
algorithms

Article

k-Circle Formation and k-epf by Asynchronous Robots

Subhash Bhagat 1, Bibhuti Das 2, Abhinav Chakraborty 2 and Krishnendu Mukhopadhyaya 2,*

����������
�������

Citation: Bhagat, S.; Das, B.;

Chakraborty, A.; Mukhopadhyaya, K.

k-Circle Formation and k-epf by

Asynchronous Robots. Algorithms

2021, 14, 62. https://doi.org/

10.3390/a14020062

Academic Editor: Mattia D’Emidio

and Alfredo Navarra

Received: 31 December 2020

Accepted: 8 February 2021

Published: 18 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Indian Association for the Cultivation of Science, Kolkata 700108, India; subhash.bhagat@niser.ac.in or
subhash.bhagat.math@gmail.com

2 Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata 700108, India;
bibhuti_r@isical.ac.in or dasbibhuti905@gmail.com (B.D.); abhinav_r@isical.ac.in or
abhinav.chakraborty06@gmail.com (A.C.)

* Correspondence: krishnendu@isical.ac.in or krishnendu.mukhopadhyaya@gmail.com

Abstract: For a given positive integer k, the k-circle formation problem asks a set of autonomous,
asynchronous robots to form disjoint circles having k robots each at distinct locations, centered at
a set of fixed points in the Euclidean plane. The robots are identical, anonymous, oblivious, and
they operate in Look–Compute–Move cycles. This paper studies the k-circle formation problem and
its relationship with the k-epf problem, a generalized version of the embedded pattern formation
problem, which asks exactly k robots to reach and remain at each fixed point. First, the k-circle
formation problem is studied in a setting where the robots have an agreement on the common
direction and orientation of one of the axes. We have characterized all the configurations and the
values of k, for which the k-circle formation problem is deterministically unsolvable in this setting.
For the remaining configurations and the values of k, a deterministic distributed algorithm has
been proposed, in order to solve the problem. It has been proved that for the initial configurations
with distinct robot positions, if the k-circle formation problem is deterministically solvable then the
k-epf problem is also deterministically solvable. It has been shown that by modifying the proposed
algorithm, the k-epf problem can be solved deterministically.

Keywords: swarm robotics; k-circle formation; k-epf; asynchronous; one axis agreement

1. Introduction

A swarm of robots is a multi-robot system consisting of small and inexpensive mobile
robots working together in a cooperative environment to achieve some specific goal. A
swarm of robots has the potential to be utilized in risky and hazardous scenarios, such as in
the fields of search and rescue operations, military operations, fire fighting, etc. Robots are
autonomous, anonymous, homogeneous, and oblivious. A robot is modeled as a geometric
point in the plane. The robots do not have any agreement on a global coordinate system.
Each robot has its own local coordinate system. They do not have any explicit means of
communication. When a robot becomes active, it operates in Look–Compute–Move (LCM)
cycles. The study of such a distributed system of mobile robots aims at finding a minimal set of
capabilities in order to solve a given problem. Some of the well-known co-ordination problems
studied in this area of research work are gathering and convergence [1–9], arbitrary pattern
formation [10–13], embedded pattern formation [14,15], circle formation [16–21] etc.

The embedded pattern formation [14,15] asks the robots to form a given pattern, in
which the points comprising the pattern are assumed to be pre-fixed and visible to all the
robots like landmarks. Cicerone et al. [22] studied the gathering on meeting points problem
where the robots need to gather at one of the pre-determined points in the plane, referred
to as meeting points. In the discrete domain, Bhagat et al. [23] studied the gathering over
meeting nodes problem in an infinite grid, where some of the nodes of the grid have been
considered as meeting nodes.

In this paper, we have considered m > 0 fixed points in the Euclidean plane. For
a given positive integer k, we consider n mobile robots such that n = km. The k-circle
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formation problem is defined as follows: the n mobile robots need to form m circles, each
centered at one of the fixed points, such that each circle contains exactly k robots at distinct
positions. The circles formed by the robots must be disjoint, i.e., no robot is allowed to lie
on any two distinct circles. Note that the circles do not require to be necessarily uniform.
In other words the k robots forming one particular circle have identical distance from a
particular fixed point, but their mutual distances can be anything. In general, one may
consider different radii for the circles. In this paper, we consider all the circles to have the
same radius, which is a special case of the k-circle formation problem.

We have considered a swarm of mobile robots, which are represented as points in
the Euclidean plane. The robots are silent, i.e., they do not have any explicit direct way
of communication. They coordinate their movements by perceiving the positions of other
robots. The robots are assumed to have unlimited visibility, i.e., the robots can observe the
entire plane. We assume that initially all the robots are placed at distinct locations in the
plane. Robots are assumed to be:

• Autonomous, i.e., they do not have any centralized controller;
• Anonymous, i.e., they have no unique identifier;
• Oblivious, i.e., they do not remember anything about the past events;
• Homogeneous, i.e., they execute the same deterministic algorithm.

The robots operate in Look–Compute–Move (LCM) cycles. In the look phase, the
robot senses the current configuration in its own local coordinate system. In the compute
phase, a destination point is computed by the robot. The destination point may be the
robot’s current location. In the move phase, the robot moves towards the destination point.
A robot cannot distinguish between a static robot and a moving robot, in its look phase.

The robots have non-rigid motion, i.e., there exists a fixed but unknown δ > 0 such
that if the destination is more than δ distance away from a robot, the robot moves at least δ
amount towards its destination. If the destination point is less than δ distance away, the
robot is guaranteed to reach its destination.

The scheduler is assumed to be fair, i.e., each robot is activated infinitely often and
performs its LCM cycle within finite time. The following types of schedulers are com-
monly used:

1. Fully-synchronous (FSYNC): Robots have a common notion of time. All the robots
are activated simultaneously and perform all operations synchronously.

2. Semi-synchronous (SSYNC): It coincides with the FSYNC scheduler with the only
difference that not all the robots are activated in each round.

3. Asynchronous (ASYNC): Robots do not have a common notion of time. They are
activated independently, and the duration of each LCM cycle and inactivity phase is
finite but unbounded.

We have considered a fair ASYNC scheduler. Due to the asynchrony, a robot might be
in motion when some other robot is in its look phase. As a result, for an active robot, the
perceived configuration in its look phase might be different from the configuration at the
time when it actually starts moving.

The theoretical motivation for studying the k-circle formation problem is twofold.
First, we believe that the problem is theoretically interesting as it is a hybrid problem in
between the partitioning problem [24] and the circle formation problem [16–21]. Both
the problems individually differs from the k-circle formation problem w.r.t. the following
points:

1. The partitioning problem asks the robots to divide themselves into m groups, each
having k robots. In addition, the robots in each group are asked to converge into a
small area. Unlike the k-circle formation problem, the robots do not need to form
circles containing exactly k robots, centered at one of the pre-fixed points.

2. The circle formation problem asks the robots to place themselves at distinct locations
on a circle (not defined a priori), within finite amount of time. In this problem, all
the robots participate in forming one single circle, whereas, in the k-circle formation
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problem, the robots need to form m circles each containing exactly k robots and
centered at one of the fixed points.

To the best of our knowledge, we believe that this is the first work that aims at
connecting the two well-known problems in the literature, namely the partitioning problem
and the circle formation problem. Secondly, if the robots could solve the k-circle formation
problem, then all the k robots which lie on the same circle can gather at their respective
center, which is a fixed point, within finite number of moves. Thus, studying the solvability
of the k-circle formation problem includes investigating the solvability of a generalized
version of the embedded pattern formation problem (referred to as k-epf problem in this
paper), where k robots need to reach and remain at each fixed point.

In addition, we believe that the k-circle formation problem would have the following
applications in the field of swarm robotics:

1. The set of fixed points can be considered as emergency points, which need to be
surrounded. By solving the k-circle formation problem, a swarm of robots can divide
themselves into groups, containing k robots and build a perimeter, surrounding the
emergency points.

2. The set of fixed points can also be considered as charging stations, with some given
permitted capacity. The robots need to be charged after a certain amount of time to
continue working. By solving k-circle formation problem, the robots can reach the
charging stations without violating the permitted capacity.

1.1. Related Works

The arbitrary pattern formation problem asks the robots to form an arbitrary geometric
pattern given as an input. Suzuki et al. [10] studied the formation of geometric patterns
in the plane by the robots. They characterized the class of geometric patterns that can
be formed by the robots in terms of their initial configurations. Flocchini et al. [11]
investigated the solvability of the arbitrary pattern formation problem by asynchronous
robots. Fujinaga et al. [12] proposed an algorithm that forms a given pattern P starting
from any initial configuration I, if ρ(I) divides ρ(P), where ρ(.) denotes the geometric
symmetricity, provided that both I and P do not contain multiplicities. Cicerone et al. [13]
studied the arbitrary pattern formation problem without assuming common chirality.
Bose et al. [25] investigated the arbitrary pattern formation problem for asynchronous
robots with lights. The presence of lights serves both as a medium of weak explicit
communication and also as a form of memory. This work investigates the problem in a
setting where the view of a robot is obstructed by the presence of other robots. In the
discrete domain, Bose et al. [26] investigated the arbitrary pattern formation problem on
infinite grid for asynchronous robots.

