbc︷ ︸︸ ︷
{ebc};

rcd︷ ︸︸ ︷
{ecd};

rad︷ ︸︸ ︷
{ead};

rb︷ ︸︸ ︷
ab ← eab;

rd︷ ︸︸ ︷
ad ← ead;

rc1︷ ︸︸ ︷
ac ← ab, ebc;

rc2︷ ︸︸ ︷
ac ← ad, ecd;

r¬c︷ ︸︸ ︷
← ¬ac},

TD T = (·, χ) in Figure 2, and the tables τ1,. . ., τ34, which illustrate computation results obtained
during post-order traversal of T by DPMOD. Note that Figure 2 does not show every intermediate
node of TD T . Table τ1 = {〈∅, ∅〉} as type(t1) = leaf (see Algorithm 2 L1). Table τ3 is obtained
via introducing rule rab, after introducing atom eab (type(t2) = type(t3) = int). It contains two
rows due to two possible truth assignments using atom eab (L3–5). Observe that rule rab is satisfied
in both rows M3.1 and M3.2, since the head of choice rule rab is in at≤t3 (see L7 and Definition 1).
Intuitively, whenever a rule r is proven to be satisfiable, sat-state σt.i marks r satisfiable since an
atom of a rule of S(P) might only occur in one TD bag. Consider table τ4 with type(t4) = forget
and rab ∈ χ(t3) \ χ(t4). By definition (TDs and semi-incidence graph), we have encountered
every occurrence of any atom in rab. In consequence, MOD enforces that only rows where rab
is marked satisfiable in τ3, are considered for table τ4. The resulting table τ4 consists of rows
of τ3 with σ4.i = ∅, where rule rab is proven satisfied (rab ∈ σ3.1, σ3.2, see L 11). Note that
between nodes t6 and t10, an atom and rule remove as well as an atom and rule introduce node
is placed. Observe that the second row u6.2 = 〈M6.2, σ6.2〉 ∈ τ6 does not have a “successor row”
in τ10, since rb 6∈ σ6.2. Intuitively, join node t34 joins only common witness sets in τ17 and τ33
with χ(t17) = χ(t33) = χ(t34). In general, a join node marks rules satisfied, which are marked
satisfied in at least one child (see L13–14).

∅ t1

eab t2

rab, eab t3

eab t4

rb, eab t5

rb, eab, ab
t6

rbc, ebc, ab

t10

rc1, ebc, ab

t12

rc1, act15

∅ t18

rad, ead t20

rd, ead, ad t23

rcd, ecd, ad t27

rc2, ecd, ad t29

rc2, ac t32

r¬c, ac

t34

∅ t36T:

〈M3.i, σ3.i〉 τ3
〈{eab}, {rab}〉
〈∅, {rab}〉

〈M32.i, σ32.i〉
〈{ac}, {rc2}〉
〈∅, {rc2}〉
〈∅, ∅〉

τ32

〈M6.i, σ6.i〉 τ6

〈{eab, ab}, {rb}〉
〈{eab}, ∅〉
〈{ab}, {rb}〉
〈∅, {rb}〉

〈M12.i, σ12.i〉
〈{ebc, ab}, ∅〉
〈{ebc}, {rc1}〉
〈{ab}, {rc1}〉
〈∅, {rc1}〉

τ12

〈M1.i, σ1.i〉 τ1
〈∅, ∅〉

Figure 2. The tree decomposition T of the semi-incidence graph S(P) for program P from Example 1
and Figure 1. Selected DP tables after DPMOD. We explain details of the figure in Example 3.



Algorithms 2021, 14, 81 13 of 28

We assume again row numbers per table τt, i.e., ut.i = 〈Mt.i, σt.i, Ct.i〉 is the ith-row.
Further, for each counter-witness 〈Ct.i.j, ρt.i.j〉 ∈ Ct.i, j marks its “order” (as depicted in
Figure 3 (right)) in set Ct.i.

Example 4. Again, we consider program P from Example 1, and T = (·, χ) of Figure 3 as
well as tables τ1, . . ., τ34 of Figure 3 (right) using DPSINC. We only discuss certain tables.
Table τ1 = {〈∅, ∅, ∅〉} as type(t1) = leaf. Node t2 introduces atom eab, resulting in table
{〈{eab}, ∅, {(∅, ∅)}〉, 〈∅, ∅, ∅〉} (compare to Algorithm 2 L3–5). Then, node t3 introduces
rule rab, which is forgotten in node t4. Note that C3.1.1 = 〈∅, ∅〉 ∈ C3.1.1 does not have a “succes-
sor row” in table τ4 since rab is not satisfied (see L11 and Definition 2). Table τ6 is then the result of
a chain of introduce nodes, and contains for each witness set M6.i every possible counter-witness
set C6.i.j with C6.i.j ( M6.i. We now discuss table τ12, intuitively containing (a projection of)
(counter-)witnesses of τ10, which satisfy rule rbc after introducing rule rc1. Observe that there is
no succeeding witness set for M6.2 = {eab} in τ10 (nor τ12), since eab ∈ M6.2, but ab 6∈ M6.2
(required to satisfy rb). Rows u12.1, u12.4 form successors of u6.3, while rows u12.2, u12.5 succeed
u6.1, since counter-witness set C6.1.1 has no succeeding row in τ10 because it does not satisfy rb.
Remaining rows u12.3, u12.6 have “origin” u6.4 in τ6.

∅ t1

eab t2

rab, eab t3

eab t4

rb, eab t5

rb, eab, ab
t6

rbc, ebc, ab

t10

rc1, ebc, ab

t12

rc1, act15

∅ t18

rad, ead t20

rd, ead, ad t23

rcd, ecd, ad t27

rc2, ecd, ad t29

rc2, ac t32

r¬c, ac

t34

∅ t36T:

〈M3.i, σ3.i〉 τ3
〈{eab}, {rab}〉
〈∅, {rab}〉

〈M32.i, σ32.i〉
〈{ac}, {rc2}〉
〈∅, {rc2}〉
〈∅, ∅〉

τ32

〈M6.i, σ6.i〉 τ6

〈{eab, ab}, {rb}〉
〈{eab}, ∅〉
〈{ab}, {rb}〉
〈∅, {rb}〉

〈M12.i, σ12.i〉
〈{ebc, ab}, ∅〉
〈{ebc}, {rc1}〉
〈{ab}, {rc1}〉
〈∅, {rc1}〉

τ12

〈M1.i, σ1.i〉 τ1
〈∅, ∅〉

〈M3.i, σ3.i, C3.i〉 τ3

〈{eab}, {rab}, {〈∅, ∅〉}〉
〈∅, {rab}, ∅〉
〈M1.i, σ1.i, C1.i〉 τ1

〈∅, ∅, ∅〉

〈M6.i, σ6.i, C6.i〉 τ6

〈{eab, ab}, {rb}, {
〈{eab}, ∅〉}〉
〈{eab}, ∅, ∅〉
〈{ab}, {rb}, {〈∅, {rb}〉}〉
〈∅, {rb}, ∅〉

