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Abstract: Functional connectivity (FC) studies have demonstrated the overarching value of studying
the brain and its disorders through the undirected weighted graph of functional magnetic resonance
imaging (fMRI) correlation matrix. However, most of the work with the FC depends on the way the
connectivity is computed, and it further depends on the manual post-hoc analysis of the FC matrices.
In this work, we propose a deep learning architecture BrainGNN that learns the connectivity structure
as part of learning to classify subjects. It simultaneously applies a graphical neural network to this
learned graph and learns to select a sparse subset of brain regions important to the prediction task.
We demonstrate that the model’s state-of-the-art classification performance on a schizophrenia fMRI
dataset and demonstrate how introspection leads to disorder relevant findings. The graphs that are
learned by the model exhibit strong class discrimination and the sparse subset of relevant regions are
consistent with the schizophrenia literature.

Keywords: functional connectivity; deep learning; schizophrenia

1. Introduction

Functional connectivity, which is often computed using cross-correlation among brain
regions of interest (ROIs), is a powerful approach that has been shown to be informative
for classifying brain disorders and revealing putative bio-markers that are relevant to the
underlying disorder [1–4]. Inferring and using functional connectivity through spatio-
temporal data, e.g., functional magnetic resonance imaging (fMRI), has been an especially
important area of research in recent times. Functional connectivity can improve our
understanding of brain dynamics and improve classification accuracy for brain disorders,
such as schizophrenia. Recent work [5] uses functional network connectivity (FNC) as
features to predict schizophrenia related changes. Whereas, Parisot et al. [6] uses functional
connectivity obtained by a fixed formula with phenotypic and imaging data as inputs and
to extract graphic features for the classification of AD and Autism. Kawahara et al. [7] also
uses the connection strength between brain regions as edges, being typically defined as
the number of white-matter tracts connecting the regions. Ktena et al. [8] employs spectral
graph theory to learn similarity metrics among the functional connectivity networks.

These papers, as well as many others, have shown the efficacy of functional connec-
tivity and feature extraction based on neural network models. However, existing studies
often heavily depend on the underlying method of functional connectivity estimation,
in terms of classification accuracy, feature extraction, or learning brain dynamics. Studies,
like [9–11], depend on hand-crafted features based on methods, like ICA (Independent
Component Analysis). These studies work very well on classification, but they do not learn
a sparse graph and are not helpful in identifying bio-markers in the brain.

Many functional connectivity studies [12] on brain disorders utilize ROIs predefined
based on anatomical or functional atlases, which are either fixed for all subjects or based
on group differences.
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These approaches ignore the possibility of inter-subject variations of ROIs, especially
the variations due to the underlying disease conditions. They also rely on the complete set
of these ROIs discounting the possibility that only a small subset may be important at a
time. A disorder can have varying symptoms for different people, hence making it crucial
to determine disorder and subject specific ROIs.

In this work, we address the problems of using a fixed method of learning functional
connectivity and using it as a fixed graph to represent brain structure (the standard prac-
tices) by utilizing a novel attention based Graph Neural Network (GNN) [13], which we
call BrainGNN. We apply it to fMRI data and (1) achieve comparable classification accuracy
to existing algorithms, (2) learn dynamic graph functional connectivity, and (3) increase the
model interpretability by learning which regions from the set of ROIs are relevant for the
classification, enabling additional insights into the health and disordered brain.

2. Materials and Methods
2.1. Materials

In this study, we worked with the data from Function Biomedical Informatics Research
Network (FBIRN) (These data were downloaded from Function BIRN Data Repository,
Project Accession Number 2007-BDR-6UHZ1.) [14] dataset, including schizophrenia (SZ)
patients and healthy controls (HC), for testing our model. Details of the dataset are shown
in the following section.

2.1.1. Fbirn

The resting fMRI data from the phase III FBIRN were analyzed for this project.
The dataset has 368 total subjects, out of which 311 were selected based on the preprocessing
method explained in Section 2.1.2.

