
algorithms

Article

Fast Overlap Detection between Hard-Core Colloidal Cuboids
and Spheres. The OCSI Algorithm

Luca Tonti and Alessandro Patti *

����������
�������

Citation: Tonti, L.; Patti, A. Fast

Overlap Detection between

Hard-Core Colloidal Cuboids and

Spheres. The OCSI Algorithm.

Algorithms 2021, 14, 72. https://

doi.org/10.3390/a14030072

Academic Editor: Sergey Korotov

Received: 16 February 2021

Accepted: 24 February 2021

Published: 25 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Chemical Engineering and Analytical Science, The University of Manchester,
Manchester M13 9PL, UK; luca.tonti@manchester.ac.uk
* Correspondence: alessandro.patti@manchester.ac.uk

Abstract: Collision between rigid three-dimensional objects is a very common modelling problem in
a wide spectrum of scientific disciplines, including Computer Science and Physics. It spans from
realistic animation of polyhedral shapes for computer vision to the description of thermodynamic
and dynamic properties in simple and complex fluids. For instance, colloidal particles of especially
exotic shapes are commonly modelled as hard-core objects, whose collision test is key to correctly
determine their phase and aggregation behaviour. In this work, we propose the Oriented Cuboid
Sphere Intersection (OCSI) algorithm to detect collisions between prolate or oblate cuboids and
spheres. We investigate OCSI’s performance by bench-marking it against a number of algorithms
commonly employed in computer graphics and colloidal science: Quick Rejection First (QRI), Quick
Rejection Intertwined (QRF) and a vectorized version of the OBB-sphere collision detection algorithm
that explicitly uses SIMD Streaming Extension (SSE) intrinsics, here referred to as SSE-intr. We
observed that QRI and QRF significantly depend on the specific cuboid anisotropy and sphere radius,
while SSE-intr and OCSI maintain their speed independently of the objects’ geometry. While OCSI
and SSE-intr, both based on SIMD parallelization, show excellent and very similar performance, the
former provides a more accessible coding and user-friendly implementation as it exploits OpenMP
directives for automatic vectorization.

Keywords: collision detection; parallelization; vectorization

1. Introduction

Employing computer programs and algorithms to generate 2D or 3D images is re-
ferred to as rendering. Rendering is a topic of striking relevance in computer graphics with
practical impact on many heterogeneous disciplines, spanning engineering, simulators,
video games and movie special effects. Collision detection and collision determination are
key elements of rendering as they determine the distance between two objects and their pos-
sible intersection [1]. Due to their widespread use in video representation of time-evolving
systems, with tens of frames displayed per second, algorithms for rendering are expected
to be very efficient [2,3]. Generally, to assess whether two complex objects collide, the
distance between their respective bounding volumes is evaluated first. Common bounding
volumes are cuboidal boxes, whose axes might or might not be aligned, or spheres. Due to
their simple geometry, the collision between cuboids and/or spheres is computationally
easier [4–7], thus enhancing the speed and efficiency of the overall rendering process [2].
Collision detection algorithms are of utmost relevance in many heterogeneous applications
spanning computer graphics for shape modelling and video games [8–12], robotics to
prevent potential collisions in man–robot interactions [13–17], risk assessment associated to
vessel collision [18] or machining of sculptured surfaces [19], and simulations of molecular
or particle systems to estimate their thermodynamic properties [20,21].

Collision algorithms have also been key to address the thermodynamics of liquid
and solid phases and their phase transition by early molecular simulation studies that

Algorithms 2021, 14, 72. https://doi.org/10.3390/a14030072 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1570-0512
https://orcid.org/0000-0002-7535-0000
https://doi.org/10.3390/a14030072
https://doi.org/10.3390/a14030072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14030072
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14030072?type=check_update&version=2

Algorithms 2021, 14, 72 2 of 16

employed the hard-sphere model [22–24]. More recently, and following the seminal theory
by Onsager on the isotropic-to-nematic transition of hard rods [25], they were fundamental
to confirm the crucial role of excluded volume effects in the formation of colloidal liquid
crystal phases of anisotropic particles [20]. Realising the practical impact of the particle
shape on the design of nanomaterials triggered the blooming of biosynthetic [26], chemi-
cal [27] and physical [28] experimental routes to manufacture precise building blocks with
ad hoc properties, including lock-and-key particles [29], fused spheres [30], superballs [31]
and cuboids [32–35]. The appearance of these exotic shapes unveiled a realm of novel
opportunities in nanomaterials science by offering an increasingly varied selection of mor-
phologies for state-of-the-art applications spanning medicine (controlled drug delivery),
smart materials (self-healing coatings) and photonics (light detection), among others. Often
anticipating experimental evidence, computer simulations have significantly contributed
to our comprehension of the effect of particle shape and interaction at the nanoscale on the
material properties at the macroscale [36–39]. Understanding the fundamentals of such a
complex correlation, which develops over orders of magnitude in length and time scales,
dramatically depends on the existence of reliable force fields mimicking the interactions
between particles. This is not always the case for most exotic particle shapes, whose force
field is assumed to be described by mere excluded volume effects and thus only incorpo-
rates a hard-core interaction potential. Consequently, efficient and robust algorithms able
to detect collisions and intersections between objects become essential to extract structural,
thermodynamic and dynamic properties of such systems from a molecular simulation.
In colloid science, cuboids are especially intriguing building blocks that can form a rich
variety of liquid crystal phases [40–44]. Incorporating guest spherical particles in these
phases is relevant to understand phenomena of diffusion in crowded environments that
display a significant degree of ordering.

In light of these considerations, which highlight the harmonious inter-disciplinary
convergence of computer graphics and colloid science, here we report on the specific
case of cuboid-sphere collision detection. In particular, we propose our own Oriented
Cuboid Sphere Intersection (OCSI) algorithm to detect collisions in monodisperse systems
of cuboids and spheres oriented in a 3D space. OCSI is found to be especially efficient when
compared to the Quick Rejection First (QRI) and the Quick Rejection Intertwined (QRF)
algorithms, and more user-friendly and easier to implement than the vectorized version of
the algorithm that employs SIMD Streaming Extension (SSE) intrinsic functions [7]. For
simplicity, we refer to the vectorized version of the collision detection algorithm developed
by Larsson et al. with the abbreviation “SSE-intr”, since it uses Intel® intrinsic functions
specific for SSE instruction set. In particular, QRI and QRF make use of a quick rejection test
that discards overlaps if the minimum distance, dmin, between the surface of a cuboid and
the centre of a sphere is larger than the sphere radius. As a result that this test depends on
the cuboid size and shape, the efficiency of both QRI and QRF is expected to be determined,
to some extent, by the specific sphere and cuboid geometry. By contrast, SSE-intr, which
runs in parallel and is therefore significantly faster than QRI and QRF, does not need quick
rejection tests and makes use of vectorization to estimate dmin. Our algorithm, available in
C and Fortran 90, incorporates a few key elements (e.g., the absolute value to estimate the
minimum distance and OpenMP directives to parallelize the code with no use of SIMD
intrinsics) that make it faster than QRI and QRF and more versatile than SEE-intr. This
paper is organised as follows. In Section 2, we detail the theoretical framework of the
cuboid-sphere intersection problem and the state-of-the-art in software implementation.
In Section 3, we describe the code that we have specifically developed to test each of
the above-mentioned algorithms’ efficiency for cuboids of different shape and spheres of
different size. The comparison between the algorithms is then discussed in Section 4, while,
in Section 5, we draw our conclusions.