〈M12.i, σ12.i, C12.i〉 τ12

〈{ebc, ab}, ∅, {〈{ebc}, {rc1}〉}〉
〈{ebc, ab}, ∅, ∅〉
〈{ebc}, {rc1}, ∅〉
〈{ab}, {rc1}, {〈∅, {rc1}〉}〉
〈{ab}, {rc1}, ∅〉
〈∅, {rc1}, ∅〉

〈M32.i, σ32.i, C32.i〉
〈{ac}, {rc2}, {
〈{ac}, {rc2}〉,
〈∅, {rc2}〉}〉
〈{ac}, {rc2}, {
〈∅, {rc2}〉}〉
〈∅, {rc2}, {
〈∅, {rc2}〉}〉
〈∅, {rc2}, ∅〉
〈∅, ∅, {〈∅, {rc2}〉}〉
〈∅, ∅, ∅〉

τ32

Figure 3. Extends Figure 2. The figure illustrates a tree decomposition T of the semi-incidence
graph S(P) for program P from Example 1 (center). Selected DP tables after DPMOD (left) and
after DPSINC (right) for nice tree decomposition T . We explain details of the figure in Example 4.

4. DynASP2.5: Towards a III Traversal DP Algorithm

The classical DP algorithm DPSINC (Step 3 of Figure 4) follows a single traversal
approach. It computes both witnesses and counter-witnesses by traversing the given TD
exactly once. In particular, it stores exhaustively all potential counter-witnesses, even
those counter-witnesses where the witnesses in the table of a node cannot be extended
in the parent node. In addition, there can be a high number of duplicates among the
counter-witnesses, which are stored repeatedly.
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Solve local
probl. A(t, . . . )

Store results
in A-Tabs[t] 1. Construct graph G

Store witnesses
in W-Tabs[t]

Compute wit-
nesses of W(t, . . . )

Visit next node
t in post-order Done?

no

yes

2. Comp. TD T of G 3.I done?
no

yes

Visit next node
t in post-order

Purge non-witnesses
Store counter-wit-
nesses in C-Tabs[t]

Compute counter-
wits. of C(t, . . . )

3.II done?
no

yes

Visit next node
t in post-order

Purge non-
counter-witnesses

Store result in
W,C-Tabs[t]

Link counter-wits.
to witnesses

4. Print solution 3.III done?
no

yes
Visit next node
t in post-order

3.I. DPW(T )

3.II. DPC(T )

3.III. DPLW,C(T ,W-Tabs,C-Tabs)

3. DPA(T )

←−DynASP2 DynASP2.5−→

Figure 4. Control flow for DP-based ASP solver (DynASP2, left) and for DynASP2.5 (right).

In this section, we propose a multi-traversal approach (M-DPSINC) for DP on TDs and
a new implementation (DynASP2.5), which fruitfully adapts and extends ideas from a
different domain [17]. From a theoretical perspective, our novel algorithm M-DPSINC is
multi-variate practically, considering treewidth together with the maximum number of
witnesses in a table that lead to a solution at the root. Intuitively, this subtle difference can
yield practical advantages, especially if the number of relevant witnesses in a table that
lead to a solution is subexponential in the treewidth. Therefore, our novel algorithm is
designed to allow for an early cleanup (purging) of witnesses that do not lead to answer
sets, which in consequence (i) avoids to construct expendable counter-witnesses. Moreover,
multiple traversals enable us to store witnesses and counter-witnesses separately, which
in turn (ii) avoids storing counter-witnesses duplicately and (iii) allows for highly space
efficient data structures (pointers) in practice when linking witnesses and counter-witnesses
together. Figure 4 (right, middle) presents the control flow of the new multi-traversal
approach DynASP2.5, where M-DPSINC introduces a much more elaborate computation in
Step 3.

4.1. The Algorithm

Our algorithm (M-DPSINC) executed as Step 3 runs DPMOD, DPCMOD and DPLMOD,CMOD
in three traversals (3.I, 3.II, and 3.III) as follows:

3.I. First, we run the algorithm DPMOD, which computes in a bottom-up traversal for
every node t in the tree decomposition a table MOD-Tabs[t] of witnesses for t. Then,
in a top-down traversal for every node t in the TD remove from tables MOD-Tabs[t]
witnesses, which do not extend to a witness in the table for the parent node (“Purge
non-witnesses”); these witnesses can never be used to construct a model (nor answer
set) of the program.

3.II. For this step, let CMOD be a table algorithm computing only counter-witnesses of
SINC (blue parts of Algorithm 2). We execute DPCMOD, for all witnesses, compute
counter-witnesses at once and store the resulting tables in CMOD-Tabs[·]. For every
node t, table CMOD-Tabs[t] contains counter-witnesses to witness being ⊂-minimal.
Again, irrelevant rows are removed (“Purge non-counter-witnesses”).

3.III. Finally, in a bottom-up traversal for every node t in the TD, witnesses and counter-
witnesses are linked using algorithm DPLMOD,CMOD (see Algorithm 3). DPLMOD,CMOD
takes previous results and maps rows in MOD-Tabs[t] to a table (set) of rows in
CMOD-Tabs[t].

We already explained the table algorithms DPMOD and DPCMOD in the previous section.
The main part of our multi-traversal algorithm is the algorithm DPLMOD,CMOD based on
the general algorithm DPLW,C (Algorithm 3) with W = MOD, C = CMOD, which links
those separate tables together. Before we quickly discuss the core of DPLW,C in Lines 6–10,
note that Lines 3–5 introduce auxiliary definitions. Line 3 combines rows of the child
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Algorithm 3: Algorithm DPLW,C(T ,W-Tabs,C-Tabs) for linking counter-witnesses
to witnesses.
1 Nice TD T = (T, χ) with T = (N, ·, n) of a graph S(P), and mappingsW-Tabs[·],

C-Tabs[·]. Out: W,C-Tabs: maps node t ∈ T to some pair (tW, tC) with
tW ∈W-Tabs[t], tC ∈ C-Tabs[t].

2 Child-Tabst := {W,C-Tabs[t′] | t′ is a child of t in T}
/* We use the following technical abbreviations below

For set I = {1, . . . , n} and sets Si:
∏i∈I Si := S1 × · · · × Sn = {(s1, . . . , sn) : si ∈ Si}.