2.1.2. Preprocessing

The fMRI data were preprocessed using statistical parametric mapping (SPM12,
http://www.fil.ion.ucl.ac.uk/spm/, accessed on 22 February 2021) under the MATLAB
2019 environment. A rigid body motion correction was performed to correct subject
head motion, followed by the slice-timing correction to account for timing difference in
slice acquisition. The fMRI data were subsequently warped into the standard Montreal
Neurological Institute (MNI) space while using an echo planar imaging (EPI) template
and they were slightly resampled to 3× 3× 3 mm3 isotropic voxels. The resampled fMRI
images were then smoothed using a Gaussian kernel with a full width at half maximum
(FWHM) = 6 mm. After the smoothing, the functional images were temporally filtered by
a finite impulse response (FIR) bandpass filter (0.01 Hz–0.15 Hz). Subsequently, for each
voxel, six rigid body head motion parameters, white matter (WM) signals and cerebrospinal
fluid (CSF) signals, were regressed out using linear regression.

We selected subjects for further analysis [15] if the subjects have head motion ≤3◦ and
≤3 mm, and with functional data providing near full brain successful normalization [16].

This resulted in a total of 311 subjects with 151 healthy controls and 160 subjects with
schizophrenia. Each subject is represented by X ∈ Rx×y×z×t, where x, y, z represent the
number of voxels in each dimension and t is the number of time points that are 160. In order
to reduce the affect of noise, we zscore the time sequence of each voxel independently.
Thus, time series of every voxel is replaced by the z-score of the time series. This does not
have any effect on the data dimensions.

To partition the data into regions, automated anatomical labeling (AAL) is used [17],
which contains 116 brain regions. Taking sum of the voxels inside a region is an easy and
common method, but this gives an unfair advantage to bigger regions. For this, we take
the weighted average of the voxel intensities inside a region. Weight is the value of a voxel
being inside a region, as these values are not binary. Averaging helps to negate the bias
towards bigger regions. This results in a dataset D = (S1, S2, S3......Sn), where Si ∈ Rr×t,
n = 311, r = 116, t = 160.

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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2.2. Method

We have three distinct parts in our novel attention based GNN architecture: (1) a
Convolutional Neural Network (CNN) [18] that creates embeddings for each region, (2) a
Self-Attention mechanism [19] that assigns weights between regions for functional connec-
tivity, and (3) a GNN that uses regions (nodes) and edges for graph classification. In this
section, we separately explain the purpose and details of each part. Refer to Figure 1 for
the complete architecture diagram of BrainGNN.

2.2.1. Cnn Encoder

We use a CNN [20] encoder to obtain the representation of individual regions created
in the preprocessing step that is outlined in Section 2.1.2. Each region vector of dimension
t = 160 is passed through multiple layers of one dimensional convolution, and a fully
connected layer to obtain final embedding. The one dimensional CNN encoder used in
our architecture consists of 4 convolution layers with filter size (4, 4, 3, 1), stride (2, 1, 2, 1)
and output channels (32, 64, 64, 10). This is followed by a fully connected layer that results
in a final embedding of size 64. We use the rectified linear unit (ReLU) as an activation
layer between convolution layers. Each region is individually encoded to later on create
connections between regions and interpret which regions are more important/informative
for classification. Our one dimensional CNN layer embeds the temporal features of regions
and the spatial connections are handled in the attention and GNN parts of the architecture.

Encoder for creating embedding for regions

CNN 

+

ReLU

CNN 

+

ReLU

FC
Layer

Region embedding

1. fMRI signal

2. Preprocessing and
selection

3. Zscore each voxel's
sequence

4. Weighted average of
voxels in each region

Creating sequence of r regions r regions' sequence

Encoding complete graph into a single vector

GNN
 +
topk
Pool

GNN
 +
topk
Pool

GNN
 +
topk
Pool

GNN
 +
global
Pool

Linear classifier 
for binary classification

0

1

Self Attention 
Module

Create connectivity 
between regionsGraph with regions and connectivity from attention 

a) Pre Processing b) CNN Encoder

c) Self Attentiond) GNNe) Linear Classifier

Figure 1. BrainGNN architecture using: (a) Preprocessing: to preprocess the raw data with different steps (Section 2.1.2);
(b) 1DCNN: to create embedding for regions (Section 2.2.1); (c) Self-attention: to create connectivity between regions
(Section 2.2.2); (d) GNN: to obtain a single feature vector for the entire graph (Section 2.2.3); and (e) Linear classifier: to
obtain the final classification.