Algorithms 2021, 14, 72 3 of 16

2. Algorithms

In geometry, a sphere S is identified by its radius, R, and the position of its centre, rS,
with respect to a reference point. Similarly, a cuboid C can be defined by the extension of
its thickness, 2cT , length, 2cL and width, 2cW , the position of its centre of mass, rC and the
unit vectors êT, êL and êW that indicate the orientation of its three orthogonal axes. As a
result, all the points within the volume occupied by the cuboid can be indicated by a vector
C that reads

C = rC + ∑
i=T,L,W

αici êi, (1)

where T, L and W indicate, respectively, the cuboid thickness, length and width, whereas
α =

[
− 1, 1

]
is a scalar interval. With these essential definitions, the minimum distance,

dmin, between the surface of a randomly oriented cuboid and the centre of a sphere can be
calculated as follows:

dmin =

√
∑

i=T,L,W
Θ
(∣∣rSC · êi

∣∣− ci

){∣∣rSC · êi
∣∣− ci

}2
, (2)

where rSC = rS − rC and Θ is the Heaviside step function:

Θ(x) =
{

0 x ≤ 0
1 x > 0

(3)

The interested reader is referred to Appendix A for a formal derivation of Equation (2).
To the best of our knowledge, Arvo was the first to propose an algorithm detecting the
intersection between a sphere and an axis-aligned cuboid, that is a cuboid whose orientation
matches that of the reference axes [5]. For this specific case, we assume that the cuboid
thickness is aligned with the x axis, i.e., êT = x̂, its length with the y axis, i.e., êL = ŷ and
its width with the z axis, i.e., êW = ẑ. Following this assumption, Equation (1) can be
rewritten as

C = rC + αTcT x̂ + αLcLŷ + αWcW ẑ =

= rC +
[
− cT , cT

]
x̂ +

[
− cL, cL

]
ŷ +

[
− cW , cW

]
ẑ =

=
[
rC,x − cT , rC,x + cT

]
x̂ +

[
rC,y − cL, rC,y + cL

]
ŷ+

+
[
rC,z − cW , rC,z + cW]ẑ =

= ∑
i=x,y,z

Bi î

(4)

where î = x̂, ŷ, ẑ are the reference axes for T, L and W, respectively, and Bx =
[
rC,x −

cT , rC,x + cT
]
, By =

[
rC,y − cL, rC,y + cL

]
and Bz =

[
rC,z − cW , rC,z + cW

]
. Therefore, for an

axis-aligned cuboid, dmin can be calculated as

dmin =

√√√√ ∑
i=x,y,z

{
min

(
rS,i − Bi

)}2
. (5)

By using the infimum and supremum of Bi, the terms in the above sum can be easily
calculated:

1. if rS,i < Bi,in f , then min
(
rS,i − Bi

)
= Bi,in f − rS,i,

2. if rS,i > Bi,sup, then min
(
rS,i − Bi

)
= rS,i − Bi,sup,

3. if rS,i ∈ Bi, then min
(
rS,i − Bi

)
= 0.

Consequently, the algorithm proposed by Arvo only requires the extreme values of
Bx, By, Bz along with the sphere radius and position and detects cuboid-sphere collisions if
dmin ≤ R. An illustrative example of a pseudocode describing its main steps is reported in
Algorithm 1.

Algorithms 2021, 14, 72 4 of 16

Algorithm 1 - Arvo

1: function ARVO(rS, R, Bi,in f , Bi,sup)

2: d← 0 . initialising minimum distance

3: for i ∈ {x, y, z} do

4: if (rS,i < Bi,in f) then

5: d← d +
(

Bi,in f − rS,i

)2

6: else if (rS,i > Bi,sup) then

7: d← d +
(
rS,i − Bi,sup

)2

8: end if

9: end for

10: if (d ≤ R2) return true . checking overlap

11: return f alse

12: end function

The alignment of the cuboid unit vectors with the reference axes is a particular case of
a more general scenario with the cuboid randomly oriented. Eventually, Arvo’s algorithm
can also be applied to randomly oriented cuboids by performing a transformation of the
vectors involved in the calculation of dmin in the reference frame of C. Rokne and Ratschek
proposed to estimate dmin by employing interval analysis and reported a test to determine
whether a point P ∈ C is within a sphere delimited by four peripheral points [6]. The
algorithms proposed by Larsson and co-workers employ quick rejection overlap tests
to enhance the efficiency of collision detection between a sphere and either an aligned
or a randomly oriented cuboid [7]. The pseudocode of these algorithms are reported in
Algorithms 2 and 3, respectively. Both QRI and QRF are based on the implementation of a
quick rejection test that immediately excludes an overlap if at least one of the summands in
Equation (2) or Equation (5) is larger than R2. For the general case of a randomly oriented
cuboid, this condition reads {∣∣rSC · êi

∣∣− ci

}2
> R2 ⇔

rSC · êi < −ci − R ∪ rSC · êi > ci + R.

∀ i = T, L, W

(6)

A geometrical representation of this condition is provided in Figure 1, where a sphere
S of radius R and centred at rS is at the distance rSC · êL from the centre of mass of
a cuboid C that is centred at rC. For this specific arrangement, the left-hand side of
Equation (6) measures the distance of S from the face of C delimited by T and W and
schematically identified by the vertical solid line of Figure 1. QRI applies this rejection
criterion within the loop that evaluates the minimum distance, precisely at lines 6 and 9
of Algorithm 2. By contrast, QRF performs the three quick rejection tests, one for each
summand of Equation (2), before the computation of the minimum distance, between
lines 3 and 6 of Algorithm 3. In this case, the scalar products rSC · êi are stored in line 4
and eventually employed to compute d = d2

min in the following loop.

Algorithms 2021, 14, 72 5 of 16

cL RrC rS

rSC · êL

C

S

Figure 1. Schematic representation of a sphere S and a cuboid C at relative distance rSC · êL. Sphere
and cuboid are centred, respectively, at rS and rC, and cL is half of the cuboid length. If rSC · êL >

cL + R, then S and C do not overlap.