Defago et al. [27] studied the circle formation problem for oblivious anonymous
mobile robots without chirality. Defago et al. [18] proposed a distributed algorithm, that
ensures that the robots deterministically form a non-uniform circle in a finite number of
steps and converge towards a solution to the uniform circle formation. The circle formation
problem for asynchronous fat robots has been studied in [17,19]. Flocchini et al. [20] proved
that the uniform circle formation problem is solvable for any initial configuration in which
the robots are in distinct locations. Bhagat et al. [16] proposed a distributed algorithm to
solve the circle formation problem by asynchronous robots having one bit of persistent
memory, which minimizes the maximum distance traveled by any robot. Mondal et al. [21]
proposed a distributed algorithm for fat robots having limited visibility to form a uniform
circle. Felleti et al. [28] studied the uniform circle formation for opaque robots with lights.

The landmarks covering problem studied by Fujinaga et al. [14], asks the robots
to reach a configuration where at each landmark point (which is a pre-fixed point in
the plane), there is precisely one robot. They proposed an algorithm, assuming com-
mon chirality among the robots, which minimizes the total distance traveled by all the
robots. Cicerone et al. [15] studied the embedded pattern formation problem without as-
suming common chirality. Cicerone et al. in [22] solved a variant of the gathering problem,
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where the robots need to gather at one of the pre-determined points, referred to as meeting
points. They also studied this problem w.r.t. two objective functions, by minimizing the
total distance traveled by all robots and by minimizing the maximum distance traveled by
a single robot. Bhagat et al. [23] studied the gathering over meeting nodes problem in an
infinite grid.

Efrima et al. studied the effect of the common orientation on the solvability of the
partitioning problem [24] for homogeneous robots. Z. Liu et al. [29] studied the team
assembling problem by heterogeneous robots. Given robots with k different colors, the
robots are required to partition themselves into teams satisfying a given specification
A = (a1, a2, . . . , ak), where ai is the number of robots with color i in one team.

1.2. Our Contributions

This paper studies the k-circle formation problem for a set of asynchronous oblivious
mobile robots in the Euclidean plane. This problem is a hybrid between the partitioning
problem and the circle formation problem. The relationship between the k-circle forma-
tion problem and the k-epf problem is investigated. The k-circle formation problem has
been studied here in a setting where the robots have an agreement on the direction and
orientation of one axis. This paper contributes the following three results:

1. All the initial configurations and the values of k for which the k-circle formation
problem is deterministically unsolvable have been characterized.

2. For the remaining initial configurations and the values of k, a deterministic distributed
algorithm has been proposed to solve the problem under an asynchronous scheduler.

3. For the initial configurations with distinct robot positions, if the k-circle formation
problem is deterministically solvable then the k-epf problem is also deterministi-
cally solvable.

1.3. Outline

In the next section, we formally define the model and introduce all the required
notations and definitions. Section 3 discusses the impossibility result for the k-circle
formation problem. Section 4 describes the proposed algorithm that deterministically
solves the k-circle formation problem. Section 5 discusses the correctness of the proposed
algorithm. Section 6 discusses the relationship between the k-circle formation problem and
the k-epf problem. Finally, Section 7 concludes the paper.

2. Model and Definitions

The robots are assumed to be dimensionless, oblivious, anonymous, autonomous,
and homogeneous. They are represented by points in the Euclidean plane. They have
unlimited visibility range and have no explicit way of communication. The movements
of robots are non-rigid. The state of a robot can be either active or inactive. They execute
Look–Compute–Move (LCM) cycle when they become active. We have considered a fair
ASYNC scheduler, i.e., each robot is activated infinitely often and the duration of each LCM
cycle is finite but unbounded. The robots have one axis agreement, i.e., they agree on the
direction and orientation of any one of the axes. We assume that they have an agreement
on the y-axis. The following notations have been used in the proposed algorithms.

• Configuration: Let R = {r1, r2, . . . , rn} be the set of robots. Let ri(t) denote the
position of the robot ri at time t. R(t) = {r1(t), r2(t), ..., rn(t)} is the set of robot
positions at time t. We are given a set of fixed points denoted by F = { f1, f2, . . . , fm}.
It is assumed that n = km for some positive integer k. Let c be the center of gravity of
the set of fixed points F. We assume that the y-axis passes through c. We also assume
that c is the origin. Let Fy and Ry(t) denote the set of fixed points and robot positions,
respectively, on the y-axis at time t. Let d(r, f ) denote the Euclidean distance between
r and f . The pair C(t) = (R(t), F) represents the configuration at time t. In an initial
configuration C(0), it is assumed that all the robots are stationary and are placed at
distinct positions. A configuration is said to be balanced at time t if the number of
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robots in both the open half-planes delimited by the y-axis is equal. Otherwise, the
configuration is said to be unbalanced.

• Circles and radii of circles: We consider that all the circles formed by the robots
would have the same radius. Let ρ denote the radius of the circles. Furthermore, let
C( f , ρ) denote the circle centered at f ∈ F with radius ρ. We have used the following
notations to formulate the radius ρ of the circles:

1. ρ1 = minimum distance between two fixed points.
2. ρ2 = minimum distance between a fixed point f ∈ (F \ Fy) and the y-axis.

The radius ρ is defined as ρ =
1
3

min(ρ1, ρ2).

• We call a configuration C(t) final if the following conditions hold:

1. Every robot ri is on a circle C( f j, ρ) for some f j ∈ F,
2. C( fi, ρ) ∩ C( f j, ρ) = ∅ for fi 6= f j,
3. Each circle contains exactly k robots at distinct positions.

The k-circle formation problem asks the robots to reach and remain in the final config-
uration, starting from an initial configuration.

• A fixed point and its respective circle C( f j, ρ) are said to be unsaturated, if C( f j, ρ)
contains less than k robots on it. Let Nj(t) denote the deficit in the number of robots
in order to have exactly k robots on the C( f j, ρ). A fixed point and its respective circle
C( f j, ρ) are said to be saturated, if C( f j, ρ) contains exactly k robots on it. In case
C( f j, ρ) contains more than k robots, then C( f j, ρ) and f j are called oversaturated.

• Configuration Rank. Let y(si) denote the y-coordinate of a point si. Note that the
robots do not have an agreement on the positive direction of the x-axis. In case, the
robots could have an agreement on the positive direction of the x-axis, β(si) denotes
the x-coordinate of si. Otherwise, β(si) denotes the distance of si from the y-axis. The
pair γ(si) = (β(si), y(si)) is the configuration rank of the point si. Between the two
points si and sj, si is said to have higher configuration rank than sj, if y(si) > y(sj) or
y(si) = y(sj) and β(si) > β(sj). Since the robots have unlimited visibility, they can
compute the configuration rank of each point si ∈ F ∪ R(t).

• Symmetry about the y-axis. If the robots ri and rj for i 6= j, have the same configu-
ration rank, i.e., γ(ri(t)) = γ(rj(t)), they are said to be symmetric about the y-axis.
Let φ(r) denote the symmetric image of r about the y-axis. If robots ri and rj are
symmetric about the y-axis, then ri = φ(rj) and rj = φ(ri). Similarly, two fixed points
are said to be symmetric about the y-axis, if they have the same configuration rank.
An active robot in its look phase identifies the set R(t) to be symmetric about the
y-axis, if each robot position r ∈ R(t) has a symmetric image φ(r) ∈ R(t). Similarly, a
robot can identify whether the set F is symmetric about the y-axis or not. An active
robot in its look phase identifies the configuration to be symmetric about the y-axis
if both the sets F and R(t) are symmetric about the y-axis. Since the robots have an
agreement on the direction and orientation of the y-axis, the configuration cannot
admit translational symmetry or rotational symmety.

• Partitioning of configurations: All the configurations can be partitioned into the
following disjoint classes:

1. I1− All configurations for which the y-axis is not a line of symmetry for F
(Figure 1a).

2. I2− All configurations for which the y-axis is a line of symmetry for F, but it is
not a line of symmetry for R(t) (Figure 1b).

3. I3− All configurations for which the y-axis is a line of symmetry for F ∪ R(t)
and Ry(t) 6= ∅, i.e., there exists a robot position on the y-axis (Figure 1c).

4. I4− All configurations for which the y-axis is a line of symmetry for F ∪ R(t).
Furthermore, Fy = ∅ and Ry(t) = ∅, i.e., there are no robot positions and fixed
points on the y-axis (Figure 2a).
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5. I5− All configurations for which the y-axis is a line of symmetry for F ∪ R(t).
Furthermore, Fy 6= ∅ and Ry(t) = ∅, i.e., there are no robot positions on the
y-axis, but there are fixed points on the y-axis (Figure 2b).