2.2.2. Self Attention

Using the embeddings created by the CNN encoder, we estimate the connectivity
between the regions of the brain using multi-head self-attention following [19]. The self-
attention model creates three embeddings namely (key, query, value) for each region,
which, in our architecture, are created using three simple linear layers. Each linear layer φ
is of size 24. keyi = φk(regioni), queryi = φq(regioni), and valuei = φv(regioni). To create
weights between a region and every other region, the model takes the dot product of a
region’s query with every other region’s key embedding to obtain scores between them.
Hence, scoreij = queryi · keyj. The scores are then converted to weights using softmax.
wi = So f tmax(scorei), where scorei ∈ R1×r is a vector of scores between region i and every
other region. The weights are then multiplied with the value embedding of each region
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and summed together to create new representation for a regioni. The following equations
show how to get new region embedding and weight values.

keyi = regioni ∗W(k), valuei = regioni ∗W(v), queryi = regioni ∗W(q)

K = ||ri=1keyT
i = keyT

i ||....||keyT
r , weighti = so f tmax(queryi ∗ K)

new_regioni =
r

∑
j
(weightij ∗ valuej)

(1)

This process is carried out for all of the regions, producing a new representation of
every region and the weights between regions. These weights are then used as the func-
tional connectivity between different regions of brain for every subject. The self attention
layer encodes the spatial axis for each subject and provides the connection between regions.
The weights are learned via end-to-end learning of our model performing classification.
This frees us from using predefined models or functions to estimate the connectivity.

2.2.3. GNN

Our graph network is based on a previously published model [13]. Each subject is
represented by a graph G having V, A, E, where V ∈ Rr×t is the matrix of vertices, where
each vertex is represented by an embedding acquired by self-attention. A, E ∈ Rr×r are
the adjacency and edge weight matrices. Because we do not use any existing method of
computing edges, we construct a complete directed graph with backward edges, meaning
that every pair of vertices is joined by two directed edges with weights eij and eji ∈ E.
For each GNN layer, at every step s, each node, which is a region in our model, sums
the feature vectors of every other region relative to the weight edge between the nodes
and passes the resultant and its own feature vector through a gated recurrent unit (GRU)
network [21] to obtain new embedding for itself.

xni
s = GRU(xni

s−1, ∑
∀nj :nj−>ni

ejix
nj
s−1) (2)

where GRU can be explained by following set of equations, with hs−1 representing the
result of sum in Equation (2):

zs = σ(W(z)xs−1 + U(z)hs−1)

rs = σ(W(r)xs−1 + U(r)hs−1)

hs
′ = σ(Wxs−1 + rs �Uhs−1)

xs = σ(zs � hs−1 + (1− zs)� h′s)

(3)

The number of steps is a hyper-parameter that we have set it as 2 based on our
experiments. The graph neural network helps nodes to create new embeddings based
on the embeddings of other regions in the graph weighted by the edge weights between
them. In our architecture, we use 6 GNN layers, as shown in experiments of [22], which it
provides with the highest accuracy, with the first 3, followed by a top-k pooling layer [23,24].
On the input feature vectors, which are the embeddings of the regions, the pooling operator
learns a parameter (p), which is to assign weight to the features. Based on this parameter,
the top (k) layers are chosen in each pooling layer and the rest of the regions are discarded
from further layers. The pooling method can be explained by the following equations.

y =
Xp
‖p‖ ,

i = topk(y)

X′ = (X� tanh(y))i,

A′ = Ai,i

(4)
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X′ and A′ are the new features and adjacency matrix that we get after selecting top
(k) regions. Pooling is performed to help model focus on the important regions/nodes
that are responsible for classification. The ratio of nodes to keep in the pooling layer is
a hyper-parameter and we have used (0.8, 0.8, 0.3) as the ratios. Because we represent
each subject as graph G, in the end we do graph classification by pooling all the feature
vectors of the remaining 23 regions/nodes. To obtain one feature vector from the entire
graph, we concatenate the output of three different pooling layers. We pass the complete
graph into three separate pooling layers. Each of the pooling layer gives us one feature
factor. In the end, we concatenate the three vectors to get one final embedding for the entire
graph that represents a subject. In our model, we use graph max pool, graph average pool,
and attention based pool [25]. The dimension of the resulting vector is 96. The feature
vector is then passed through two linear layers of size 32 and 2. As the name suggests,
graph max pool and graph average pool just gets the max and average vector from the
graph, whereas attention based pooling multiplies each vector with a learned attention
value before summing all of the vectors.