Algorithm 2 QRI

1: function QRI(rSC, R, êT, êL, êW, cT , cL, cW)

2: d← 0 . initialising minimum distance

3: for i ∈ {T, L, W} do

4: a← rSC · êi

5: if ((l ← a + ci) < 0) then

6: if (l < −r) return f alse . quick rejection test

7: d← d + l2

8: else if ((l ← a− ci) > 0) then

9: if (l > r) return f alse . quick rejection test

10: d← d + l2

11: end if

12: end for

13: if (d ≤ r2) return true . checking overlap

14: return f alse

15: end function

Algorithms 2021, 14, 72 6 of 16

Algorithm 3 QRF

1: function QRF(rSC, R, êT, êL, êW, cT , cL, cW)

2: d← 0 . initialising minimum distance

3: for i ∈ {T, L, W} do

4: ai ← rSC · êi

5: if (ai < −ci − R or

ai > ci + R) return f alse . quick rejection test

6: end for

7: for i ∈ {T, L, W} do

8: if (ai < −ci) then

9: l ← ai + ci

10: d← d + l2

11: else if (ai > ci) then

12: l ← ai − ci

13: d← d + l2

14: end if

15: end for

16: if (d ≤ R2) return true . checking overlap

17: return f alse

18: end function

The different location of the quick rejection tests in QRI and QRF is expected to
determine a difference in the efficiency of the two algorithms, which is analysed in detail
in Section 4. Additionally, QRI and QRF quick rejection tests depend on both ci and R,
so these algorithms’ efficiency are expected to be influenced also by sphere and cuboid
geometry. Finally, keeping in mind the potential application in computational colloid
science, where crowded systems are usually simulated, the efficiency of QRI and QRF is
also influenced by the system packing, which determines the probability for an attempted
move to produce an overlap.

Larsson et al. also proposed a parallel version of Algorithm 1, generalised for ran-
domly oriented cuboids and using SSE intrinsic functions (SSE-intr) [7]. SSE is an instruc-
tion set available in x86 architectures; it uses 128-bit registers to process simple instructions
on multiple data in parallel [45]. By substituting the if statements in lines 8 and 11 of
Algorithm 3 to compute the minimum distance, with the max and min functions available
in SSE instruction set, the computation of the minimum distance can be vectorized. This al-
gorithm, running in parallel and thus significantly faster than QRI and QRF, does not need
quick rejection tests. A pseudocode for this algorithm, here named after the SSE instruction
set, is presented in Algorithm 4 for the general case of randomly oriented cuboids.

Algorithms 2021, 14, 72 7 of 16

Algorithm 4 SSE-intr

1: function SSE(rSC, R, êT, êL, êW, cT , cL, cW)

2: for i ∈ {T, L, W} do

3: ai ← rSC · êi . vectorising the dot product

4: end for

5: for i ∈ {T, L, W} do . vectorising the cycle

6: li ← min(ai + ci, 0) + max(ai − ci, 0)

7: li ← l2
i

8: end for

9: if (lT + lL + lW ≤ R2) return true . checking overlap

10: return f alse

11: end function

Finally, we present our own algorithm, which incorporates a number of elements
providing additional efficiency when compared to Algorithms 1, 2 and 3, and versatility
when compared to Algorithm 4. A new element that significantly simplifies the algorithm is
the use of the absolute value to estimate the minimum distance. In addition, we employed
OpenMP directives for an SIMD parallelization of the two loops, one over the computation
of the dot products of the distance of the centres of mass of the two particles with the
orientation of the cuboid, and the other over the computation of the minimum distance,
without using SSE intrinsic instructions. OpenMP is an application programming interface
specification composed of compiler directives, library routines and environment variables
for parallel programming in Fortran and C/C++. From version 4.0, it provides mechanisms
to assist SIMD parallelization of loops [46]. The advantage of avoiding explicit SIMD
vectorization is the possibility to vectorize the algorithm using different instruction set
architectures, such as the more modern Advanced Vector Extensions (AVX) instruction
set [47], by simply changing compiler settings during compilation. Moreover, in this
way, vectorization of the algorithm can be assisted for different programming languages,
e.g., Fortran, since SIMD intrinsic functions are available only in C and C++. Given the
heterogeneous nature of the communities using collision-detection algorithms and their
preference for likely different programming languages, an user-friendly code is a crucial
advantage. Our algorithm, referred to as Oriented Cuboid Sphere Intersection (OCSI),
proved to be efficient and functional for both C and Fortran 90 (F90). Its pseudocode is
presented in Algorithm 5.

Algorithm 5 OCSI

1: function OCSI(rSC, R, êT, êL, êW, cT , cL, cW)

2: for i ∈ {T, L, W} do . this cycle is vectorised

3: ai = rSC · êi

4: end for

5: for i ∈ {T, L, W} do . this cycle is vectorised

6: li = max(|ai| − ci, 0)

7: li = l2
i

8: end for

9: if (lT + lL + lW ≤ R2) return true . checking overlap

10: return f alse

11: end function

Algorithms 2021, 14, 72 8 of 16

3. Computational Details

To test the relative performance of the above algorithms, we have developed two
versions of the same program in C and in F90 that detect collision between one cuboid
and one sphere. For compatibility with the benchmark program by Larsson et al., all the
floating point variables are expressed in 32-bit single precision. The dimensions of the
cuboid and sphere are given in units of the cuboid thickness T, which is our unit length,
and do not change within the same detection-collision test. In particular, the colloid length
and width are L∗ ≡ L/T and width W∗ ≡W/T, respectively, whereas the sphere radius
is R∗ ≡ R/T. For each of the cuboid shapes analysed, we have pondered the impact on
the algorithms’ efficiency of changing the sphere radius between R∗ = 0.05 and R∗ = 5.
To control the value of the acceptance ratio, i.e., the percentage of random configurations
that do not produce overlaps, the sphere S is generated within a spherocuboid. This
spherocuboid, centred and oriented as C, results from the Minkowski addition [48] of C and
a sphere larger than S and whose diameter is optimized to obtain the desired acceptance
rate. A dedicated program optimises the volume of the spherocuboid according to the
target value of the acceptance ratio and the dimensions of both C and S , which are specified
as input parameters. To generate a configuration, C is initially aligned with the reference
axes and its centre is set as origin, while the centre of S is randomly positioned within
the volume of the spherocuboid. Then, the reference system is randomly rotated and
the cuboid-sphere overlap checked. For consistency, the section of the code that calls the
overlap function is the same as that proposed by Larsson et al. [7]. The time spent by
each algorithm to detect collisions for a specific case of cuboid and sphere (in term of
radius of the sphere and dimensions of the cuboid) is computed for 3 independent sets of
Nc = 2× 106 configurations and then averaged out. The efficiency of the algorithms has
been assessed on a Lenovo ThinkCentre M920s Desktop PC, with 8 Gb of DDR4 RAM and
Intel® Core™ i5-8500 CPU @ 3.00GHz (Coffee Lake) CPU with 9 Mb of cache, with Ubuntu
18.04 Desktop version OS. In order to prove the versatility of our algorithm, we performed
benchmarks using two different compilers. In particular, we compiled the F90 and C/C++
versions of the program using Intel® Fortran and C Compilers version 19 [49] and GNU
Fortran and C++ Compilers version 10 [50]. Both the compilers used OpenMP API 4.5
Specification for vectorization [51]. In addition, for all the cases listed above, we compiled
two versions of the same program, enabling the generation of SSE or AVX instructions.
In this work, configurations of cuboids with L∗ = [1, 20], W∗ = [1, 20] and spheres with
R∗ = {0.05, 0.5, 5} with an average acceptance ratio of 40% have been tested.