For ∏i∈I Si: ∏̂i∈ISi := {{{s1}, . . . , {sn}} | (s1, . . . , sn) ∈ ∏i∈I Si}
If for each S ∈ ∏̂i∈ISi and {si} ∈ S, the element si is a pair
(witness,counter-witness),
fw(S) :=

⋃
{(Wi ,Ci)}∈S{{Wi}} restricts S to the witness parts and

fcw(S) :=
⋃
{(Wi ,Ci)}∈S{{Ci}} restricts S to the counter-witness

parts. */
/* Get for a node t tables of (preceeding) combined child rows (CCR)
*/

3 CCRt := Π̂′∈Child-Tabst
′

/* Get for a row ~u its combined child rows (origins) */
4 origt(~u) := {S | S ∈ CCRt,~u ∈ , = W(t, χ(t), Pt, at≤t, fw(S))} /* Get for a

table S of combined child rows its successors (evolution) */
5 evolt(S) := {~u | ~u ∈ , = C(t, χ(t), Pt, at≤t, ′), ′ ∈ S}
6 for iterate t in post-order(T,n) do
7 /* Compute counter-witnesses (≺-smaller rows) for a witness set M

*/
8 subs≺( f , M, S) := {~u | ~u ∈ C-Tabs[t],~u ∈ evolt( f (S)),~u = 〈C, · · · 〉, C ≺ M}
9 /* Link each witness ~u to its counter-witnesses and store the

results */
10 W,C-Tabs[t]← {(~u, subs(( fw, M, S) ∪ subs⊆( fcw, M, S)) | ~u∈W-Tabs[t],~u =

〈M, · · · 〉, S ∈ origt(u)}

nodes of given node t, which is achieved by a product over sets, where we drop the
order and keep sets only. Line 4 concerns determining for a row ~u its origins (finding
preceding combined rows that lead to ~u using table algorithm W). Line 5 covers deriving
succeeding rows for a certain child row combination its evolution rows via algorithm C.
In an implementation, origin as well as evolution are not computed, but represented
via pointer data structures directly linking to W-Tabs[·] or C-Tabs[·], respectively. Then,
the table algorithm DPLW,C applies a post-order traversal and links witnesses to counter-
witnesses in Line 10. DPLW,C searches for origins (orig) of a certain witness ~u, uses the
counter-witnesses ( fcw) linked to these origins, and then determines the evolution (evol) in
order to derive counter-witnesses (using subs) of ~u.

4.2. An Elaborated Example

Example 5. Let k be some integer and Pk be some program that contains the following rules
rc := {a1, · · · , ak} ← f , r2 :=← ¬a2, . . ., rk :=← ¬ak, and r f :=← ¬ f and rc f :=
{ f } ← . The rules r1, . . ., rk simulate that only certain subsets of {a1, · · · , ak} are allowed.
Rules r f and rc f enforce that f is set to true. Let T = (T, χ, t3) be a TD of the semi-incidence
graph S(Pk) of program Pk where T = (V, E) with V = {t1, t2, t3}, E = {(t1, t2), (t2, t3)},
χ(t1) = {a1, · · · , ak, f , rc, rc f }, χ(t2) = {a1, · · · , ak, r2, · · · , rk, r f }, and χ(t3) = ∅. Figure 5
(left) illustrates the tables for program P2 after DPSINC, whereas Figure 5 (right) presents tables
using M-DPSINC, which are exponentially smaller in k, mainly due to cleanup. Observe that Traversal
3.II M-DPSINC, “temporarily” materializes counter-witnesses only for τ1, presented in table τCMOD

1 .
Hence, using multi-traversal algorithm M-DPSINC results in an exponential speedup. Note that we
can trivially extend the program such that we have the same effect for a TD of minimum width and
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even if we take the incidence graph. In practice, programs containing the rules above frequently
occur when encoding by means of saturation [3]. The program Pk and the TD T also reveal that a
different TD of the same width, where f occurs already very early in the bottom-up traversal, would
result in a smaller table τ1 even when running DPSINC.

〈M3.i, σ3.i, C3.i〉 τ3

〈{a1, a2, f}, ∅, ∅〉
〈{a2, f}, ∅, ∅〉
〈M2.i, σ2.i, C2.i〉 τ2

〈{a1, a2, f}, {rf , r2}, ∅〉
〈{a1, a2}, {r2}, {
〈{a1}, ∅〉,
〈{a2}, {r2}〉, 〈∅, ∅〉}〉
〈{a1, f}, {rf}, ∅〉
〈{a1}, ∅, {〈∅, ∅〉}〉
〈{a2, f}, {rf , r2}, ∅〉
〈{a2}, {r2}, {〈∅, ∅〉}〉
〈{f}, {rf}, ∅〉
〈∅, ∅, ∅〉

〈M1.i, σ1.i, C1.i〉 τ1

〈{a1, a2, f}, {rc, rcf}, {
〈{a1, f}, {rcf}〉, 〈{a2, f}, {rcf}〉,
〈{f}, {rcf}〉, 〈{a1, a2}, {rc}〉,
〈{a1}, {rc}〉, 〈{a2}, {rc}〉, 〈∅, {rc}〉}〉
〈{a1, a2}, {rc, rcf}, {〈{a1}, {rc, rcf}〉,
〈{a2}, {rc, rcf}〉, 〈∅, {rc, rcf}〉}〉
〈{a1, f}, {rc, rcf}, {〈{f}, {rcf}〉,
〈{a1}, {rc}〉, 〈∅, {rc}〉}〉
〈{a1}, {rc, rcf}, {〈∅, {rc, rf}〉}〉
〈{a2, f}, {rc, rcf}, {〈{a2}, {rc}〉,
〈{f}, {rcf}〉}〉
〈{a2}, {rc, rcf}, {〈∅, {rc, rcf}〉}〉
〈{f}, {rc, rcf}, {〈∅, {rc}〉}〉
〈∅, {rc, rcf}, ∅〉

〈C1.i, ρ1.i〉 τCMOD
1

〈{a1, f}, {rcf}〉, 〈{a2, f}, {rcf}〉,
〈{f}, {rcf}〉, 〈{a1, a2}, {rc}〉, 〈{
a1}, {rc}〉, 〈{a2}, {rc}〉, 〈∅, {rc}〉

〈M1.i, σ1.i, C1.i〉 τ1

〈{a1, a2, f}, {rc, rcf}, ∅
〈{a2, f}, {rc, rcf}, ∅〉

〈M2.i, σ2.i, C2.i〉 τ2

〈{a1, a2, f}, {rf , r2}, ∅〉
〈{a2, f}, {rf , r2}, ∅〉

〈M3.i, σ3.i, C3.i〉 τ3

〈{a1, a2, f}, ∅, ∅〉
〈{a2, f}, ∅, ∅〉

Figure 5. Selected DP tables after DPSINC (left) and after M-DPSINC (right) for TD T .

4.3. Correctness and Runtime of DynASP2.5

Theorem 1. For a program P of semi-incidence treewidth k := tw(S(P)), the algorithm M-DPSINC
is correct and runs in time O(22k+2 · ‖P‖).