Note that the classification of the configuration depends only on the y-axis and c. Since
the y-axis and c are the same for all the robots, they can easily classify a configuration
without conflict.

f1

f2

r1 r2

r3 r4
c

y-axis

(a)

f1
f2

r1 r2

r3

r4

c

y-axis

(b)

f1f2

r1

r2

r3r4

c

y-axis

(c)

Figure 1. Square represents the center of gravity, black circles represent robot positions, and crosses
represent fixed points. (a) I1-configuration. (b) I2-configuration. (c) I3-configuration.
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r3r4
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f1f2

r1
r2 r3r4

r5r6
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f4

c
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Figure 2. (a) I4-configuration. (b) I5-configuration.

3. Impossibility Result

In this section, we characterize the initial configurations for which the k-circle forma-
tion problem cannot be solved deterministically. Notice that if k is an odd integer and the
initial configuration C(0) ∈ I5, then |F| must be even. For an initial configuration C(0)
which is symmetric about the y-axis, if both the values of k and |F| are odd, then Ry(0) 6= ∅.
As a result, C(0) cannot possibly belong to I5.

Theorem 1. If the initial configuration C(0) ∈ I5 and k is an odd integer, then the k-circle
formation problem is deterministically unsolvable.

Proof of Theorem 1. If possible, let algorithm A solve the k-circle formation problem
starting from the given initial configuration C(0) ∈ I5 when k is odd. Consider the
scheduler to be semi-synchronous with the additional property that whenever a robot r is
activated, φ(r) is also activated. We assume that all the robots move with constant speed
(which is the same for all robots) without transient stops. We also assume that the distance
traveled by r is the same as that by φ(r). First, consider that both r and φ(r) have opposite
notions of positive x-axis direction. As a result, their views would be identical. Since they
run the same algorithm, their destinations and the corresponding paths would be mirror
images. Even with non-rigid motion, if they travel the same distance, their final positions
would be mirror images of each other. Since we started with a symmetric configuration,
no algorithm can break the symmetry under this setup. Let f be a fixed point on the
y-axis. Since the overall configuration is symmetric, the robot positions on C( f , ρ) must
be symmetric around the y-axis. As k is odd, C( f , ρ) must contain a robot position on the
y-axis. Since the initial configuration did not have any robot position on the y-axis and
all the robots move in pairs, having a robot r moved to the y-axis would mean moving
φ(r) to the same point. As a result, a point of multiplicity will be created, from which it is



Algorithms 2021, 14, 62 7 of 26

deterministically impossible to separate r and φ(r). Hence, the k-circle formation problem
is deterministically unsolvable.

Notice that the unsolvability criterion (Theorem 1) for the k-circle formation problem
would never be satisfied when k is an even integer. Even for odd values of k and the
symmetric configurations in I3 ∪ I4, the unsolvability criterion (Theorem 1) for the k-circle
formation problem would never be satisfied.

4. Algorithm

In this section, we propose a deterministic distributed algorithm that solves the k-circle
formation problem for the remaining configurations. Each active robot will execute the
proposed algorithm AlgorithmOneAxis(C(t)) unless C(t) is a final configuration. Each
robot will follow the following steps during an execution of AlgorithmOneAxis(C(t)):

1. The robots identify the current configuration. The robots agree upon the positive
direction of the x-axis in some configurations.

2. One or two unsaturated fixed points are selected for the circle formation, referred to
as target fixed points.

3. The robots identify one or two robots for each target fixed point, referred to as
candidate robots.

4. Each candidate robot moves towards the k-circle centered at its target fixed point.

First, we define progress in a half-plane. Let HL1 and HL2 denote the two half-planes
delimited by the y-axis. Let fi be the unsaturated fixed point, which has the highest rank in
HL1 at time t ≥ 0. Similarly, suppose f j is the the unsaturated fixed point, which has the
highest rank in HL2 at time t ≥ 0. We say that there has been more progress in HL1 than
HL2 at time t if one of the following conditions holds:

1. γ( fi) < γ( f j);
2. γ( fi) = γ( f j) and Ni(t) < Nj(t);
3. γ( fi) = γ( f j) and Ni(t) = Nj(t) and d( fi, r1(t)) < d( f j, r2(t)) where r1 and r2 are

candidate robots for fi and f j, respectively.

Otherwise, we say that there has been the same progress in both the half-planes.

4.1. Agreement One Axis

Since the robots have an agreement on the direction and orientation of the y-axis,
they also have an agreement on the orientation of the x-axis without direction. This is the
algorithm by which the robots identify the configurations in which they could have an
agreement on the direction of the x-axis. The robots make an agreement on the direction of
the x-axis in such configurations. Each robot in its look phase identifies the class in which
C(t) belongs to and considers the following cases:

1. C(t) ∈ I1, i.e., F is asymmetric about the y-axis. Let hline1, . . . , hlines denote all the
horizontal lines, each one of which passes through at least one fixed point, listed
according to their increasing y-coordinates. Since the fixed points are asymmetric
about the y-axis, at least one of these lines must contain asymmetric fixed points. Let
hlinev be the topmost among such horizontal lines which contains an asymmetric
fixed point. Consider the fixed point closest to the y-axis and not having a symmetric
image on hlinev. The direction from the y-axis towards the half-plane containing
this fixed point is considered as the positive x-direction. All the robots agree upon
this agreement.

2. C(t) ∈ I2, i.e., F is symmetric about the y-axis, but R(t) is asymmetric about the
y-axis. The robots consider the following cases:

(a) The configuration is unbalanced. The direction from the y-axis, towards the
half-plane containing the maximum number of robots, is considered as the
positive x-direction. All the robots agree upon this agreement.
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(b) The configuration is balanced and all the fixed points in one of the half-planes
are either saturated or oversaturated. In this case the robots consider the
positive x-direction towards the half-plane in which all the fixed points are
either saturated or oversaturated.

(c) The configuration is balanced with at least one unsaturated fixed point in both
the half-planes and Ry(t) 6= ∅. The robots do not make an agreement on the
direction of positive x-axis. The robots decide to transform the configuration
into an unbalanced configuration. Let r be the topmost robot on the y-axis.
Define λ = max

f∈F, ri∈R(t)\{r}
d(ri(t), f ). Suppose p denotes the point on the y-

axis, which is at 2λ distance above from topmost horizontal line hlines. If the
position of r is below p, then it moves towards p along the y-axis. Otherwise,

r is moved to one of the half-planes to a point at
1
3

ρ from the y-axis. This
upward movement is required to avoid any collision, which might arise due
to the inherent motion of r in a half-plane for some t′ ≥ t.

(d) The configuration is balanced with at least one unsaturated fixed point in both
the half-planes and Ry(t) = ∅. The robots consider the following cases:

i. k is odd and Fy 6= ∅. Note that in this case, the configuration has an
even number of fixed points. The direction from the y-axis towards
the half-plane in which there has been more progress is considered as
the positive x-axis direction. It is possible that initially there has been
the same progress in both the half-planes. Since C(0) is asymmetric,
there must be one asymmetric robot position about the y-axis. The
positive x-direction is considered towards the half-plane that contains
the asymmetric robot position, which has the highest configuration
rank. All the robots agree upon this agreement.

ii. Otherwise, the robots do not agree upon the direction of positive x-axis
direction. This case includes the configurations in which (i) k is even
and Fy 6= ∅, (ii) k is even and Fy = ∅, and (iii) k is odd and Fy = ∅.
Notice that a configuration in this case might become symmetric with
Ry(t) = ∅. Since the robots are oblivious, they would identify the
configuration to be in I4 or I5, in which they cannot make an agreement
on the direction of positive x-axis. This decision of not to agree upon
the direction of positive x-axis direction would ensure that the robots
follow the same strategy in both symmetric and asymmetric cases.

3. C(t) ∈ I3, i.e., F ∪ R(t) is symmetric about the y-axis and Ry(t) 6= ∅. Since R(t)
is symmetric about the y-axis, the configuration is balanced. The robots decide to
transform the configuration into an unbalanced configuration. The robots follow the
same strategy as described in the case of a balanced I2 configuration with at least one
unsaturated fixed point in both the half-planes and Ry(t) 6= ∅ (case 2(c)).

4. C(t) ∈ I4, i.e., F ∪ R(t) is symmetric about the y-axis, and Fy = ∅ and Ry(t) = ∅.
Since R(t) is symmetric about the y-axis, the configuration is balanced. As there are
no robot positions on the y-axis, the configuration cannot be transformed into an
unbalanced configuration. The robots cannot have an agreement on the direction of
positive x-axis direction in this case.