4. Results and Discussion

Due to the large number of benchmarks performed, we intended to report here the
behaviour of the run-time efficiency of the algorithms with respect to the shape of the cuboid
and the sphere only for the programs compiled using Intel® C and Intel® Fortran Compiler,
enabling the use of AVX instruction set for SIMD parallelization. The dependence of the
algorithms run-time with respect to the shape of the cuboid and the sphere is generally
similar for all the compilers and the instruction sets specified during compilation. All the
results obtained for the other cases are reported in the Supplementary Information. The
relative performance of each algorithm is assessed in Figures 2 and 3 for codes written in C
and F90, respectively.

Algorithms 2021, 14, 72 9 of 16

(a) R = 0.05

 0
 10

 20L/T
 0

 10
 20

W/T

 10

 15

 20

 25

 30

t [
m

s]

(b) R = 0.5

QRI QRF SSE-intr OCSI

 0
 10

 20L/T
 0

 10
 20

W/T

 10

 20

 30

 40

 50

 60

t [
m

s]

(c) R = 5

 0
 10

 20L/T
 0

 10
 20

W/T

 10

 25

 40

 55

 70

t [
m

s]

Figure 2. Run-times of algorithms written in C/C++ that detect collision between one cuboid of
length L∗ and width W∗ and one sphere of radius R∗ = 0.05 (a), 0.5 (b) and 5 (c). The program was
compiled using Intel® C Compiler and enabled the generation of Advanced Vector Extensions (AVX)
instructions. Each test generates 2× 106 random configurations at constant acceptance ratio of 40%.

(a) R = 0.05

 0
 10

 20L/T
 0

 10
 20

W/T

 10

 15

 20

 25

 30

t [
m

s]

(b) R = 0.5

QRI QRF OCSI

 0
 10

 20L/T
 0

 10
 20

W/T

 10

 20

 30

 40

 50

 60

t [
m

s]

(c) R = 5

 0
 10

 20L/T
 0

 10
 20

W/T

 10

 25

 40

 55

 70

t [
m

s]

Figure 3. Run-times of algorithms written in F90 that detect collision between one cuboid of length
L∗ and width W∗ and one sphere of radius R∗ = 0.05 (a), 0.5 (b) and 5 (c). The program was compiled
using Intel® Fortran Compiler and enabled the generation of AVX instructions. Each test generates
2× 106 random configurations at constant acceptance ratio of 40%.

Figure 2 offers a benchmark between QRI, QRF, SSE-intr and OCSI, while Figure 3
only for QRI, QRF and OCSI, since SSE-intr uses specific Intel® intrinsic functions: these
sets of functions enable to use SIMD instructions (like SSE and AVX) without the need
of an assembly code for vectorization, but they are available only for C programming
language. Both figures report the run-times for detecting collisions between one cuboid of
1 ≤ L∗ ≤ 20 and 1 ≤W∗ ≤ 20 and one sphere of radius R∗ = 0.05 (frames a), 0.5 (frames b)
and 5 (frames c). The Nc random configurations tested per run have been produced at the
constant acceptance ratio of 40%, which is within the usual range of values employed in
Metropolis Monte Carlo simulations of hard-core particles [52]. It is evident that SSE-intr
and OCSI perform significantly better than QRI and QRF under the conditions specified
here, although we have also tested cuboids of larger length and width (up to 100T) with the
same acceptance ratio and observed very similar tendencies. The difference in performance
is especially evident at R∗ = 5 as SSE-intr and OCSI run-times are up to 5 and 6 times
faster than QRF and QRI, respectively. In general, C codes show a better performance than
F90 codes, although this difference is not substantial. Interestingly enough, SSE-intr and
OCSI do not present any relevant dependence on the cuboid and sphere geometry, being
the run-times basically constant across the whole range of dimensions. This is probably
due to the SIMD parallelism implemented, different from QRI and QRF, which have to
run in serial for their use of quick rejection tests (see lines 6 and 9 in QRI and line 5 in

Algorithms 2021, 14, 72 10 of 16

QRF). Basically, if the quick rejection test is true for the first dot product, the algorithms
exit the loop with negative result (C and S do not overlap) with no need to compute the
remaining two.

The geometry of both cuboid and sphere exhibits a very intriguing effect on the
performance of QRI and QRF as the shape of the run-time surfaces in the L∗W∗ plane
suggests. More specifically, for spheres with R∗ = 0.5 (frames b in Figures 2 and 3) the time
required for the collision detection decreases upon increasing the cuboid dimensions, with
the shortest time detected at L∗ = W∗ = 20 (disk-like cuboid). Larger spheres, with R∗ = 5
(frames c in Figures 2 and 3), induce a different performance resulting in an opposite
concavity of the run-time surface as compared to that observed for smaller spheres. In
this case, for the results obtained using Intel® Compilers and specifying AVX instruction
set during compilation, the slowest detection is measured at (L∗, W∗) = (7, 8) and (3, 5)
for QRI and QRF in C/C++ program, respectively, and (6, 7) and (3, 5) for QRI and QRF
in F90 program, respectively. For the parameters set in these benchmarks, in terms of
acceptance ratio and shapes of cuboids and spheres, QRF is generally faster than QRI. The
only exceptions to this tendency are observed for the C/C++ program compiled either
with Intel® C Compilers with AVX instructions (panel (a) of Figure 2) or with GNU C++
Compiler with SSE instructions (see Supplementary Information), in both cases when the
spheres are especially small (R∗ = 0.05). The difference in performance between QRI and
QRF might also be due to how data are stored and read by C/C++ and F90 compilers. As
a matter of fact, Larsson and coworkers had already noticed that the run-times of QRI
and QRF were very similar for acceptance ratios of approximately 50%, although their
collision-detection method tests run-times for sets of configurations with cuboids and
sphere of random dimensions [7]. Despite the main differences between C /C++ and
Fortran programming languages, the average run-time performance of QRI and QRF with
respect to the radius of the sphere available in C is similar to the ones we translated and
provide also in Fortran in our benchmark source code.