We first sketch the outline of the proof.

Proof (Sketch). We sketch the proof idea for enumerating answer sets of disjunctive ASP
programs by means of M-DPSINC. Below we present a more detailed approach to estab-
lish the correctness. Let P be a disjunctive program and k := tw(S(P)). We establish
a reduction R(P, k) of ENUMASP to ENUMMINSAT1, such that there is a one-to-one
correspondence between answer sets and models of the formula, more precisely, for ev-
ery answer set M of P and for the resulting instance (F, k′) = R(P, k) the set M ∪ {sol}
is a subset-minimal model of F and k′ = tw(I(F)) with k′ ≤ 7k + 2. We compute in
time 2O(k

′3) · ‖F‖ a TD of width at most k′ [26] and add sol to every bag. Using a table algo-
rithm designed for SAT [32] we compute witnesses and counter-witnesses. Observe that
witnesses and counter-witnesses are essentially the same objects in a table algorithm for
computing subset-minimal models of a propositional formula, since witnesses and counter-
witnesses of traversals 3.I and 3.II, respectively, are essentially the same objects in a table
algorithm for computing subset-minimal models of a propositional formula. Conceptually,
one could also modify MOD for this task. In order to finally show correctness of linking
counter-witnesses to witnesses as presented in DPLMOD,MOD, we have to extend earlier
work [17], (Theorem 3.25 and 3.26). Therefore, we enumerate subset-minimal models of F
by following each witness set containing sol at the root having counter-witnesses ∅ back to
the leaves. This runs in time O(22(7k+2)+2 · ‖P‖), c.f., [11,17]. A more involved (direct) proof,
allows to decrease the runtime to O(22k+2 · ‖P‖) (even for choice rules).

In the following of this section, we go into more details to provide more depth
arguments to support our statement above. Bliem et al. [17] have shown that aug-
mentable W-Tabs can be transformed into W,W-Tabs, which easily allows reading off
subset-minimal solutions starting at the table W,W-Tabs[n] for TD root n. We follow their
concepts and define a slightly extended variant of augmentable tables. Therefore, we reduce
the problem of enumerating disjunctive programs to ENUMMINSAT1 and show that the
resulting tables of algorithm MOD (see Algorithm 2) are augmentable. In the end, we apply
an earlier theorem [17] transforming MOD-Tabs obtained by DPMOD into MOD,MOD-Tabs
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via the augmenting function aug(·) proposed in their work. To this extent, we use auxiliary
definitions Child-Tabst, origt(·) and evolt(·) specified in Algorithm 3.

Definition 6. Let T = (T, χ) be a TD where T = (N, ·, ·), W be a table algorithm, t ∈ N, and
τ ∈ W-Tabs[t] be the table for node t. For tuple ~u = 〈M, σ, · · · 〉 ∈ τ, we define α(~u) := M,
β(~u) := σ. We inductively define

α∗(τ) :=
⋃
~u∈τ

α(~u) ∪
⋃

τ′∈Child-Tabst

α∗(τ′), and

β∗(τ) :=
⋃
~u∈τ

β(~u) ∪
⋃

τ′∈Child-Tabst

β∗(τ′).

Moreover, we inductively define the extensions of a row ~u ∈ τ as

E(~u) :=
{
{~u} ∪U | U ∈

⋃
{{~u′1},...,{~u′k}}∈origt(~u)

{τ1 ∪ · · · ∪ τk | τi ∈ E(~u′i) for all 1 ≤ i ≤ k}
}

.

Remark 1. Any extension U ∈ E(~u) contains ~u and exactly one row from each table that is
a descendant of τ. If ~u is a row of a leaf table, E(~u) = {{~u}} since origt(~u) = {∅} assum-
ing ∏i∈∅ Si = {()}.

Definition 7. Let τn be the table in W-Tabs for TD root n. We define the set sol(W-Tabs) of
solutions of W-Tabs as sol(W-Tabs) := {α∗(U) | ~u ∈ τn, U ∈ E(~u)}

Definition 8. Let τ be a table in W-Tabs such that τ′1, . . . , τ′k are the child tables Child-Tabst
and let ~u,~vs. ∈ τ. We say that x ∈ X(~u) has beenX−illegally introduced at ~u if there are
{{~u′1}, . . . , {~u′k}} ∈ origt(~u) such that for some 1 ≤ i ≤ k it holds that x /∈ X(~u′i) while
x ∈ X∗(τ′i ). Moreover, we say that x ∈ X(~v) \ X(~u) has been X−illegally removed at ~u if there is
some U ∈ E(~u) such that x ∈ X(U).

Definition 9. We call a table τ augmentable if the following conditions hold:

1. For all rows of the form 〈M, · · · , C〉, we have C = ∅.
2. For all ~u,~vs. ∈ τ with ~u 6= ~v it holds that α(~u) ∪ β(~u) 6= α(~v) ∪ β(v).
3. For all ~u = 〈M, σ, · · · 〉 ∈ τ, {{~u′1}, . . . , {~u′k}} ∈ origt(~u), 1 ≤ i < j ≤ k, I ∈ E(~u′i) and

J ∈ E(~u′j) it holds that α∗(I) ∩ α∗(J) ⊆ M and β∗(I) ∩ β∗(J) ⊆ σ.
4. No element of α∗(τ) has been α-illegally introduced and no element of β∗(τ) has been β-ille-

gally introduced.
5. No element of α∗(τ) has been α-illegally removed and no element of β∗(τ) has been β-illegally

removed.

call W-Tabs augmentable if all its tables are augmentable.

It is easy to see that MOD-Tabs are augmentable, that is, Algorithm 2 (DPMOD(·)) computes
only augmentable tables.

Observation 3. MOD-Tabs are augmentable, since DPMOD(·) computes augmentable tables.
CMOD-Tabs are augmentable, since DPCMOD(·) computes augmentable tables.

The following theorem establishes that we can reduce an instance of ENUMASP (re-
stricted to disjunctive input programs) when parameterized by semi-incidence treewidth to
an instance of ENUMMINSAT1 when parameterized by the treewidth of its incidence graph.

Lemma 4. Given a disjunctive program P of semi-incidence treewidth k = tw(S(P)). We can
produce in time O(‖P‖) a propositional formula F such that the treewidth k′ of the incidence
graph I(F) (he incidence graph I(F) of a propositional formula F in CNF is the bipartite graph
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that has the variables and clauses of F as vertices and an edge v c if v is a variable that occurs in c for
some clause c ∈ F [32].)T is k′ ≤ 7k + 2 and the answer sets of P and subset-minimal models of F*

are in a particular one-to-one correspondence. More precisely, M is an answer set of P if and only
if M ∪Maux ∪ {sol} is a subset-minimal model of F where Maux is a set of additional variables
occurring in F, but not in P and variables introduced by Tseitin normalization.