5. C(t) ∈ I5, i.e., F ∪ R(t) is symmetric about the y-axis, and Fy 6= ∅ and Ry(t) = ∅. In
this case, we have a balanced configuration. Since there are no robot positions on the
y-axis, the configuration cannot be transformed into an unbalanced configuration.
Note that k is an even integer in this case. Otherwise, the k-circle formation problem
is unsolvable. The robots cannot have an agreement on the direction of positive x-axis
direction in this case.
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4.2. Target FP Selection

This is the algorithm by which the robots select a target fixed point for the k-circle
formation. The robots consider the following cases:

1. Robots have an agreement on the positive direction of the x-axis. Among the unsat-
urated fixed points, let f j be the one, which has the highest configuration rank. The
robots select f j as the target fixed point.

2. Robots do not have an agreement on the positive direction of the x-axis. The robots
consider the following cases:

(a) All the fixed points in F \ Fy are saturated. Among the unsaturated fixed points
in Fy, let f j be the topmost one. The robots select f j as the target fixed point.

(b) There exists an unsaturated fixed point in F \ Fy. If all the fixed points in one
of the half-planes delimited by the y-axis are saturated or oversaturated, then
the robots shall have an agreement on the positive direction of the x-axis. So
assume that unsaturated fixed points are present in both the half-planes. In
this case, the robots select two target fixed points, one from each of the half-
planes. Let f j and fu be the unsaturated fixed points, which have the highest
configuration rank in their respective half-planes. The robots select f j and fu
as the target fixed points. Note that f j and fu may be symmetric images of
each other.

4.3. Candidate R Selection

This is the algorithm by which the robots select a candidate robot for a target fixed
point. Let f j be the target fixed point. The robots consider the following cases:

1. There exists a robot position which lies within ρ distance from f j. Let ri ∈ Rρ be
the closest robot from C( f j, ρ). The robots select ri as the candidate robot for f j. If
there are multiple such robots, then the robots select the one which has the highest
configuration rank.

2. There does not exist a robot position which lies within ρ distance from f j. Let ri be
the closest robot from f j, which does not lie on a saturated circle. The robots select
ri as the candidate robot for f j. If there are multiple such robots, then the robots
select the one, which has the highest configuration rank. Note that ri might lie on an
oversaturated circle.

Note that, if f j lies on the y-axis, and C(t) does not have an agreement on the x-axis,
then there may be two robots (say r1 and r2) having the same configuration rank, which
are closest from f j (case 2) or closest from C( f j, ρ) (case 1). In case, the configuration is
asymmetric, let rk be a robot position, which does not have a symmetric image about the
y-axis. If there are multiple such robots, then the robots select the one, which has the
highest configuration rank. The candidate robot is selected, from the half-plane, which
contains rk. Otherwise, both r1 and r2, are selected as the candidate robots. In case, f j lies
in a half-plane and C(t) does not have an agreement on the x-axis, then the candidate robot
is selected from the same half-plane in which it belongs.

4.4. Moveto Destination

This is the algorithm by which a candidate robot ri computes its destination point q(t)
on the circle centered at its target fixed point f j and the movement path P along which
it will move towards its destination point. The pseudocode of this algorithm is given in
Algorithm 1. Let p(t) denote the intersection point between C( f j, ρ) and ri(t) f j. During
its movement towards the circle centered at its target fixed point f j, a candidate robot
must avoid collision with the other robots. In order to ensure collision-free movement, a
candidate robot considers the following cases:
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Algorithm 1: MovetoDestination(C(t), f j, ri)

Input: C(t), f j, ri
Output: Movement path P and destination point q(t)

1 if d(ri(t), f j) < ρ then
2 Let lji(t) be the line segment from f j to C( f j, ρ), passing through ri ;
3 Let q be the intersection point between lji(t) and C( f j, ρ);
4 if q is not a robot position then
5 ri selects P = riq and q(t) = q;
6 ri starts moving towards q along riq;
7 else
8 if there does not exist any robot positions on C( f j, ρ) other than being collinear with ri and f j then
9 Let B1 be the ray starting from ri(t) such that ]lji(t)ri(t)B1 = π

4 ;
10 Let q1 be the intersection point between C( f j, ρ) and B1;
11 ri selects P = riq1 and q(t) = q1;
12 ri starts moving towards q1 along riq1;
13 else
14 Let ru be the robot on C( f j, ρ) such that ]ri(t)qri(t)ri(t)ru(t) is smallest;
15 Let B2 be the ray starting from ri(t) such that

]ri(t)qri(t)B2 = 1
2 min( π

2 ,]ri(t)qri(t)ri(t)ru(t));
16 Let q2 be the intersection point between C( f j, ρ) and B2;
17 ri selects P = riq2 and q(t) = q2;
18 ri starts moving towards q2 along riq2;
19 end
20 end
21 else
22 Let p(t) be the intersection point between C( f j, ρ) and ri f j;
23 if ri f j does not cut any saturated circle then
24 if p(t) is not a robot position then
25 ri selects P = ri p(t) and q(t) = p(t);
26 ri starts moving towards p(t) along ri p(t);
27 else if there does not exist any robot positions on C( f j, ρ) other than being collinear with ri and f j

then
28 Let ta be one of the tangents from ri to C( f j, ρ);
29 Let ta intersects C( f j, ρ) at q;
30 ri selects P = riq and q(t) = q;
31 ri starts moving towards q along riq;
32 else
33 Let rk be the robot position on C( f j, ρ) such that ]ri(t)rk(t)ri(t)ri(t) f j is the smallest;
34 Let B1 be the ray starting from ri(t) such that

]ri(t)rk(t)ri(t)B1 =
1
2
]ri(t)rk(t)ri(t)ri(t) f j;

35 Let q1 be the intersection point between C( f j, ρ) and B1;
36 ri selects P = riq1 and q(t) = q1;
37 ri starts moving towards q1 along riq1;
38 end
39 else
40 Let C( fu, ρ) be the first saturated circle which ri cuts while moving along ri f j;
41 Let q be the intersection point between ri f j and C( fu, ρ) which is at closest distance from ri ;
42 if q is not a robot position then
43 ri selects P = riq and q(t) = q;
44 ri starts moving towards q along riq;
45 else
46 Let rk be the robot on C( fu, ρ) such that ]ri(t) f jri(t)ri(t)rk(t) is the smallest;
47 Let B1 be the ray from ri(t) such that

]ri(t) f jri(t)B1 =
1
2

min(]ri(t) f jri(t)ta,]ri(t) f jri(t)ri(t)rk(t));

48 Let q1 be the intersection point between B1 and C( fu, ρ) which is at closest distance from
ri ;

49 ri selects P = riq1 and q(t) = q1;
50 ri starts moving towards q1 along riq1;
51 end
52 end
53 end
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1. d(ri(t), f j) > ρ and ri(t) f j does not cut any saturated circle. If p(t) is not a robot
position, then ri selects q(t) = p(t) and P = ri(t)p(t) (Figure 3a). Next, consider
the case when p(t) is a robot position and there are no other robot positions on
C( f j, ρ) other than those collinear with ri and f j. In this case, ri selects one of the
tangent lines to C( f j, ρ) from its position (say ta) as its movement path. Let ta inter-
sect C( f j, ρ) at q. In this case q cannot be a robot position. Since ri is a candidate
robot, the line segement ri(t)q cannot possibly contain any robot positions other
than ri(t). It selects P = ta and q(t) = q (Figure 3b). Otherwise, among the robot
positions on C( f j, ρ) which are not collinear with ri and f j, let rk be the robot such
that the angle ]ri(t) f jri(t)ri(t)rk(t) is smallest. Let B1 be the angle bisector such that

]ri(t) f jri(t)B1 =
1
2
]ri(t) f jri(t)ri(t)rk(t). Note that B1 intersects C( f j, ρ) at exactly

two points. Between these two points, let q1 be the closest point from ri. By the choice
of rk, q1 cannot be a robot position. Furthermore, since ri is a candidate robot, the line
segment ri(t)q1 cannot possibly contain any robot positions other than ri(t). It selects
q(t) = q1 and P = ri(t)q1 (Figure 4).