2.2.4. Training and Testing

To train, validate, and test our model, we divide the total 311 subjects into three groups
of size 215, 80, and 16, for training, validating, and testing, respectively. To conduct a
fair experiment, we use 19 fold cross validation and, for each fold, we perform 10 trials,
resulting in a total of 190 trials, and selecting 100 subjects per class for each trial. We
calculate the area under the ROC (receiver operating characteristic) curve (AUC) for each
trial. To optimize our model, we train all of our architecture in an end to end fashion,
using Cross Entropy to calculate our loss by giving true labels Y as targets, Adam as our
optimizer, and reducing learning rate on a plateau with a patience of 10. We early stop our
model based on validation loss, with a patience of 15. Let θ represent the parameters of the
entire architecture.

loss = CrossEntropy(Ŷ, Y) (5)

θ∗ = arg min
θ

(loss; θ) (6)

3. Results

We show three different groups of results in our study. (1) The classification results;
(2) regions’ connectivity; and (3) key regions selection. We discuss these in the following
sections. We test and compare our model against the classical machine learning algo-
rithms and [26] on the same data used in BrainGNN. The input for the machine learning
model is sFNC matrices that are produced using Pearson product-moment correlation
coefficients (PCC).

3.1. Classification

As mentioned, we use the AUC metric to quantify the classification results of our
model. AUC is more informative than simple accuracy for binary classification, as in our
case. Figure 2 shows the results for our model. Figure 3 shows the ROC curves of the
models for each fold. The performance is comparable to state of the art classical machine
learning algorithms using hand crafted features and existing deep learning approaches,
such as [26], which performed the test on independent component analysis (ICA) compo-
nents with a hold out dataset. Figure 4 presents a comparison with other machine and deep
learning approaches and it proves our claim of BrainGNN providing state of the art results.
BrainGNN gives almost the same mean AUC as the best performing model, i.e., SVM
(Support Vector Machine). To the best of our knowledge, these results are currently among
the best on the unmodified FBIRN fMRI dataset [9–11]. Table 1 shows the mean AUC for
each cross validation fold that was used for experimentation for BrainGNN. The AUC has
high variance across the different test sets of cross validation, as it is shown in the table. To
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make more sense out of the functional connectivity and region selection, both of the results
are based on the second test fold, which gives the highest (∼1) AUC score.

0.0 0.2 0.4 0.6 0.8 1.0
AUC

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
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Figure 2. KDE plot of probability density of receiver operating characteristic curve (ROC-AUC) score
on Function Biomedical Informatics Research Network (FBIRN) dataset. The 190 points on the x-axis
signifies the 19 fold cross validation, 10 trials per cross validation. With average and median of (∼0.8),
density peaks at (∼0.8) AUC.
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Figure 3. The ROC curves of the 19 models generated using each fold of cross validation. The graph
is symmetrical and well balanced. It shows that the model did not learn one class over the other.
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Figure 4. BrainGNN comparision with other popular methods. BrainGNN provides mean AUC as
0.79, which is just (∼0.02) less than the best performing model (SVM). Methods like WholeMILC
(UFPT) and l1 logistic regression failed to learn on the input data. The l1 logistic regression model
does perform better with a very weak regularization term.

Table 1. Showing mean AUC of 10 trials for each cv fold.

CV Fold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

AUC 0.695 0.955 0.644 0.752 0.908 0.917 0.894 0.803 0.649 0.805 0.922 0.699 0.625 0.780 0.794 0.766 0.914 0.750 0.777

3.2. Functional Connectivity

The functional connectivity between regions of the brain is crucial in understanding
how different parts of brain interact with each other. We use the weights that are assigned
by the self-attention module of our architecture as the connection between regions. Figure 5
shows the weight matrices for the second test set in cross validation. Weight matrices
of subjects belonging to SZ class turn out to be much sparser than weights of healthy
controls subjects. The result shows that the connectivity is limited to fewer regions, and the
functional connectivity differs across classes and fewer regions get higher weights in
the case of SZ subjects. We also perform statistical testing to confirm that the weight
matrices of HC differ from those of the SZ subjects. We create two sets, each representing
the concatenation of the weights of 8 test subjects that belong to a class. We perform
2 different testing, as shown in Table 2. A p-value of <0.0001 shows that we can reject the
null-hypothesis, hence making it highly likely that the difference between the weights of
HC and SZ subjects is not zero. FNC matrices that are produced using the PCC method
do not provide such a level of information and almost all regions get unit weight between
other regions. Figure 5 shows the usefulness of learning connectivity between regions in
an end-to-end manner while training the model for classification.
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Figure 5. Connectivity between regions of subjects of both classes using BrainGNN and sFNC (PCC
method). BrainGNN: The similarity of connection between a class and difference across class is
compelling. Weights of SZ class are more sparse than HC, highlighting the fact that fewer regions
receive higher weights for subjects with SZ. Refer to Table 2 for results of statistical testing between
weights of HC and SZ subjects. sFNC: The matrices are symmetric but are less informative than those
produced by BrainGNN. Most of the regions are assigend unit weight.