To more easily compare the efficiency of the algorithms tested, the run-times computed
for each possible combination of cuboid and sphere size studied here have been averaged
out for each value of R∗. The resulting averaged run-times for all these cases, which are
400 considering all the possible combinations of 1 ≤ L∗ ≤ 20 and 1 ≤ W∗ ≤ 20 of the
cuboids, are reported in Tables 1 and 2. For every averaged run-time reported in both
tables, we evaluated also its standard deviation, which resulted to be less than 0.5 ms for
all the cases. For comparison with benchmarks performed by Larsson et al., the run-times
are reported with a precision of 1 ms [7]. We stress that these average run-times should be
taken as indicative values for QRI and QRF as their speed strongly depends on the cuboid
geometry. We observe that QRI and QRF average run-times tend to be longer for larger
spheres, with no significant difference between C/C++ and F90. In contrast, both SSE-intr
and OCSI are completely insensible to the sphere radius as no relevant change in their
average run-time is detected between R∗ = 0.05 and 0.5.

Algorithms 2021, 14, 72 11 of 16

Table 1. Average run-times of the C/C++ version of algorithms for collision detection between one
cuboid of 1 ≤ L∗ ≤ 20 and 1 ≤ W∗ ≤ 20 and one sphere of radius R∗ over 2× 106 configurations
with 40% of acceptance ratio. Results, reported in ms, are obtained compiling the benchmark
program using Intel® C Compiler and GNU C++ Compiler, enabling the generation of SSE and AVX
instructions. The standard deviations of all the run-times are <0.5 ms.

Intel® C Compiler

R∗
SSE AVX

QRI QRF OCSI SSE-intr QRI QRF OCSI SSE-intr

0.05 24 22 11 12 25 21 10 12
0.50 38 28 11 12 39 27 10 12
5.00 54 39 11 12 55 38 10 12

GNU C++ Compiler

R∗
SSE AVX

QRI QRF OCSI SSE-intr QRI QRF OCSI SSE-intr

0.05 23 24 13 11 23 22 12 11
0.50 37 30 13 11 37 28 12 11
5.00 53 41 13 11 53 38 12 11

Table 2. Average run-times of the F90 version of algorithms for collision detection between one
cuboid of 1 ≤ L∗ ≤ 20 and 1 ≤ W∗ ≤ 20 and one sphere of radius R∗ over 2× 106 configurations
with 40% of acceptance ratio. Results, reported in ms, are obtained compiling the benchmark program
using Intel Fortran® Compiler and GNU Fortran Compiler, enabling the generation of SSE and AVX
instructions. The standard deviations of all the run-times are <0.5 ms.

Intel® Fortran Compiler

R∗
SSE AVX

QRI QRF OCSI QRI QRF OCSI

0.05 22 21 13 22 22 13
0.50 36 27 13 36 28 13
5.00 53 38 13 53 40 13

GNU Fortran Compiler

R∗
SSE AVX

QRI QRF OCSI QRI QRF OCSI

0.05 23 21 17 22 21 18
0.50 38 27 17 36 27 18
5.00 56 37 17 53 36 18

Regarding the performance of OCSI, we notice that its C version is faster than the
F90 version for both the compilers. Moreover, checking the optimization report of the two
compilers, we observed that GNU compilers were not capable of vectorizing the first loop of
OCSI over the dot products. This seems to be the reason why Intel® Compilers performed
better in terms of run-time efficiency. Anyway, except the F90 version compiled with GNU
Fortran Compiler, for all the other cases the average OCSI run-time to analyse 2× 106

cuboid–sphere configurations oscillates between 10 and 12 ms. Even for the worst-case
scenario, OCSI is still faster than QRI and QRF.

We also notice that the performance of OCSI compiled using SSE and AVX instruction
sets is very similar to that of SSE-intr, with our algorithm approximately 1 ms faster or
slower than SSE-intr, depending on the compiler and the instruction sets called during
compilation. This difference, per se, would not be especially significant if the overlap checks
were limited to 2× 106 configurations. However, the typical number of configurations
generated in Monte Carlo simulations of colloids is usually a few millions per particle,
which are rarely less than a few thousands. Moreover, because colloids can be especially
dense systems, one random configuration might generate more than a single collision.
Consequently, it is reasonable to assume that, within a single Monte Carlo simulation, a

Algorithms 2021, 14, 72 12 of 16

collision-detection algorithm might be called between 103 and 105 times the configurations
explored here. This would produce a difference of seconds between OCSI and SSE-intr,
which is still not especially relevant.

The main advantage of using OCSI is that it is based on automatic vectorization and
employs OpenMP libraries to be parallelized, making it a very user-friendly algorithm.
Since SSE-intr uses intrinsic functions that are specific for SSE, this version of the algorithm
for cuboid-sphere collision detection is limited only to that instruction set. Moreover, Intel®

intrinsic functions are available only in C and cannot be used in Fortran, unless we compile
a mixed C/Fortran program. In contrast, OCSI is based on automatic vectorization by
the compiler, guided using OpenMP pragmas and directives. In this way, the algorithm
can be extended to different instruction sets without changing the source code, simply
specifying the instruction set during compilation. It can also implement vectorization in
Fortran and extend its use to 64-bit floating point arithmetic, which is commonly used in
molecular modelling. OCSI proved to be efficient for the most two common compilers, for
two different programming languages and for two different instruction sets, SSE and AVX,
highlighting its versatility with respect to SSE-intr.

5. Conclusions

In summary, we have benchmarked four different collision-detection algorithms that
check the occurrence of overlaps between one cuboid and one sphere. Our analysis focused
on a specific acceptance ratio, which is within the usual range applied to efficiently sample
the configuration space of hard-core systems in Monte Carlo simulations [52]. We notice
that SSE-intr has been previously tested for different acceptance ratios and did not show
relevant changes in performance [7]. A similar tendency is also expected for OCSI, but
should be confirmed by further tests. While QRI and QRF are observed to be geometry-
dependent, SSE-intr and OCSI are basically insensible to the cuboid anisotropy and sphere
radius and, thanks to automatic vectorization, they are also significantly faster. According
to these results, we expect OCSI and SSE-intr run-times to be constant also for bigger
spheres, while QRI and QRF run-times can show a different behaviour than the ones
observed so far. To ascertain these tendencies, further tests should be performed. In
particular, the OCSI algorithm proved to be especially valuable in terms of performance
and simplicity of implementation in both C and F90. Intel ®compilers and GNU Compilers
were not able to automatically vectorize QRI and QRF. Anyway, there are ways to perform
conditional statements like the ones used in the quick rejection test implementing SIMD
parallelism [53]. Whether or not vectorized versions of QRF and QRI are possible and, if
so, how efficient they would be as compared to the current versions requires further study.