2. d(ri(t), f j) > ρ and ri(t) f j cuts some saturated circle. Let C( fu, ρ) be the first sat-
urated circle, which ri cuts while moving along ri(t) f j. Notice that ri f j would
intersect C( fu, ρ) at two points. Consider q to be the intersection point between
C( fu, ρ) and ri(t) f j, which is at the closest distance from ri. Since ri is a candi-
date robot, the line segment ri(t)q (excluding point q) cannot possibly contain any
robot positions other than ri(t). However, since q is a point on C( fu, ρ), it may be
a robot position. If q is not a robot position, then ri selects q(t) = q and P = ri(t)q
(Figure 5). Otherwise, let rk (not collinear with ri and f j) be the robot on C( fu, ρ) such
that angle between ri(t) f j and ri(t)rk(t) is the smallest. Since C( fu, ρ) is saturated,
such a robot position always exists on it. Let B1 be the angle bisector, such that

]ri(t) f jri(t)B1 =
1
2

min(]ri(t) f jri(t)ta,]ri(t) f jri(t)ri(t)rk(t)). Note that B1 intersects

C( fu, ρ) at exactly two points. Between these two points, let q1 be the closest point
from ri. By the choice of rk, q1 cannot be a robot position. Furthermore, since ri is a
candidate robot ri(t)q1 cannot possibly contain any robot positions other than ri(t).
Robot ri selects P = ri(t)q1 and q(t) = q1 (Figure 6). Note that the choice of B1 ensures
that ri always moves towards C( f j, ρ).

3. d(ri(t), f j) < ρ. Let lji(t) be the line segment from f j to C( f j, ρ), passing through
ri. Let q be the intersection point between lji(t) and C( f j, ρ). Since ri is a candi-
date robot, the line segment ri(t)q (excluding point q) cannot possibly contain any
robot positions other than ri(t). However, since q is a point on C( f j, ρ), it may be
a robot position. If q is not a robot position, then ri selects q(t) = q and P = ri(t)q
(Figure 7a). Next, consider the case when q is a robot position and C( f j, ρ) does
not contain any robot positions other than being collinear with ri and f j. Let B1

be the ray starting from ri(t) such that ]ri(t)qri(t)B1 = π
4 (Figure 7b). Suppose B1

intersects C( f j, ρ) at q1. The candidate robot ri selects q(t) = q1 and P = ri(t)q1.
Otherwise, let ru (not collinear with ri and f j) be the robot position on C( f j, ρ) such
that ]ri(t)qri(t)ri(t)ru(t) is the smallest. Let B2 be the ray starting from ri(t) such

that ]ri(t)qri(t)B2 =
1
2

min(π
2 ,]ri(t)qri(t)ri(t)ru(t)). Suppose q2 is the intersection

point between B2 and C( f j, ρ). The candidate robot selects q(t) = q2 and P = ri(t)q2
(Figure 7c).
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ri(t)

fj
p(t)

(a)

q

fj
ri(t)

ta

rv(t)

(b)

Figure 3. (a) P = ri(t)p(t) and q(t) = p(t). (b) rv(t) is the robot position on p(t). q(t) = q and P = ri(t)q, where
q is the point of intersection between ta and C( f j, ρ).

q2

fj

ri(t)

rk(t)

rv(t)

B1 q1

Figure 4. B1 is the angle bisector of ]ri(t) f jri(t)ri(t)rk(t). It intersects C( f j, ρ) at q1 and q2. In this case, ri selects
P = ri(t)q1 and q(t) = q1.

fjri(t)

fu

q p(t)

Figure 5. P = ri(t)q and q(t) = q, where q is the point of intersection between ri(t) f j and C( fu, ρ).

ta

fj
ri(t)

B1

rk(t) fu

q1
q2

rv(t)

q2

Figure 6. B1 is the angle bisector of ]ri(t) f jri(t)ta. It intersects C( fu, ρ) at q1 and q2. In this case, ri selects
P = ri(t)q1 and q(t) = q1.

fj

ri(t)

q

lji(t)

(a)

fj

ri(t)

rv(t)

B1

lji(t)
q1

(b)

fj

ri(t)
ru(t)

rv(t)

B2lji(t)

q2

(c)

Figure 7. (a) P = ri(t)q and q(t) = q, where q is the intersection point between lji(t) and C( f j, ρ). (b) q =

rv(t). B1 is the ray starting from ri(t) such that ]ri(t)rv(t)ri(t)B1 = π
4 . P = ri(t)q1 and q(t) = q1, where

q1 is the intersection point between B1 and C( f j, ρ). (c) q = rv(t). B2 is the ray starting from ri(t) such that
]ri(t)rv(t)ri(t)B2 = 1

2]ri(t)rv(t)ri(t)ri(t)ru(t). P = ri(t)q2 and q(t) = q2, where q2 is the intersection point
between B2 and C( f j, ρ).

In case there are exactly two candidate robots, which lie in different half-planes, each
of them computes its destination point and movement path in such a way that, during its
movement, it does not cross the y-axis. For example, consider the case when the target
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fixed point lies on the y-axis. A candidate robot will consider the tangent line and robot
positions, which lie in its half-plane, while computing its destination point and movement
path.

4.5. Algorithm One Axis

This is the proposed algorithm that solves the k-circle formation problem with one axis
agreement. The pseudocode is given in Algorithm 2. Given a configuration C(t), each active
robot executes AlgorithmOneAxis(C(t)). During an execution of AlgorithmOneAxis(C(t)),
if C(t) is not a final configuration, then an active robot (say rk) executes algorithm
AgreementOneAxis(C(t)). Next, rk considers the following cases:

Algorithm 2: AlgorithmOneAxis
Input: C(t) = (R(t), F)

1 Let rk be an active robot at time t;
2 rk executes AgreementOneAxis(C(t));
3 if the robots have an agreement on the positive direction of the x-axis then
4 rk executes TargetFPSelection(C(t));
5 Let f j be the target fixed point;
6 rk executes CandidateRSelection(C(t), f j);
7 Let ri be the candidate robot;
8 if rk = ri then
9 rk executes MovetoDestination(C(t), f j, rk);

10 end
11 else
12 if all the fixed points in F \ Fy are saturated then
13 rk executes TargetFPSelection(C(t));
14 Let f j be the target fixed point;
15 rk executes CandidateRSelection(C(t), f j);
16 if there is a unique candidate robot then
17 Let ri be the candidate robot;
18 if rk = ri then
19 rk executes MovetoDestination(C(t), f j, rk);
20 end
21 else
22 Let ri be the candidate robot such that rk and ri lie in the same half-plane;
23 if rk = ri then
24 rk executes MovetoDestination(C(t), f j, rk);
25 end
26 end
27 else
28 rk executes TargetFPSelection(C(t));
29 Let f j and fb be the target fixed points;
30 rk executes CandidateRSelection(C(t), f j) and CandidateRSelection(C(t), fb);
31 Let ri and ra be the candidate robots of f j and fb, respectively;
32 if rk = ri then
33 rk executes MovetoDestination(C(t), f j, rk);
34 else if rk = ra then
35 rk executes MovetoDestination(C(t), fb, rk);
36 end
37 end
38 end

1. The robots have an agreement on the positive direction of the x-axis. Robot rk
executes TargetFPSelection(C(t)). In this case there is a unique target fixed point.
Let f j be the target fixed point. Next, rk identifies the candidate robot by executing
CandidateRSelection(C(t), f j). Let ri be the candidate robot selected for f j. If rk = ri,
then it executes MovetoDestination(C(t), f j, ri).

2. The robots do not have any agreement on the positive direction of the x-axis. Robot
rk considers the following cases:

(a) All the fixed points in F \ Fy are saturated. Robot rk executes TargetFPSelection(C(t)).
In this case the unique target fixed point lies on the y-axis. Let f j be the target
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fixed point. Robot rk executes CandidateRSelection(C(t), f j). Let ri be the can-
didate robot. Note that there may be two candidate robots for f j. In that case,
suppose ri is the candidate robot, that lies in the same half-plane containing rk.
If rk = ri, then it executes MovetoDestination(C(t), f j, ri).

(b) There exists an unsaturated fixed point in F \ Fy. Note that such unsaturated
fixed points are present in both the half-planes. Otherwise the robots would
have an agreement on the positive direction of the x-axis. Robot rk executes
TargetFPSelection(C(t)). In this case there are two target fixed points, one
from each of the half-planes. Let f j and fu be the two target fixed points. With-
out loss of generality, assume that rk and f j lie in the same half-plane. Next, rk
executes CandidateRSelection(C(t), f j). Let ri be the candidate robot selected
for f j. If rk = ri, then it executes sub-procedure MovetoDestination(C(t), f j, ri).

5. Correctness

Lemma 1. Given a configuration C(t) for some t ≥ 0, if the robots agree upon the positive direction
of the x-axis, by the execution of AgreementOneAxis(C(t)), then the agreement remains invariant
at any arbitrary point of time t′ > t.

Proof of Lemma 1. Let the robots agree upon the positive direction of the x-axis, by the
execution of AgreementOneAxis(C(t)). Consider the following cases:

Case 1. C(t) ∈ I1, i.e., F is asymmetric about the y-axis. Since this agreement is w.r.t. the
fixed points, it remains invariant for any t′ > t.