in context of the regions selected, shown in the last section of results. The final regions selected by196

the model strengthens our hypotheses that not all regions are equally important for identifying a197

particular brain disorder. Reducing the brain regions by almost 80% helps in identifying the important198

regions for classification of SZ. The regions selected by our model such as (cerebellum, temporal lobe,199

caudate, SMA) etc have been linked to the disease by multiple previous studies, hence reassuring the200

correctness of our model [27–30]. We see an immediate benefit of using GNNs to study functional201

connectivity and our BrainGNN model specifically. The data-driven model almost eliminates manual202

decisions transitioning graph construction and region selection into the data-driven realm. With this203

BrainGNN opens up a new direction to the existing studies of connectivity and we expect further204

model introspection to yield insight into the spatio-temporal biomarkers of schizophrenia. Further205

reducing the selected regions and how they different across subjects belonging to different class is206

also left for future work. We envision great benefits to interpretability and elimination of manual207

processing and decisions in a future extension of the model that would enable it to work directly from208

the voxel-level not only connecting and selecting ROIs, but also constructing them.209
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Figure 5. Connectivity between regions of subjects of both classes using BrainGNN and sFNC (PCC method). BrainGNN:
the similarity of connection between a class and difference across class is compelling. Weights of SZ class are more sparse
than HC, highlighting the fact that fewer regions receive higher weights for subjects with SZ. Refer to Table 2 for results of
statistical testing between weights of HC and SZ subjects. sFNC: the matrices are symmetric but are less informative than
those that were produced by BrainGNN. Most of the regions are assigend unit weight.

Table 2. Statistical testing between weight matrices of healthy controls (HC) and schizophrenia (SZ).
The test shows that weights of regions differ across HC and SZ subjects. Refer to Figure 4 for mean
and deviation of these folds.

Test p Value

Mann-Whitney U Test 0.0

Welch’s t-test 0.0

3.3. Region Selection

The pooling layer added in our GNN module allows for us to reduce the number
of regions. Functionality across brain regions differs significantly and not all regions are
affected by a disorder or have any noticeable affect on classification. This makes it very
important to know which regions are more significantly informative of the underlying
disorder and study how they get affected or affect the disorder. Figure 6a shows the final
23 regions that were selected after the last pooling layer in the GNN model, which is just
20 percent of the total brain regions used. The relevance of these regions is further signified
by the fact that the graph model has no residual connections and the final feature vector
created after the last GNN layer is through the feature vectors of these regions. Figure 6b
shows the location of the selected regions in the MNI brain space, regions are distinguished
by color. Each region is assigned one unit from the color bar, which is used to represent
signal variation in the fMRI data.
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Figure 6. 6(a): Histogram of regions selected after the last pooling layer of GNN. 2nd fold of the cross validation gives this figure.
All the 23 regions are selected an equal number of times (16). It further signifies the important of these regions, showing that, for all
subjects across both classes, these 23 regions are always selection. 6(b): mapping the 23 regions back on the brain across the three
anatomical planes. 100th time point is selected for these brain scans. X axis shows different slices of the plane.