Proof. Let P be a disjunctive program of semi-incidence treewidth k = tw(S(P)). First,
we construct a formula F consisting of a conjunction over formulas Fr, Fimpl, Fsol, Fmin

followed by Tseitin normalization of F to obtain F*. Among the atoms (Note that we do
not distinguish between atoms and propositional variables in terminology here.) of our
formulas will the atoms at(P) of the program. Further, for each atom a such that a ∈ B−(r)
for some rule r ∈ P, we introduce a fresh atom a′. In the following, we denote by Z′ the set
{z′ : z ∈ Z} for any set Z and by B−P :=

⋃
r∈P B−r . Hence, (B−P )

′ denotes a set of fresh atoms
for atoms occurring in any negative body. Then, we construct the following formulas:

Fr(r) :=Hr ∨ ¬B+
r ∨ (B−r )′ for r ∈ P (1)

Fimpl(a) :=a→ a′ for a ∈ B−P (2)

Fsol(a) :=sol → (a′ → a) for a ∈ B−P (3)

Fmin :=¬sol →
∨

a′∈(B−P )′

(a′ ∧ ¬a) (4)

F :=
∧
r∈P

Fr(r) ∧
∧

a∈B−P

Fimpl(a) ∧
∧

a∈B−P

Fsol(a) ∧ Fmin (5)

Next, we show that M is an answer set of P if and only if M ∪ ([M ∩ B−P ])
′ ∪ {sol} is a

subset-minimal model of F.
(⇒): Let M be an answer set of P. We transform M into Y := M ∪ ([M ∩ B−P ])

′ ∪ {sol}.
Observe that Y satisfies all subformulas of F and therefore Y � F. It remains to show that Y
is a minimal model of F. Assume towards a contradiction that Y is not a minimal model.
Hence, there exists X with X ( Y. We distinguish the following cases:

1. sol ∈ X: By construction of F we have X � a′ ↔ a for any a′ ∈ (B−P )
′, which implies

that X ∩ at(P) � PM. However, this contradicts our assumption that M is an answer
set of P.

2. sol 6∈ X: By construction of F there is at least one atom a ∈ B−P with a′ ∈ X, but a 6∈ X.
Consequently, X ∩ at(P) � PM. This contradicts again that M is an answer set of P.

(⇐): Given a formula F that has been constructed from a program P as given above. Then,
let Y be a subset-minimal model of F such that sol ∈ Y. By construction we have for
every a′ ∈ Y ∩ (B−P )

′ that a ∈ Y. Hence, we let M = at(P) ∩ Y. Observe that M satisfies
every rule r ∈ P according to (A1) and is in consequence a model of P. It remains to show
that M is indeed an answer set. Assume towards a contradiction that M is not an answer
set. Then there exists a model N ( M of the reduct PM. We distinguish the following cases:

1. N is not a model of P: We construct X := N ∪ [Y ∩ (B−P )
′] and show that X is indeed a

model of F. For this, for every r ∈ P where B−(r) ∩M 6= ∅ we have X � Fr(r), since
(Y ∩ (B−P )

′) ⊆ X by definition of X. For formulas (A1) constructed by Fr(r) using
remaining rules r, we also have X � Fr(r), since N � {r}M. In conclusion, X � F and
X ( Y, and therefore X contradicts Y is a subset-minimal model of F.

2. N is also a model of P: Observe that then X := N ∪ [N ∩ B−P ]
′ ∪ {sol} is also a model

of F, which contradicts optimality of Y since X ( Y.

By Tseitin normalization, we obtain F∗, thereby introducing fresh atoms la′ for each
a′ ∈ (B−P )

′:
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Fr*(r) :=Hr ∨ ¬B+
r ∨ (B−r )′ for r ∈ P (A1)

Fimpl*(a) :=¬a ∨ a′ for a ∈ B−P (A2)

Fsol*(a) :=¬sol ∨ (¬a′ ∨ a) for a ∈ B−P (A3)

Fmin
1 :=sol ∨

∨
a′∈B−

P′

(la′) (A4a)

Fmin
2 (a) :=¬a′ ∨ a ∨ la′ for a ∈ B−P (A4b)

Fmin
3 (a) :=¬la′ ∨ a′ for a ∈ B−P (A4c)

Fmin
4 (a) :=¬la′ ∨ ¬a for a ∈ B−P (A4d)

Observe that the Tseitin normalization is correct and that there is a bijection between
models of formula F∗ and formula F.

Observe that our transformations runs in linear time and that the size of F* is linear
in ‖P‖. It remains to argue that tw(I(F*)) ≤ 7k + 2. For this, assume that T = (T, χ, n)
is an arbitrary but fixed TD of S(P) of width w. We construct a new TD T ′ := (T, χ′, n)
where χ′ is defined as follows. For each TD node t,

χ′(t) :=
⋃

a∈B−P ∩χ(t)

{a′, la′} ∪ [χ(t) ∩ at(P)] ∪ {sol} ∪ cl(t)

where

cl(t) :=
⋃

a∈B−P ∩χ(t)

[Fimpl*(a), Fsol*(a), Fmin
2 (a), Fmin

3 (a), Fmin
4 (a)]∪{Fmin

1 }∪
⋃

r∈P∩χ(t)

{Fr*(r)}.

We can easily see that T ′ is indeed a tree decomposition for I(F∗) and that the width of T ′
is at most 7w + 2.

Definition 10. We inductively define an augmenting function aug(W-Tabs) that maps each
table τ ∈ W-Tabs[t] for node t from an augmentable table to a table in W,W-Tabs[t]. Let the
child tables of τ be called τ′1, . . . , τ′k. For any 1 ≤ i ≤ k and ~u ∈ τi, we write res(~u) to denote
{~vs. ∈ aug(τ′i ) | α(~u) = α(~v)}. We define aug(τ) as the smallest table that satisfies the following
conditions:

1. For any ~u ∈ τ, {{~u′1}, . . . , {~u′k}} ∈ origt(~u) and {{~v′1}, . . . , {~v′k}} ∈ ∏̂1≤i≤k res(~u′i),
there is a row ~vs. ∈ aug(τ) with α(~u) = α(~v) and {{~v′1}, . . . , {~v′k}} ∈ origt(~v).

2. For any ~u,~vs. ∈ aug(τ) with ~u = 〈· · · , C〉 such that α(~v) ⊆ α(~u), {{~u′1}, . . . , {~u′k}} ∈
origt(~u) and {{~v′1}, . . . , {~v′k}} ∈ origt(~v) the following holds: Let 1 ≤ i ≤ k with ~u′i =
〈· · · , Ci〉, ~ci = 〈Ci, · · · 〉 ∈ (Ci ∪ {~u′i}) with Ci ⊆ α(~v′i), and 1 ≤ j ≤ k with ~cj 6= ~u′j
or α(~v) ( α(~u). Then, there is a row ~c ∈ C with α(~c) ⊆ α(~v) if and only if ~c ∈ τ and
{{~c1}, . . . , {~ck}} ∈ origt(~c).