Case 2. C(t) ∈ I2 and C(t) is unbalanced. In this case, the agreement on the direction of
the positive x-axis is based upon robot positions. If the robots move across the y-axis from
the negative side to the positive side, then the agreement does not change as the positive
side of the y-axis would still contain the maximum number of robots. During an execution
of TargetFPSelection(C(t)), the unsaturated fixed points with a higher configuration rank
are given preference over the unsaturated fixed points with a lower configuration rank.
As a result, the robots move across the y-axis from the positive side to the negative side,
only when all the fixed points on the positive side of the y-axis are either saturated or
oversaturated. Due to this movement, the configuration would transform into a balanced
configuration. Next, case 3 would follow.

Case 3. C(t) ∈ I2 is a balanced configuration and all the fixed points in one of the half-
planes are either saturated or oversaturated. Notice that a candidate robot, selected by the
execution of CandidateRSelection(C(t)), would never lie on a saturated circle. As a result,
once a circle becomes saturated, it would never become unsaturated. Thus, all the fixed
points on the positive side of the y-axis would never become unsaturated. This implies
that at any t′ > t the agreement on the positive direction of the x-axis remains invariant.

Case 4. C(t) ∈ I2 is a balanced configuration with at least one unsaturated fixed point in
both the half-planes. Furthermore, k is odd and Fy 6= ∅. In this case, the positive x-axis
direction is considered towards the half-plane in which there has been more progress at
time t. During an execution of TargetFPSelection(C(t)), the unsaturated fixed points with
higher configuration rank are given preference over the unsaturated fixed points with
lower configuration rank. As a result, it is guaranteed to have more progress in the positive
side of the y-axis for any t′ > t. Therefore, for any t′ > t the agreement on the positive
direction of the x-axis remains invariant. In case t = 0, it might be possible that both the
half-planes have the same progress. Since C(0) is asymmetric about the y-axis in this case,
there exists at least one robot asymmetric robot position. The positive x-axis direction is
considered towards the half-plane, which contains the asymmetric robot with the highest
configuration rank. For any t′ > t, either C(t′) = C(0) or it is guaranteed to have more
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progress in the positive side of the y-axis. Therefore, the agreement on the positive direction
of the x-axis remains invariant.

Hence, if the robots agree upon the positive direction of the x-axis by the execution of
AgreementOneAxis(C(t)), then at any arbitrary point of time t′ > t the agreement remains
invariant.

Next, we consider the balanced configurations in which the robots make an agreement
on the positive direction of the x-axis at some t′ > 0. Lemma 1 ensures that the agreement
remains invariant for any t′′ > t′. Note that, at any arbitrary point of time t ∈ [0, t′),
the robots have selected two target fixed points, one from each of the half-planes. Since
the scheduler is assumed to be asynchronous, it is possible to have a candidate robot on
the negative side of the y-axis, selected at some t ∈ [0, t′) and which has not reached its
destination point at t′. We need to ensure that there would not be any collision due to the
inherent motion of such a candidate robot.

Lemma 2. Let C(t′) for some t′ > 0, be the configuration in which the robots make an agreement
on the positive direction of the x-axis. Let ri be the candidate robot on the negative side of the y-axis,
that was selected for some target fixed point f j at t ∈ [0, t′). If t′′ is the point of time at which it
re-computes its destination point, then it does not collide with any other candidate robots in the time
interval [t′, t′′].

Proof of Lemma 2. Let fa be the target fixed point at some t ∈ [t′, t′′]. Since the robots
have agreement on the positive direction of the x-axis, a unique candidate robot would be
selected by the execution of CandidateRSelection(C(t), fa). Let rb be the candidate robot.
Note that, fa ≥ f j, i.e., the configuration rank of f j cannot be higher than fa. Otherwise, f j
would have been selected as the target fixed point. Consider the following cases:

Case 1. fa = f j. In this case ra = ri. This is because ri is the candidate robot that was
selected for f j at t ∈ [0, t′) and has not reached C( f j, ρ). It would remain as the closest
robot position from f j, that does not lie on a saturated circle. Since ri would be the unique
robot which is in motion within d( f j, ri) distance from f j, there would not be any collision
of robots.

Case 2. So we assume that f j 6= fa. The movement paths of ri and rb would not intersect.
Otherwise, by triangle inequality ri would have been at closer distance from fa. So ri would
have selected as the candidate robot for fa by the execution CandidateRSelection(C(t), fa).
Since the movement paths do not intersect, ri would not collide with rb during the time
interval [t′, t′′]. Since the scheduler is assumed to be asynchronous, it is possible that ri
becomes the candidate robot for fa as in Figure 8. As the movement paths do not intersect,
ri would continue its movement towards C( f j, ρ) without collision unless it stops and
re-computes its destination point. If it stops it will execute MovetoDestination(C(t), fa, ri).
It computes its movement path towards C( fa, ρ) that does not intersect with the movement
path of rb. As a result, it would continue its movement towards C( fa, ρ) in subsequent time
without any collision with rb.

Hence, ri would not collide with any other candidate robots in the time interval
[t′, t′′].
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y-axis

ri(t1)

fa

rb(t1) = rb(t2)
fj ri(t2)

Figure 8. Robot ri has moved from ri(t1) to ri(t2). It becomes a candidate robot for fa at time t2.

Theorem 1 characterizes all the configurations and the values of k for which the k-
circle formation problem is deterministically unsolvable. For some k > 0, if the k-circle
formation problem is deterministically solvable for a given C(0), the robots can identify it
in its look phase. The robots must ensure that such configurations would not transform
into an configuration that would satisfy the unsolvability criterion (Theorem 1) for any
t > 0 during an execution of AlgorithmOneAxis.

Lemma 3. Given k > 0 and C(0), if the k-circle formation problem is deterministically solvable,
then at any arbitrary point of time t > 0 the configuration would not satisfy the unsolvability
criterion (Theorem 1).

Proof of Lemma 3. Since the k-circle formation problem is deterministically solvable for
every even value of k, we assume that k is odd. Note that all the initial configurations,
in which F is asymmetric about the y-axis or in which Fy = ∅, would never satisfy the
unsolvability criterion stated in Theorem 1. So we only need to consider all the initial
configurations in which F is symmetric about the y-axis and Fy 6= ∅. So, C(0) /∈ I1 ∪ I4.
Furthermore, C(0) /∈ I5 (Otherwise, initially it would have been unsolvable). Therefore,
C(0) ∈ I2 ∪ I3. We have the following cases:

Case 1. The robots make an agreement on the positive direction of x-axis, which remains
invariant for any t > 0 (Lemma 1). Since the agreement remains invariant, even if the
configuration becomes symmetric about the y-axis, the configuration will not satisfy the
unsolvability criterion stated in Theorem 1 for any t > 0.

Case 2. The robots decide to transform C(0) into an unbalanced configuration, in order to
make an agreement on the positive direction of x-axis. This includes the following configurations:

1. C(0) ∈ I3.
2. C(0) ∈ I2 and it is balanced with at least one unsaturated fixed point in both the

half-planes and Ry(t) 6= ∅.

Let t′ be earliest possible point of time at which it becomes unbalanced. In the time
interval 0 to t′, only the topmost robot on the y-axis would move along the y-axis. As a
result, the configuration would not satisfy the unsolvability criterion (Theorem 1) for any
t ∈ [0, t′). At t′, the robots make an agreement on the positive direction of x-axis. Next, the
proof follows from case 1.

Therefore, C(0) would not transform into an unsolvable configuration at any arbitrary
point of time t > 0.

Given a configuration C(t), let nk(t) denote the number of unsaturated fixed points.
The robots may select one or two target fixed points. First, consider the case when the target
fixed point is unique. Suppose, f j is the target fixed point and ri its candidate robot selected
by the robots. Let P and q(t) be the movement path and destination point, respectively,
computed by ri at time t, by the execution of MovetoDestination(C(t), f j, ri). Consider a
straight line along P towards C( f j, ρ) intersecting the circle C( f j, ρ) first at s(t) (The line
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would always intersect C( f j, ρ)) at time t. Suppose dj(t) denotes the distance between ri(t)
and s(t). Let Ni(t) denote the deficit in the number of robots in order to make fi a saturated
fixed point. Let Vj(t) = (nk(t), Nj(t), dj(t)).

We say that there has been significant progress in the time interval t to t′ if Vj(t′) <
Vj(t), i.e., one of the following conditions holds:

1. nk(t′) < nk(t), or
2. nk(t′) = nk(t) and Nj(t′) < Nj(t), or
3. nk(t′) = nk(t) and Nj(t′) = Nj(t) and dj(t′) + δ ≤ dj(t).

Lemma 4. Let t′ be an arbitrary point of time before ri reaches its destination computed at time t.
During an execution of AlgorithmOneAxis(C(t)), execution of MovetoDestination(C(t), f j, ri)
ensures that dj(t′) + δ ≤ dj(t).