4. Discussion

The richness of results in the three presented categories highlights the benefits of
the proposed method. High classification performance shows that the model can accu-
rately classify the subjects and, hence, it can be trusted with the other two interpretative
results of the paper. Functional connectivity between the regions shown in the paper is
of paramount importance, as it highlights how brain regions are connected to each other
and the variation between classes. Learning functional connectivity end-to-end through
classification training frees the model from depending on an external method. The sparse
weight matrix of subjects with SZ shows that connectivity remains significant between
considerably fewer regions than for healthy controls. Notably, the attention based func-
tional connectivity cannot be interpreted as the conventional correlation based symmetric
connectivity. Because of the inherent asymmetry in keys and values, the obtained graph is
directed, but it is also prediction based rather than simply correlation. We expect that a
further investigation into the obtained graph structure will bring more results and deeper
interpretations. The sparsity is to be further explored and seen in the context of the regions
selected, as shown in the last section of results. The final regions selected by the model
strengthens our hypotheses that not all regions are equally important for identifying a
particular brain disorder. Reducing the brain regions by almost 80% helps in identifying the
important regions for the classification of SZ. The regions selected by our model, such as
cerebellum, temporal lobe, caudate, SMA, etc., have been linked to the disease by multiple
previous studies, hence reassuring the correctness of our model [27–30]. We see an imme-
diate benefit of using GNNs to study functional connectivity and our BrainGNN model
specifically. The data-driven model almost eliminates manual decisions transitioning graph
construction and region selection into the data-driven realm. With this BrainGNN opens
up a new direction to the existing studies of connectivity, and we expect further model
introspection to yield insight into the spatio-temporal biomarkers of schizophrenia. Further
reducing the selected regions and how they different across subjects belonging to different
class is also left for future work. We envision great benefits to the interpretability and
elimination of manual processing and decisions in a future extension of the model that
would enable it to work directly from the voxel-level, not only connecting and selecting
ROIs, but also constructing them.

Author Contributions: “Conceptualization, U.M., S.P.; methodology, U.M.; software, U.M.; vali-
dation, U.M.; formal analysis, U.M.; investigation, U.M.; resources, V.C.; data curation, Z.F, U.M.;
writing–original draft preparation, U.M.; writing–review and editing, U.M., S.P., Z.F.; visualiza-
tion, U.M.; supervision, S.P.; project administration, S.P., V.C.; funding acquisition, S.P., V.C. All
authors have read and agreed to the published version of the manuscript.”, please turn to the
CRediT taxonomy for the term explanation.

Figure 6. (a) Histogram of regions selected after the last pooling layer of GNN. 2nd fold of the cross validation gives this figure. All the
23 regions are selected an equal number of times (16). It further signifies the important of these regions, showing that, for all subjects
across both classes, these 23 regions are always selection. (b) mapping the 23 regions back on the brain across the three anatomical
planes. 100th time point is selected for these brain scans. X axis shows different slices of the plane.

4. Discussion

The richness of results in the three presented categories highlights the benefits of
the proposed method. High classification performance shows that the model can accu-
rately classify the subjects and, hence, it can be trusted with the other two interpretative
results of the paper. Functional connectivity between the regions shown in the paper is
of paramount importance, as it highlights how brain regions are connected to each other
and the variation between classes. Learning functional connectivity end-to-end through
classification training frees the model from depending on an external method. The sparse
weight matrix of subjects with SZ shows that connectivity remains significant between
considerably fewer regions than for healthy controls. Notably, the attention based func-
tional connectivity cannot be interpreted as the conventional correlation based symmetric
connectivity. Because of the inherent asymmetry in keys and values, the obtained graph is
directed, but it is also prediction based rather than simply correlation. We expect that a
further investigation into the obtained graph structure will bring more results and deeper
interpretations. The sparsity is to be further explored and seen in the context of the regions
selected, as shown in the last section of results. The final regions selected by the model
strengthens our hypotheses that not all regions are equally important for identifying a
particular brain disorder. Reducing the brain regions by almost 80% helps in identifying the
important regions for the classification of SZ. The regions selected by our model, such as
cerebellum, temporal lobe, caudate, SMA, etc., have been linked to the disease by multiple
previous studies, hence reassuring the correctness of our model [27–30]. We see an imme-
diate benefit of using GNNs to study functional connectivity and our BrainGNN model
specifically. The data-driven model almost eliminates manual decisions transitioning graph
construction and region selection into the data-driven realm. With this BrainGNN opens
up a new direction to the existing studies of connectivity, and we expect further model
introspection to yield insight into the spatio-temporal biomarkers of schizophrenia. Further
reducing the selected regions and how they different across subjects belonging to different
class is also left for future work. We envision great benefits to the interpretability and
elimination of manual processing and decisions in a future extension of the model that
would enable it to work directly from the voxel-level, not only connecting and selecting
ROIs, but also constructing them.
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