It should be stressed that the method applied to generate the sphere around the cuboid
is crucial to provide a robust comparison between different algorithms. The choice of the
spherocuboid as a sampling volume allows to precisely set the desired acceptance ratio and
guarantees that the algorithms are tested for all the possible positions of the sphere around
or inside the cuboid. This is especially relevant to fairly assess the performance of QRI and
QRF, due to their use of quick rejection tests. In Monte Carlo simulations, where the genera-
tion of configurations follows a different procedure, the performance of collision-detection
algorithms, most likely affected by the degree of system order and packing, should be
tested. Finally, it is important to mention that the OCSI algorithm allows for the calculation
of the cuboid-sphere minimum distance, hence suggesting a future study to determine
a suitable interaction potential beyond mere hard-core interactions. The formal proof
reported here can also be useful to test the intersection of cuboids with particles of different
shape. As a final note, we stress that our algorithm has been only tested for specific pairs
of geometries (cuboids and spheres), while it might be relevant, in computational colloid
science as well as in computer graphics, to assess its performance with other geometries.
We are currently working on extending our algorithm to detect collisions between cuboids
and oblate or prolate spherocylinders. It would also be especially interesting to investigate
to what extent our methodology could be applied to more complex geometries, whose

Algorithms 2021, 14, 72 13 of 16

collision is generally detected by more sophisticated decomposition techniques, such as
e.g., Voronoi diagrams [54] or convex polygon triangulations [55,56]. We hope that our
contribution might stimulate further research in this direction.

Supplementary Materials: The source code of the program for the optimisation of the spherocuboid
volume, the C/C++ and F90 benchmark programs and the raw data required to reproduce our
findings can be downloaded at http://dx.doi.org/10.17632/w7g3ynkc6n.2.

Author Contributions: Conceptualization, A.P.; methodology, L.T.; software, L.T.; validation, L.T.
and A.P.; formal analysis, L.T.; investigation, L.T. and A.P.; resources, A.P.; data curation, L.T.;
writing—original draft preparation, L.T.; writing—review and editing, A.P.; visualization, L.T.;
supervision, A.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Leverhulme Trust grant number RPG-2018-415.

Acknowledgments: The authors acknowledge the use of Computational Shared Facility at the
University of Manchester and Benedetto Di Paola (University of Palermo) for a critical reading of
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. On the Minimum Distance between a Sphere and a Randomly
Oriented Cuboid

Let V be a n-dimensional vector space in an orthonormal basis B =
{

x̂1, x̂2, ..., x̂n
∣∣ x̂i ·

x̂j = δij
}

, with δij the Kronecker delta. The set of points of a cuboid C in V is

C = rC +
n

∑
i=1

αici êi, (A1)

where rC is the position of the centre of the cuboid, ci > 0 is a scalar equal to half of the
cuboid length, width or thickness, αi is also a scalar with values in [−1, 1] and êi is a unit
vector that defines the orientation of C. Specifically êi · êj = δij, so also B′ = {ê1, ê2, ..., ên}
is an orthonormal basis for V. The minimum distance between C and a random point
rS reads

min

(∥∥∥∥rS − C

∥∥∥∥∥
)

= min

(∥∥∥∥rS − rC −
n

∑
i=1

αici êi

∥∥∥∥∥
)

. (A2)

Since B′ is an orthonormal basis for V, the vector rSC = rS − rC can be written as

rSC =
n

∑
i=1

(
rSC · êi

)
êi (A3)

and substituting Equation (A3) in Equation (A2)

min

(∥∥∥∥ n

∑
i=1

{(
rSC · êi

)
− αici

}
êi

∥∥∥∥
)

=

=

√√√√min

(
n

∑
i=1

n

∑
j=1

{(
rSC · êi

)
− αici

}{(
rSC · êj

)
− αjcj

}
êi · êj

)
=

=

√√√√ n

∑
i=1

min

({(
rSC · êi

)
− αici

}2
)

(A4)

The last term in Equation (A4) has been obtained considering that êi · êj = δij and that
every member of the sum depends on just one value αi, hence they are all independent.
It is sufficient to calculate only one term of this sum as all dimensions are equivalent. In
particular, this term equals zero if the following conditions are met:

http://doi.org/10.17632/w7g3ynkc6n.2

Algorithms 2021, 14, 72 14 of 16

αici −
(
rSC · êi

)
= 0 ⇔ αi =

rSC · êi
ci

(A5)

As a result that αi = [−1, 1], this implies that

− 1 ≤ rSC · êi
ci

≤ 1 ⇔
∣∣∣∣∣ rSC · êi

ci

∣∣∣∣∣ ≤ 1 ⇔
∣∣rSC · êi

∣∣ ≤ ci (A6)

If |rSC · êi| > ci, then (rSC · êi) > ci or (rSC · êi) < −ci. The former inequality implies that

min

({
αici −

(
rSC · êi

)}2
)

=

=
{

ci −
(
rSC · êi

)}2
=
{

ci −
∣∣rSC · êi

∣∣}2
(A7)

while, the latter inequality implies

min

({
αici −

(
rSC · êi

)}2
)

=

=
{
− ci −

(
rSC · êi

)}2
=
{
− ci +

∣∣rSC · êi
∣∣}2

=

=
{

ci −
∣∣rSC · êi

∣∣}2

(A8)

As a result that the solution of Equation (A7) is the same as that of (A8), if |rSC · êi| > ci,
then one can write

min

({
αici −

(
rSC · êi

)}2
)

=

=
{

ci −
∣∣rSC · êi

∣∣}2
=
{∣∣rSC · êi

∣∣− ci

}2
(A9)

The solutions of Equations (A5) and (A9) can be incorporated in a single equation by using
a step function defined as

Θ(x) =
{

0 x ≤ 0
1 x > 0

(A10)

Therefore, the minimum distance of a point rS from the surface of a cuboid C reads

min

(∥∥∥∥rS − C
∥∥∥∥
)

=

√
n

∑
i=1

Θ
(∣∣rSC · êi

∣∣− ci

){∣∣rSC · êi
∣∣− ci

}2
(A11)

Finally, a cuboid C overlaps with a sphere of radius R and centre in rS, if the following
inequality is satisfied:√

n

∑
i=1

Θ
(∣∣rSC · êi

∣∣− ci

){∣∣rSC · êi
∣∣− ci

}2
≤ R (A12)

Algorithms 2021, 14, 72 15 of 16

References
1. Ericson, C. Real-Time Collision Detection; Morgan Kaufmann Series in Interactive 3D Technology; Taylor and Francis: Abingdon,

UK, 2004.
2. Akenine-Möller, T.; Haines, E.; Hoffman, N.; Pesce, A. Real-Time Rendering, 4th ed.; Chapman and Hall/CRC: Boca Raton, FL,

USA, 2018.
3. Chang, J.W.; Wang, W.; Kim, M.S. Efficient collision detection using a dual OBB-sphere bounding volume hierarchy. Comput.-Aided

Des. 2010, 42, 50–57. [CrossRef]
4. Gottschalk, S.; Lin, M.C.; Manocha, D. OBBTree: A Hierarchical Structure for Rapid Interference Detection. In Proceedings

of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996;
pp. 171–180.

5. Arvo, J. A simple method for box-sphere intersection testing. In Graphic Gems; Glassner, A.S., Ed.; Academic Press: Cambridge,
MA, USA, 1990; pp. 335–339.