Proof of Lemma 4. Let P and P′ be the selected movement paths for ri at time t and t′,
respectively. We have dj(t) = d(ri(t), s(t)) and dj(t′) = d(ri(t′), s(t′)). Note that q(t) = s(t)
implies that the destination point lies on C( f j, ρ). Consider the following cases:

Case 1. q(t) = s(t) and p(t) does not contain any robot position. This is the case where
the robot moves straight towards f j, i.e., P = ri(t) f j and the destination point q(t) lies on
C( f j, ρ) (Step 25 of Algorithm 1). At time t′ there would not be any robot on q(t) and ri
would continue along the same path. Since δ is the minimum displacement in a round,
dj(t′) + δ ≤ dj(t). Recall that p(t) denotes the intersection point between C( f j, ρ) and ri f j.
The movements are shown in Figure 9.

ri(t
′)

fj

p(t′)ri(t)

Figure 9. Robot ri has moved from ri(t) to ri(t′), along P = ri(t)p(t) towards q(t) = p(t) computed
at time t. Robot ri selects P′ = ri(t′)p(t′) and q(t′) = p(t′) at time t′. In this case, q(t′) = q(t).
Furthermore, q(t) = s(t) and q(t′) = s(t′), i.e., the destination point lies on C( f j, ρ).

Case 2. q(t) = s(t) and p(t) contains a robot position. There are robot positions on C( f j, ρ),
that are not collinear with ri and p(t). By step 36 of Algorithm 1 robot ri computes the
movement path P and destination point q(t). It starts moving towards q(t) along P. At time
t′ > t, let s(t′) be the intersection point between C( f j, ρ) and ri(t′) f j. Note that, p(t′) is not
a robot position. Robot ri selects P′ = ri(t′) f j and q(t′) = p(t′). We have d(ri(t′), q(t)) >
d(ri(t′), q(t′)) and d(ri(t), q(t))− d(ri(t′), q(t′)) > d(ri(t), q(t))− d(ri(t′), q(t)) ≥ δ. This
implies that dj(t′) + δ ≤ dj(t). The movements are shown in Figure 10.

q(t′) = p(t′)

p(t)

q(t)

fj

rk

ri(t) ri(t
′)

P

Figure 10. Robot ri has moved from ri(t) to ri(t′), along P towards q(t) computed at time t. Robot
ri selects P′ = ri(t′)p(t′) and q(t′) = p(t′) at time t′. Furthermore, q(t) = s(t) and q(t′) = s(t′), i.e.,
the destination point lies on C( f j, ρ).

Case 3. q(t) = s(t) and p(t) contains a robot position. There are no robots on C( f j, ρ),
other than being collinear with ri and f j. By step 30 of Algorithm 1 robot ri computes the
movement path P and destination point q(t). This case is similar to case 2. The movements
are shown in Figure 11.



Algorithms 2021, 14, 62 18 of 26

p(t) fj

ri(t)

ta

p(t′)

ri(t
′)

q

Figure 11. Robot ri has moved from ri(t) to ri(t′), along P = ri(t)q towards q(t) = q computed at
time t (q is the point of intersection between C( f j, ρ) and ta). Robot ri selects P′ = ri(t′)p(t′) and
q(t′) = p(t′) at time t′. Furthermore, q(t) = s(t) and q(t′) = s(t′), i.e., the destination point lies on
C( f j, ρ).

Case 4. q(t) 6= s(t). In this case q(t) lies on a saturated circle C( fu, ρ) for some fu 6= f j.
Note that, C( fu, ρ) is the first circle, that ri cuts while moving along ri(t) f j. First, consider
the case in which P = ri(t)q and q(t) = q (Step 43 of Algorithm 1), where q is intersection
point between ri(t) f j and C( fu, ρ), which is at closest distance from ri. Since δ is the
minimum displacement in a round, dj(t′) + δ ≤ dj(t). The movements are shown in
(Figure 12). Next, consider the case in which ri computes its movement path P by step 49
of Algorithm 1. It starts moving towards q(t) along path P. At time t′ > t, let p′ be the
intersection point between C( fu, ρ) and ri(t′) f j. Note that p′ is not a robot position. Robot
ri selects P′ = ri(t′) f j and q(t′) = p′ (Figure 13). We have d(ri(t′), s(t)) > d(ri(t′), s(t′))
and d(ri(t), s(t)) − d(ri(t′), s(t′)) > d(ri(t), s(t)) − d(ri(t′), s(t)) ≥ δ. This implies that
dj(t′) + δ ≤ dj(t).

fjri(t)

fu

q p(t)ri(t
′)

Figure 12. C( fu, ρ) is a saturated circle and q is the point of intersection between C( fu, ρ) and ri(t) f j,
which is at closest distance from ri. Robot ri has moved from ri(t) to ri(t′), along P = ri(t)q towards
q(t) = q computed at time t. Robot ri selects P′ = ri(t′)q and q(t′) on C( fu, ρ) at time t′. In this case,
q(t′) = q(t). Furthermore, q(t) 6= s(t) and q(t′) 6= s(t′), i.e., the destination point does not lie on
C( f j, ρ).

ta

fj
ri(t)

B1

rs(t) fu

q2

rv(t)

ri(t
′) 1

2

1.q1, 2.p′

Figure 13. Robot ri has moved from ri(t) to ri(t′), along P = ri(t)q1 towards q(t) = q1 computed at
time t. Robot ri selects P′ = ri(t)q and q(t′) = p′ (p′ is the point of intersection between C( fu, ρ) and
ri(t′) f j) on C( fu, ρ) at time t′

Case 5. d(ri, f j) < ρ. We have q(t) = s(t). Let q be the intersection point between
C( f j, ρ) and lji(t). First, consider the case when ri selects P = ri(t)q and q(t) = q (Step 5 of
Algorithm 1). At time t′, there would not be any robot position on q(t). Robot ri selects P′ =
ri(t′)q. Since δ is the minimum displacement in a round, dj(t′) + δ ≤ dj(t). Movements
are shown in Figure 14a. Next, consider the case in which ri selects its movement path
P by step 11 or step 17 of Algorithm 1. We have d(ri(t′), q(t)) > d(ri(t′), q(t′)) and
d(ri(t), q(t))− d(ri(t′), q(t′)) > d(ri(t), q(t))− d(ri(t′), q(t)) ≥ δ. Hence, dj(t′) + δ ≤ dj(t).
Movements are shown in Figure 14b,c.
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fj

ri(t)

q

lji(t)

ri(t
′)

(a)

fj

ri(t)

rv(t)

B1
lji(t)

q1

ri(t
′)

q3

(b)

fj

ri(t)
ru(t)

rv(t)

B1lji(t)

q2

ri(t
′)

q4

(c)

Figure 14. (a) Robot ri has moved from ri(t) to ri(t′) along P = ri(t)q towards q(t) = q (q is the point
of intersection between C( f j, ρ) and lji(t)). It selects P′ = ri(t′)q and q(t′) = q. (b) At time t, ri selects
P = ri(t)q1 and q(t) = q1. It selects P′ = ri(t)q3 and q(t′) = q3. (c) At time t, ri selects P = ri(t)q2

and q(t) = q2. It selects ri(t)q4 and q(t′) = q4.

Hence, execution of MovetoDestination(C(t)) ensures dj(t′) + δ ≤ dj(t).

Lemma 5. Let f j be the target fixed point and ri its candidate robot in the configuration C(t).
During an execution of AlgorithmOneAxis(C(t)), execution of MovetoDestination(C(t), f j, ri)
ensures significant progress.

Proof of Lemma 5. Let ri compute movement path P and destination point q(t) by the
execution of MovetoDestination(C(t), f j, ri) at time t. Let t′ > t be an arbitrary point of
time at which ri has completed at least one LCM cycle. We need to show that there has
been significant progress in between the time interval t to t′. We have the following cases:

Case 1. ri(t′) = q(t) and ri is on the C( f j, ρ). We have the following two sub-cases:

Subcase 1. If C( f j, ρ) has exactly k robots on it, then nk(t′) = nk(t)− 1, ensuring signifi-
cant progress.

Subcase 2. If C( f j, ρ) has less than k robots on it, then Nj(t′) = Nj(t)− 1, ensuring signifi-
cant progress.

Case 2. ri(t′) 6= q(t) and ri is not on any oversaturated C( fu, ρ). In this case dj(t′) + δ ≤
dj(t) by Lemma 4, which ensures significant progress.

Case 3. ri(t′) 6= q(t) and ri is on an oversaturated C( fu, ρ). Since at this stage, a candidate
robot for f j will be selected again, algorithm CandidateRSelection(C(t′), f j) will select a
robot rk such that d(rk(t′), f j) ≤ d(ri(t′), f j). Either rk = ri or rk 6= ri. By Lemma 4,
significant progress is ensured, in both the cases.

Hence, execution of MovetoDestination(C(t), f j, ri) ensures significant progress.

Lemma 6. Let f j be a target fixed point and ri its unique selected candidate robot at time t. Until
ri reaches its destination point computed at time t, it remains the candidate robot for f j.