For W-Tabs, we write aug(W-Tabs) to denote the result isomorphic to W,W-Tabs where each table
τ in W-Tabs corresponds to aug(τ).

Proposition 2. Let W-Tabs be augmentable. Then,

sol(aug(W-Tabs)) = {M ∈ sol(W-Tabs) | @M′ ∈ sol(W-Tabs) : M′ ( M}.

Proof (Sketch). The proof follows previous work [17]. We sketch only differences from
their work. Any row ~u ∈ τ of any table τ not only consists of set α(~u) being subject
to subset-minimization and relevant to solving ENUMASP. In addition, our definitions
presented above also allow “auxiliary” sets β(~u) per row ~u, which are not subject to the
minimization. Moreover, by the correctness of the table algorithm SINC above, we only
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require to store a set C of counter-witnesses 〈C, · · · 〉 ∈ C per witness set M, where each C
forms a strictly ⊂-smaller model of M. As a consequence, there is no need to differ between
sets of counter-witnesses, which are strictly included or not, see [17]. Finally, we do not
need to care about duplicate rows (solved via compression function compr(·) in [17]) in τ,
since τ is a set.

Theorem 2. ENUMASP when the input is restricted to disjunctive programs can be solved in
time 22(7k+4) · ‖P‖ computing aug(DPMOD(·)), where k refers to the treewidth of S(P).

Proof. First, we use reduction R(P, k) = (F∗, k′) defined in Lemma 4 to construct an in-
stance of SAT given our disjunctive ASP program P. Note that k′ = tw(I(F∗)) ≤ 7k + 2.
Then, we can compute in time 2O(k

′3) · |I(F∗)| a tree decomposition of width at most k′ [26].
Note that since we require to look for solutions containing sol at the root, we modify each
bag of T such that it contains sol. We call the resulting tree decomposition T ′. We com-
pute aug(DPMOD(T ′)) using formula F∗ as in Algorithm 2. Finally, by Proposition 2 and
Lemma 4, we conclude that answer sets of P correspond to {M ∈ sol(aug(DPMOD(T ′))) |
sol ∈ M,@M′ ∈ sol(DPMOD(T ′)) : M′ ( M}.

The complexity proof sketched in work by Bliem et al. [17] only cares about the
runtime being polynomial. In fact, the algorithm can be carried out in linear time, following
arguments from above, which leads to a worst-case runtime of 22(7k+4) · ‖P‖.

We can now even provide a “constructive definition” of the augmenting function aug(·).

Proposition 3. The resulting table aug(W-Tabs) obtained via DPW(T ) for any TD T is equivalent
to the table DPLW,W(T ) as given in Algorithm 3.

Proof (Idea). Intuitively, Condition 1 of Definition 10 concerns completeness, i.e., ensures
that no row is left out during the augmentation, and is ensured by Line 7 of Algorithm 3
since each ~u ∈W-Tabs is preserved. Condition 2 enforces that there is no missing counter-
witness for any witness, and the idea is that whenever two witnesses ~u,~vs. ∈ τ are in a
subset relation (α(~v) ⊆ α(~u)) and their corresponding linked counter-witnesses ( fcw)
of the corresponding origins (orig) are in a strict subset relation, then there is some
counter-witness c for u if and only if~c ∈ τ is the successor (evol) of these corresponding
linked counter-witnesses. Intuitively, we cannot miss any counter-witnesses in DPLW,W(T )
required by Condition 2, since this required that there are two rows ~u′,~v′ ∈ τ′ with
α(~v) = α(~u) for one table τ′. Now, let the corresponding succeeding rows ~u,~v ∈ τ (i.e.,
~u ∈ evolt({{~u′}}),~v ∈ evolt({{~v′}}), respectively) with α(~v) ( α(~u), β(~v) 6⊆ β(~u) and
β(~v) 6⊇ β(~u), mark the first encounter of a missing counter-witness. Since β(~v) is incom-
parable to β(~u), we conclude that the first encounter has to be in a table preceding τ. To
conclude, one can show that DPLW,W(T ) does not contain “too many” rows, which do not
fall under Conditions 1 and 2.

Theorem 2 works not only for disjunctive ASP via reduction to ENUMMINSAT1,
where witnesses and counter-witnesses are derived with the same table algorithm MOD.
In fact, one can also link counter-witnesses to witnesses by means of DPLW,C(·), thereby
using table algorithms W,C for computing witnesses and counter-witnesses, respectively.
In order to show correctness of algorithm DPLMOD,CMOD(·) (Theorem 1) working for any
ASP program, it is required to extend the definition of the augmenting function aug(·) such
that it is capable of using two different tables.

Corollary 1. Problem ENUMASP can be solved in time f (k) · ‖P‖ computing DPLMOD,CMOD(·),
where k refers to the treewidth of S(P) and f is a computable function.
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5. Experimental Evaluation
5.1. Implementation Details

Efficient implementations of dynamic programming algorithms on TDs are not a
by-product of computational complexity theory and involve tuning and sophisticated
algorithm engineering. Therefore, we present additional implementation details of al-
gorithm M-DPSINC into our prototypical multi-traversal solver DynASP2.5, including two
variations (depgraph, joinsize TDs).

Even though one can construct a nice TD from a TD without increasing its width, one
may artificially introduce additional atoms in a nice TD. This results in several additional
intermediate join nodes among such artificially introduced atoms requiring a significant
amount of total unnecessary computation in practice. On that account, we use tree de-
compositions that do not have to be nice. In order to still obtain a fixed-parameter linear
algorithm, we limit the number of children per node to a constant. Moreover, linking
counter-witnesses to witnesses efficiently is crucial. The main challenge is to deal with
situations where a row (witness) might be linked to different set of counter-witnesses
depending on different predecessors of the row (hidden in set notation of the last line
in Algorithm 3). In these cases, DynASP2.5 eagerly creates a “clone” in form of a very
light-weighted proxy to the original row and ensures that only the original row (if at all
required) serves as counter-witness during traversal three. Together with efficient caches
of counter-witnesses, DynASP2.5 reduces overhead due to clones in practice.