6. Ratschek, H.; Rokne, J. Box-sphere intersection tests. Comput.-Aided Des. 1994, 26, 579–584. [CrossRef]
7. Larsson, T.; Akenine-Möller, T.; Lengyel, E. On faster sphere-box overlap testing. J. Graph. Tools 2007, 12, 3–8. [CrossRef]
8. Moore, M.; Wilhelms, J. Collision Detection and Response for Computer Animation. In Proceedings of the 15th Annual

Conference on Computer Graphics and Interactive Techniques, Atlanta, GA, USA, 1–5 August 1988; pp. 289–298.
9. Pungotra, H.; Knopf, G.K.; Canas, R. Efficient algorithm to detect collision between deformable B-spline surfaces for virtual

sculpting. Comput.-Aided Des. 2008, 40, 1055–1066. [CrossRef]
10. Pan, J.; Manocha, D. GPU-based parallel collision detection for fast motion planning. Int. J. Robot. Res. 2012, 31, 187–200.

[CrossRef]
11. Govender, N.; Wilke, D.N.; Kok, S. Collision detection of convex polyhedra on the NVIDIA GPU architecture for the discrete

element method. Appl. Math. Comput. 2015, 267, 810–829. [CrossRef]
12. Zhang, R.; Liu, X.; Wei, J. Collision detection Based on OBB Simplified modeling. J. Phys. Conf. Ser. 2019, 1213, 042079. [CrossRef]
13. Yang, C.; Wang, X.; Cheng, L. Neural-learning-based telerobot control with guaranteed performance. IEEE Trans. Cybern. 2017,

47, 3148–3159. [CrossRef]
14. Zou, Y.; Liu, P.X.; Li, C.; Cheng, Q. Collision detection for virtual environment using particle swarm optimization with adaptive

cauchy mutation. Cluster. Comput. 2017, 20, 1765–1774. [CrossRef]
15. Tomić, T.; Ott, C.; Haddadin, S. External Wrench Estimation, Collision Detection, and Reflex Reaction for Flying Robots. IEEE

Trans. Robot. 2017, 33, 1467–1482. [CrossRef]
16. Xiao, J.; Zhang, Q.; Wang, Y.H.; Zeng, F. Collision detection algorithm for collaborative robots considering joint friction. IJARS

2018, 15, 1–13. [CrossRef]
17. Ren, T.; Dong, Y.; Wu, D.; Chen, K. Collision detection and identification for robot manipulators based on extended state observer.

Control Eng. Pract. 2018, 79, 144–153. [CrossRef]
18. Nguyen, M.; Zhang, S.; Wang, X.A. A Novel Method for Risk Assessment and Simulation of Collision Avoidance for Vessels

based on AIS. Algorithms 2018, 11, 204. [CrossRef]
19. Tang, T.D. Algorithms for collision detection and avoidance for five-axis NC machining: A state of the art review. Comput.-Aided

Des. 2014, 51, 1–17. [CrossRef]
20. Frenkel, D.; Lekkerkerker, H.N.W.; Stroobants, A. Thermodynamic stability of a smectic phase in a system of hard rods. Nature

1988, 332, 822–823. [CrossRef]
21. Anderson, J.A.; Glaser, J.; Glotzer, S.C. HOOMD-blue: A Python package for high-performance molecular dynamics and hard

particle Monte Carlo simulations. Comput. Mater. Sci. 2020, 173, 109363. [CrossRef]
22. Rosenbluth, M.N.; Rosenbluth, A.W. Further results on Monte Carlo Equations of State. J. Chem. Phys. 1954, 22, 881–884.

[CrossRef]
23. Wood, W.W.; Jacobson, J.D. Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres. J.

Chem. Phys. 1957, 27, 1207–1208. [CrossRef]
24. Alder, B.J.; Wainwright, T.E. Phase Transition for a Hard Sphere System. J. Chem. Phys. 1957, 27, 1208–1209. [CrossRef]
25. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 1949, 51, 627–659. [CrossRef]
26. Shankar, S.S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological synthesis of triangular gold nanoprisms. Nat.

Mat. 2004, 3, 482–488. [CrossRef] [PubMed]
27. Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 2002, 298, 2176–2179. [CrossRef] [PubMed]
28. Manoharan, V.N.; Elsesser, M.T.; Pine, D.J. Dense Packing and Symmetry in Small Clusters of Microspheres. Science 2003,

301, 483–487. [CrossRef] [PubMed]
29. Sacanna, S.; Irvine, W.T.M.; Chaikin, P.M.; Pine, D.J. Lock and key colloids. Nature 2010, 464, 575–578. [CrossRef]
30. Sacanna, S.; Korpics, M.; Rodriguez, K.; Colón-Meléndez, L.; Kim, S.H.; Pine, D.J.; Yi, G.R. Shaping colloids for self-assembly.

Nat. Comm. 2013, 4, 1688. [CrossRef]
31. Rossi, L.; Soni, V.; Ashton, D.J.; Pine, D.J.; Philipse, A.P.; Chaikin, P.M.; Dijkstra, M.; Sacanna, S.; Irvine, W.T.M. Shape-sensitive

crystallization in colloidal superball fluids. Proc. Natl. Acad. Sci. USA 2015, 112, 5286–5290. [CrossRef]

http://dx.doi.org/10.1016/j.cad.2009.04.010
http://dx.doi.org/10.1016/0010-4485(94)90089-2
http://dx.doi.org/10.1080/2151237X.2007.10129232
http://dx.doi.org/10.1016/j.cad.2008.09.006
http://dx.doi.org/10.1177/0278364911429335
http://dx.doi.org/10.1016/j.amc.2014.10.013
http://dx.doi.org/10.1088/1742-6596/1213/4/042079
http://dx.doi.org/10.1109/TCYB.2016.2573837
http://dx.doi.org/10.1007/s10586-017-0815-6
http://dx.doi.org/10.1109/TRO.2017.2750703
http://dx.doi.org/10.1177/1729881418788992
http://dx.doi.org/10.1016/j.conengprac.2018.07.004
http://dx.doi.org/10.3390/a11120204
http://dx.doi.org/10.1016/j.cad.2014.02.001
http://dx.doi.org/10.1038/332822a0
http://dx.doi.org/10.1016/j.commatsci.2019.109363
http://dx.doi.org/10.1063/1.1740207
http://dx.doi.org/10.1063/1.1743956
http://dx.doi.org/10.1063/1.1743957
http://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x
http://dx.doi.org/10.1038/nmat1152
http://www.ncbi.nlm.nih.gov/pubmed/15208703
http://dx.doi.org/10.1126/science.1077229
http://www.ncbi.nlm.nih.gov/pubmed/12481134
http://dx.doi.org/10.1126/science.1086189
http://www.ncbi.nlm.nih.gov/pubmed/12881563
http://dx.doi.org/10.1038/nature08906
http://dx.doi.org/10.1038/ncomms2694
http://dx.doi.org/10.1073/pnas.1415467112