Dedicated data structures are vital. Sets of witnesses and satisfied rules are represented
in the DynASP2.5 system via constant-size bit vectors. 32-bit integers are used to represent
by value 1 whether an atom is set to true or a rule is satisfied in the respective bit positions
according to the bag. A restriction to 32-bit integers seems reasonable as we assume for
now (practical memory limitations) that our approach works well on TDs of width ≤ 20.
Since state-of-the-art computers handle such constant-sized integers extremely efficient,
DynASP2.5 allows for efficient projections and joins of rows, and subset checks in general.
In order to not recompute counter-witnesses (in Traversal 3.II) for different witnesses, we
use a three-valued notation of counter-witness sets consisting of atoms set to true (T) or
false (F) or false but true in the witness set (TW) used to build the reduct. Note that the
algorithm enforces that only (TW)-atoms are relevant, i.e., an atom has to occur in a default
negation or choice rule.

Minimum width is not the only optimization goal when computing TDs by means
of heuristics. Instead, using TDs where a certain feature value has been maximized in
addition (customized TDs) works seemingly well in practice [12,33]. While DynASP2.5
(M-DPSINC) does not take additional TD features into account, we also implemented a
variant (DynASP2.5 depgraph), which prefers one out of ten TDs that intuitively speaking
avoids to introduce head atoms of some rule r in node t, without having encountered every
body atom of r below t, similar to atom dependencies in the program [34]. The variant
DynASP2.5 joinsize minimizes bag sizes of child nodes of join nodes, c.f. [18].

5.2. Benchmark Set

In the following empirical evaluation, we consider the uniform Steiner tree problem
(ST), which is a variant of a decision problem among the first well-known NP-hard prob-
lems [35]. We take public transport networks as input graphs. The instance graphs have
been extracted from publicly available mass transit data feeds and split by transportation
type, e.g., train, metro, tram, combinations [36]. We heuristically computed tree decom-
positions [18] and obtained decompositions of small width relatively fast unless detailed
bus networks were present. Among the graphs considered were public transit networks of
the cities London, Bangladesh, Timisoara, and Paris. Benchmarks, encodings, and results
are available online at https://github.com/daajoe/dynasp_experiments/tree/ipec2017.
We assumed for simplicity, that edges have unit costs, and randomly generated a set of
terminals.

https://github.com/daajoe/dynasp_experiments/tree/ipec2017
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5.2.1. Steiner Tree Problem

The considered version of the uniform Steiner tree problem can be formalized as
follows:

Definition 11 (Uniform Steiner Tree Problem (ST)). Let G = (V, E) be a graph and VT ⊆ V
be a set of vertices, called terminal vertices. Then, a uniform Steiner tree on G is a tree SG =
(VS, ES) with VS ⊆ V and ES ⊆ E such that

1. all terminal vertices are covered: VT ⊆ VS, and
2. the number of edges in ES forms a minimum: there is no tree, where all terminal vertices are

covered that consists of no more than |ES| − 1 many edges.

The uniform Steiner tree problem (ST) asks to compute the uniform Steiner trees for G and VT .

Example 6 (Encoding ST into an ASP program). Let G = (V, E) be a graph and VT ⊆ V be
a set of terminal vertices. We encode the problem ST into an ASP program as follows: Among
the atoms of our program will be an atom av for each vertex v ∈ VT , and an atom evw for each
edge vw ∈ E assuming v < w for an arbitrary, but fixed total ordering < among V. Let s be
an arbitrary vertex s ∈ VT . We generate program P(G, VT) := {{evw} ← ;  evw | vw ∈
E} ∪ {av ← aw, evw; aw ← av, evw | vw ∈ E, vs. < w} ∪ {← ¬av | vs. ∈ VT} ∪ {as ←}. It
is easy to see that the answer sets of the program and the uniform Steiner trees are in a one-to-one
correspondence.

5.2.2. Considered Encodings

We provide the encoding as non-ground ASP program, which allows to state first-
order variables that are instantiated by present constants. This allows us to provide a
readable encoding and avoid stating an encoder as an imperative program. Note that for
certain non-ground programs, treewidth guarantees are known [37]. In the experiment, we
used gringo [38] as grounder. An encoding for the problem ST is depicted in Listing 1 and
assumes a specification of the graph (via edge) and the terminal vertices (terminalVertex)
as well as the number (numVertices) of vertices. Note that this encoding is quite compact
and non-ground and therefore it contains first-order variables. Prior to solving, these
first-order variables are instantiated by a grounder, which results in a ground program.
Interestingly, the encoding in Listing 1 is based on the saturation technique [3] and in
fact outperformed a different encoding presented in Listing 2 on all our instances using
both solvers, Clasp and DynASP2.5. At first sight, this observation seems quite surprising,
however, we benchmarked on more than 60 graphs with 10 varying decompositions for
each solver variant and additional configurations and different encodings for Clasp.

Listing 1. Encoding for ST.

vertex(X) ← edge(X,_).
vertex(Y) ← edge(_,Y).
edge(X,Y) ← edge(Y,X).

0 { selectedEdge(X,Y) } 1 ← edge(X,Y), X < Y.

s1(X) ∨ s2(X) ← vertex(X).

saturate ← selectedEdge(X,Y), s1(X), s2(Y), X < Y.
saturate ← selectedEdge(X,Y), s2(X), s1(Y), X < Y.

saturate ← N #count{ X : s1(X), terminalVertex(X) }, numVertices(N).
saturate ← N #count{ X : s2(X), terminalVertex(X) }, numVertices(N).

s1(X) ← saturate , vertex(X).
s2(X) ← saturate , vertex(X).
← not saturate.

#minimize{ 1,X,Y : selectedEdge(X,Y) }.
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Listing 2. Alternative encoding for ST.

edge(X,Y) ← edge(Y,X).

{ selectedEdge(X,Y) : edge(X,Y), X < Y }.

reached(Y) ← Y = #min{ X : terminalVertex(X) }.
reached(Y) ← reached(X), selectedEdge(X,Y).
reached(Y) ← reached(X), selectedEdge(Y,X).

← terminalVertex(X), not reached(X).

#minimize{ 1,X,Y : selectedEdge(X,Y) }.

5.3. Experimental Evaluation

We performed experiments to investigate the runtime behavior of DynASP2.5 and its
variants, in order to evaluate whether our multi-traversal approach can be beneficial and
has practical advantages over the classical single traversal approach (DynASP2). Further,
we considered the dedicated ASP solver Clasp 3.3.0 (Clasp is available at https://github.
com/potassco/clasp/releases/tag/v3.3.0.). Clearly, we cannot hope to solve programs
with graph representations of high treewidth. However, programs involving real-world
graphs such as graph problems on transit graphs admit TDs of acceptable width to perform
DP on TDs. To get a first intuition, we focused on the Steiner tree problem (ST) for our
benchmarks. Note that we support the most frequently used SModels input format [39]
for our implementation. For our experiments, we used gringo [38] for both Clasp and
DynASP2.5 and therefore do not compare the time needed for grounding, since it is exactly
the same for both solvers.

5.3.1. Benchmark Environment

The experiments presented ran on an Ubuntu 16.04.1 LTS Linux cluster of 3 nodes
with two Intel Xeon E5-2650 CPUs of 12 physical cores each at 2.2 GHz clock speed and 256
GB RAM. All solvers have been compiled with GCC version 4.9.3 and executed in single
core mode.

5.3.2. Runtime Limits

We mainly inspected the CPU time using the average over five runs per instance
(five fixed seeds allow certain variance for heuristic TD computation). For each run, we
limited the environment to 16 GB RAM and 1200 s CPU time. We used Clasp with options
“--stats=2 --opt-strategy=usc,pmres,disjoint,stratify --opt-usc-shrink=min -q”, which enable
improvements for unsatisfiable cores [40], and disabled solution printing/recording. We
also benchmarked Clasp with branch-and-bound, which was, however, outperformed by
the unsatisfiable core options on all our instances. In fact, without using unsatisfiable core
advances, Clasp timed out on almost every instance.

5.3.3. Summary of the Results

The upper plot in Figure 6 shows the result of always selecting the best among five
TDs, whereas the lower plot concerns about the median runtime among those runs.

https://github.com/potassco/clasp/releases/tag/v3.3.0
https://github.com/potassco/clasp/releases/tag/v3.3.0
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Figure 6. Runtime results illustrated as cumulated solved instances. The y-axis labels consecutive
integers that identify instances. The x-axis depicts the runtime. The instances are ordered by running
time, individually for each solver. The first plot (top) shows the best results among five TDs and the
lower plot (bottom) depicts the median runtime among five TDs.

The upper table of Table 1 reports on the minimum running times (TD computation
and Traversals 3.I, 3.II, 3.III) among the solved instances and the total PAR2 scores. We
consider an instance as solved, if the minimum and median PAR2 score is below the
timeout of 1200 s. The lower table of Table 1 depicts the median running times over
solved instances and the total median PAR2 scores. For the variants depgraph and
joinsize, runtimes for computing and selecting among ten TDs are included. Our empirical
benchmark results confirm that DynASP2.5 exhibits competitive runtime behavior even for
TDs of treewidth around 14. Compared to state-of-the-art ASP solver Clasp, DynASP2.5 is
capable of additionally delivering the number of optimal solutions. In particular, variant
“depgraph” shows promising runtimes.
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Table 1. The table illustrates detailed benchmark results, where data for the best possible among all
five runs is depicted (top) and results for the median run are shown (bottom). All columns illustrate
values in seconds, except the first two columns. Column “Solver” indicates a solving system or
configuration and “Solved” refers to the number of solved instances. Then, columns “TD”, “3.I”,
“3.II”, and “3.III” list the total runtime in seconds over all solved instances for computation involving
obtaining TDs, Pass 3.I, Pass 3.II, and Pass 3.III, respectively. Column “Σ” refers to the total runtime
in seconds over all solved instances. The last column depicts the PAR2 score over all instances, where
timeouts are treated as two times the timeout (“PAR2 score”). Bold-face text indicates the best result
in the corresponding column.

Solver Solved
Runtimes (Best) among Solved Instances

PAR2 Score
TD 3.I 3.II 3.III Σ

Clasp 3.3.0 35 - - - - 11,493.98 93,093.98
DynASP2 13 7.96 (0.2%) - - - 3978.29 138,378.29

DynASP2.5 41 21.68 (0.2%) 130.10 (1.4%) 585.47 (6.2%) 8656.48 (92.2%) 9393.73 76,496.74
“depgraph” 45 408.72 (4.0%) 138.21 (1.4%) 595.58 (5.8%) 9033.70 (88.8%) 10,176.21 67,667.71
“joinsize” 37 22.82 (0.3%) 120.19 (1.3%) 544.18 (6.1%) 8250.16 (92.3%) 8937.35 85,654.00

Solver Solved
Runtimes (median) among solved instances

PAR2 Score
TD 3.I 3.II 3.III Σ

Clasp 3.3.0 34 - - - - 11,688.58 94,523.53
DynASP2 8 8.74 (0.2%) - - - 4370.83 149,289.20

DynASP2.5 32 21.91 (0.2%) 140.08 (1.3%) 685.15 (6.4%) 9878.67 (92.1%) 10,725.81 96,405.37
“depgraph” 38 473.12 (4.1%) 146.33 (1.3%) 661.00 (5.8%) 10,118.22 (88.8%) 11,398.67 81,425.39
“joinsize” 32 25.47 (0.2%) 129.41 (1.3%) 596.62 (5.8%) 9538.77 (92.7%) 10,290.27 97,260.77

5.4. A Brief Remark on Instances without Optimization

Our algorithm (M-DPSINC) is a multi-variate algorithm. The idea of avoiding to con-
struct counter-witnesses focuses on situations were many models will be removed in the
first traversal. This happens when (i) we have instances with only few models or (ii) we
have optimization statements in our instances (minimizing cardinality of answer sets with
respect to certain literals). The section above confirmed this expectation on Steiner tree in-
stances. Technically, one might ask whether DynASP2.5 also improves over its predecessor
when solving common graph problems that do not include optimization on the solution
size such as variants of graph coloring, dominating set, and vertex cover. Clearly, the
theoretical expectation would be that a multiple traversal algorithm (DynASP2.5) would
not benefit much over a single traversal algorithm (DynASP2). This is indeed the case
on graph problems. However, we omit details as it is not the focus of this paper and
refer to a technical report [41] for benchmarks into this direction. There, DynASP2.5 was
not able to significantly improve the running time required for problem solving, i.e., the
additional overhead due to multiple traversals of DynASP2.5 did not pay off. One might
ask a similar question for a comparison between Clasp and DynASP2.5. When taking
Cases (i) and (ii) from above into account, we would expect the following. If we have few
instances, Clasp does not have to run many steps with standard optimization strategies,
which use branch-and-bound or unsatisfiable-based optimization running in multiple
rounds of CDCL-search. If we have no optimization, Clasp will run only one round of
CDCL-search and hence runs much faster than with optimization.

6. Conclusions

In this paper, we presented a novel approach for ASP solving based on ideas from pa-
rameterized complexity. Our algorithms runs in linear time assuming bounded treewidth
of the input program. Our solver applies DP in three traversals, thereby avoiding redun-
dancies. Experimental results indicate that our ASP solver is competitive for certain classes
of instances with small treewidth, where the latest version of the well-known solver Clasp
hardly keeps up.
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An interesting question for future research is whether a linear amount of traversals
(incremental dynamic programming) can improve the runtime behavior. It might also be
worth investigating if more general parameters than treewidth can be used [42]. Further-
more, it might be interesting to apply high level approaches on dynamic programming that
include the use of existing technology to answer set programming [43,44] or whether such
an approach pays off for other domains such as default logic [45], argumentation [46], or
description logics [47].
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