Algorithms 2021, 14, 72 16 of 16

32. Xiang, Y.; Wu, X.; Liu, D.; Jiang, X.; Chu, W.; Li, Z.; Ma, Y.; Zhou, W.; Xie, S. Formation of Rectangularly Shaped Pd/Au Bimetallic
Nanorods: Evidence for Competing Growth of the Pd Shell between the 110 and 100 Side Facets of Au Nanorods. Nano Lett.
2006, 6, 2290–2294. [CrossRef]

33. Okuno, Y.; Nishioka, K.; Kiya, A.; Nakashima, N.; Ishibashia, A.; Niidome, Y. Uniform and controllable preparation of Au–Ag
core–shell nanorods using anisotropic silver shell formation on gold nanorods. Nanoscale 2010, 2, 1489–1493. [CrossRef]

34. Cortie, M.B.; Liu, F.; Arnold, M.D.; Niidome, Y. Multimode Resonances in Silver Nanocuboids. Langmuir 2012, 28, 9103–9112.
[CrossRef]

35. Khlebtsov, B.N.; Liuc, Z.; Yec, J.; Khlebtsov, N.G. Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS
response. J. Quant. Spectrosc Radiat. Transf. 2015, 167, 64–75. [CrossRef]

36. Glotzer, S.C.; Solomon, M.J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mat. 2007, 6, 557–562.
[CrossRef]

37. Damasceno, P.F.; Engel, M.; Glotzer, S.C. Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and
the Role of Directional Entropic Forces. ACS Nano 2012, 6, 609–614. [CrossRef]

38. van Anders, G.; Ahmed, N.K.; Smith, R.; Engel, M.; Glotzer, S.C. Entropically Patchy Particles: Engineering Valence through
Shape Entropy. ACS Nano 2014, 8, 931–940. [CrossRef]

39. de Nijs, B.; Dussi, S.; Smallenburg, F.; Meeldijk, J.D.; Groenendijk, D.J.; Filion, L.; Imhof, A.; van Blaaderen, A.; Dijkstra, M.
Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement. Nat. Mat. 2015, 14, 56–60. [CrossRef]

40. Cuetos, A.; Dennison, M.; Masters, A.; Patti, A. Phase behaviour of hard board-like particles. Soft Matter 2017, 13, 4720–4732.
[CrossRef]

41. Cuetos, A.; Patti, A. Monte Carlo simulation of binary mixtures of hard colloidal cuboids. Mol. Sim. 2018, 44, 516–522.
42. Cuetos, A.; Mirzad Rafael, E.; Corbett, D.; Patti, A. Biaxial nematics of hard cuboids in an external field. Soft Matter 2019,

15, 1922–1926. [CrossRef] [PubMed]
43. Cuetos, A.; Patti, A. Dynamics of hard colloidal cuboids in nematic liquid crystals. Phys. Rev. E 2020, 101, 052702. [CrossRef]
44. Mirzad Rafael, E.; Corbett, D.; Cuetos, A.; Patti, A. Self-assembly of Freely-rotating Polydisperse Cuboids: Unveiling the

Boundaries of the Biaxial Nematic Phase. Soft Matter 2020, 16, 5565–5570. [CrossRef] [PubMed]
45. Thakkar, S.; Huff, T. Internet Streaming SIMD Extensions. Computer 1999, 32, 26–34. [CrossRef]
46. Van der Pas, R.; Stotzer, E.; Terboven, C. Using OpenMP-The Next Step: Affinity, Accelerators, Tasking, and SIMD; MIT Press:

Cambridge, MA, USA, 2017.
47. Intel Advanced Vector Extensions Programming Reference, Ref # 319433-011. Available online: www.intel.com (accessed on

25 February 2021).
48. Schneider, R. Minkowski addition. In Convex Bodies: The Brunn-Minkowski Theory; Cambridge University Press: Cambridge, UK,

1993; Chapter 3, pp. 139–207.
49. Intel® Corporation. Intel® C++ Compiler Classic Developer Guide and Reference. Available online: https://software.intel.

com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html2020 (accessed on
25 February 2021).

50. Stallman, R.M.; the GCC Developer Community. Using the GNU Compiler Collection, for gcc version 10.2.0. 2020. Available
online: https://gcc.gnu.org/onlinedocs/gcc-10.2.0/gcc/ (accessed on 25 February 2021).

51. OpenMP Architecture Review Board. OpenMP Application Programming Interface Version 4.5. 2015. Available online:
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf (accessed on 25 February 2021).

52. Frenkel, D.; Smit, B. Monte Carlo Simulations. In Understanding Molecular Simulation-From Algorithms to Applications; Academic
Press: Cambridge, MA, USA, 1996; Chapter 3, pp. 45–46.

53. Sun, H.; Gorlatch, S.; Zhao, R. Vectorizing programs with IF-statements for processors with SIMD extensions. J. Supercomput.
2020, 76, 4731–4746. [CrossRef]

54. Aurenhammer, F. Voronoi Diagrams—A Survey of a Fundamental Geometric Data Structure. ACM Comput. Surv. 1991,
23, 345–405. [CrossRef]

55. Saračević, M.; Selimi, A. Convex polygon triangulation based on planted trivalent binary tree and ballot problem. Turk. J. Elec.
Eng. Comp. Sci. 2019, 27, 346–361. [CrossRef]

56. Stanimirović, P.S.; Krtolica, P.V.; Saračević, M.H.; Mašović, S.H. Decomposition of Catalan numbers and convex polygon
triangulations. Int. J. Comput. Math. 2014, 91, 1315–1328. [CrossRef]

http://dx.doi.org/10.1021/nl061722c
http://dx.doi.org/10.1039/c0nr00130a
http://dx.doi.org/10.1021/la300407u
http://dx.doi.org/10.1016/j.jqsrt.2015.07.024
http://dx.doi.org/10.1038/nmat1949
http://dx.doi.org/10.1021/nn204012y
http://dx.doi.org/10.1021/nn4057353
http://dx.doi.org/10.1038/nmat4072
http://dx.doi.org/10.1039/C7SM00726D
http://dx.doi.org/10.1039/C8SM02283F
http://www.ncbi.nlm.nih.gov/pubmed/30756112
http://dx.doi.org/10.1103/PhysRevE.101.052702
http://dx.doi.org/10.1039/D0SM00484G
http://www.ncbi.nlm.nih.gov/pubmed/32539067
http://dx.doi.org/10.1109/2.809248
www.intel.com
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html2020
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html2020
https://gcc.gnu.org/onlinedocs/gcc-10.2.0/gcc/
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://dx.doi.org/10.1007/s11227-019-03057-4
http://dx.doi.org/10.1145/116873.116880
http://dx.doi.org/10.3906/elk-1805-143
http://dx.doi.org/10.1080/00207160.2013.837894

	Introduction
	Algorithms
	Computational Details
	Results and Discussion
	Conclusions
	On the Minimum Distance between a Sphere and a Randomly Oriented Cuboid
	References