Proof of Lemma 6. Let ri compute its movement path P and destination point q(t) by the
execution of MovetoDestination(C(t), f j, ri). Note that, q(t) is either a point on the circle
C( f j, ρ) or on some saturated circle C( fu, ρ). Let t′ be an arbitrary point of time such that
ri(t′) 6= q(t). At time t′, f j remains an unsaturated fixed point. As a result, f j remains a
target fixed point at time t′. Lemma 4 guarantees that ri has moved at least δ amount closer
to C( f j, ρ). Therefore, it remains the candidate robot for f j.

Next, we consider the case when there are two candidate robots for a target fixed
point. Since robots have an agreement on the directions and orientations of the y-axis,
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there can be at most two candidate robots at any point of time. Note that, in this case, the
configuration would have a unique target fixed point, that lies on the y-axis.

Lemma 7. Let f j be the target fixed point and ri and rv are the two selected candidate robots for f j
at time t. Until at least one of them reaches its destination point computed at time t, no other robot
becomes a candidate robot. If one of the candidate robots have reached its destination point and the
other one has not, then the other robot either continues its inherent motion towards its destination
point (computed at time t) without any collision or gets selected as a candidate robot only when
Nj(t) reduces by one.

Proof of Lemma 7. Let t′ > t be an arbitrary point of time when at least one of the candi-
date robots has completed its LCM cycle. Without loss of generality, assume that ri has
completed its LCM cycle at t′. Let q(t) be the destination point and P be the movement
path computed for ri by MovetoDestination(C(t), f j, ri). Note that q(t) is a point either on
the C( f j, ρ) or on some saturated C( fu, ρ). We have the following cases:

Case 1. q(t) is a point on the circle C( f j, ρ). We have the following subcases:

Subcase 1. ri(t′) = q(t). Since ri has reached its destination, the first part of the lemma
follows. We have Nj(t′) = Nj(t)− 1. At t′, if rv has also completed its LCM cycle and has
not reached its destination point, then it becomes the next candidate robot for f j. If rv is in
motion, then being the only robot in motion within the annulus region between C( f j, ρ)
and C( f j, d( f j, rv(t′))), it continues its motion without any collision. Note that, in this case,
no other robot will be selected for movement until rv reaches its destination.

Subcase 2. ri(t′) 6= q(t). First consider that |d( f j, ri(t′))− ρ| > |d( f j, rv(t′))− ρ|, i.e., robot
rv is closer to C( f j, ρ) than ri. At t′, either rv has also completed its LCM cycle and has not
reached its destination point or rv is in motion. In both the cases, rv remains a candidate
robot for f j. The first part of the lemma follows for rv. Robot ri will be selected as a candidate
robot when rv will reach C( f j, ρ). Next consider that |d( f j, ri(t′))− ρ| < |d( f j, rv(t′))− ρ|,
i.e., robot ri is closer to C( f j, ρ) than rv. Robot ri will be selected as a candidate robot. At
t′, if rv has also completed its LCM cycle, then it will become the candidate robot when ri
will reach C( f j, ρ). If rv is in motion, then it continues its motion without any collision (As
destination point and movement path computed by ri and rv, respectively are separated by
the y-axis and there are no other robots in the half-plane containing rv, which is in motion
within the annulus region between C( f j, ρ) and C( f j, d( f j, rv(t′)))). We have two possible
cases. First, rv will also reach C( f j, ρ). Second, if it stops before reaching C( f j, ρ), then it
will become a candidate robot only when ri will reach C( f j, ρ).

Case 2. q(t) is a point on some saturated circle C( fu, ρ). We have the following cases:

Subcase 1. ri(t′) = q(t). Since ri has reached its destination, the first part of the lemma
follows. At t′, since C( fu, ρ) contains k + 1 robots, the next candidate robot for f j will be
selected from C( fu, ρ). Note that, this robot position would have higher y-coordinate than
q(t). If rv has also completed its LCM cycle and has not reached its destination point, then
it will become a candidate robot for f j only when Nj(t′′) = Nj(t′)− 1 for some t′′ > t′. If rv
is in motion, then it continues its motion without any collision (It is the only robot, which
is in motion within the annulus region between C( f j, ρ) and C( f j, d( f j, rv(t′))) and below
the point q(t)).

Subcase 2. ri(t′) 6= q(t). First consider that |d( f j, ri(t′))− ρ| > |d( f j, rv(t′))− ρ|, i.e., robot
rv is closer to C( f j, ρ) than ri. At t′, either rv has also completed its LCM cycle and has not
reached its destination point or rv is in motion. In both cases, rv remains a candidate robot
for f j. The first part of the lemma follows for rv. Robot ri will be selected as a candidate robot
only when Nj(t) reduces by one. Next consider that |d( f j, ri(t′))− ρ| < |d( f j, rv(t′))− ρ|,
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i.e., robot ri is closer to C( f j, ρ) than rv. Robot ri will be selected as a candidate robot. At
t′, if rv has also completed its LCM cycle and has not reached its destination point, then it
will become a candidate robot only when Nj(t) reduces by one. If rv is in motion, then it
continues its motion without any collision (As destination point and path computed by ri
and rv, respectively, are separated by the y-axis and there are no other robots in motion
within the annulus region between C( f j, ρ) and C( f j, d( f j, rv(t′))) and below the point q(t)).
We have two possible cases. First, rv will also reach C( fu, ρ). Second, if it stops before
reaching C( fu, ρ), then it will become a candidate robot only when Nj(t) reduces by one.

Next, we consider the case when there are two target fixed points, one from each
half-plane. Let f j and fa be the target fixed points at time t. Let ri and rb be their respective
candidate robots. We have Vj(t) = (nk(t), Nj(t), dj(t)) and Va(t) = (nk(t), Na(t), da(t)).

Lemma 8. Let C(t) admit two target fixed points during an execution of AlgorithmOneAxis(C(t))
and t′ > t be an arbitrary point of time when at least one candidate robot has completed its LCM
cycle. For at least one target fixed point fi ∈ { f j, fa} and its candidate robot, di(t′) + δ ≤ di(t).

Proof of Lemma 8. Each target fixed point is unique in their respective half-planes. Exe-
cution of AlgorithmOneAxis(C(t)) ensures that for each target fixed point, its candidate
robot is selected from its respective half-planes. The circle formation process continues
independently in both the half-planes. This implies that for each i ∈ {j, a}, Vi(t) is updated
only due to the movement of fi’s candidate robot. Without loss of generality, suppose
candidate robot ri of the target fixed point f j has completed its LCM cycle. By Lemma 4,
dj(t′) + δ ≤ dj(t) is ensured.

Lemma 9. Let C(t) admit two target fixed points during an execution of AlgorithmOneAxis(C(t))
and t′ > t be an arbitrary point of time when at least one candidate robot has completed its LCM
cycle. Execution of AlgorithmOneAxis(C(t)) ensures significant progress.

Proof of Lemma 9. Lemma 8 ensures that for at least one target fixed point fi ∈ { f j, fa}
and its candidate robot, di(t′) + δ ≤ di(t) holds. Without loss of generality, assume that for
the target fixed point f j we have dj(t′) + δ ≤ dj(t) in the time interval t to t′. By Lemma 5,
we have Vj(t′) < Vj(t), i.e., significant progress is ensured.

Theorem 2. If the initial configuration C(0) ∈ {I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5} and C(0) does not
satisfy the unsolvability criterion stated in Theorem 1, then the robots would eventually solve the
k-circle formation problem under one axis agreement, by the execution of AlgorithmOneAxis.

Proof of Theorem 2. Lemma 3 guarantees that for any t > 0, the configuration C(t) would
not satisfy the unsolvability criterion stated in Theorem 1. We have the following cases:

Case 1. There is a unique target fixed point (say f j) in the configuration. Lemma 5 ensures
that each time a candidate robot gets activated, significant progress is ensured. If there is
a unique candidate robot for f j, then Lemma 6 guarantees that until the candidate robot
reaches its destination, it would remain the candidate robot. In case there are two candidate
robots for f j, then Lemma 7 guarantees that until one of the candidate robots reaches its
destination point, no other robot will become a candidate robot. As a result, one of the
candidate robots will reach its destination point eventually. If the other candidate robot
does not reach its destination point, then it becomes a candidate robot for f j when Nj(t)
reduces by one. Thus, the circle formation process around all the fixed points will be
completed eventually.

Case 2. There are two target fixed points. Note that the target fixed points lie in different
half-planes delimited by the y-axis. Lemma 9 ensures significant progress. Lemma 6
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guarantees that until a candidate robot reaches its destination, it remains the candidate
robot. Note that in this case for each of the target fixed points, always a unique candidate
robot gets selected. Thus, the circle formation process around all the fixed points will be
completed eventually.

Hence, the robots would eventually solve the k-circle formation problem with one
axis agreement.

From Theorem 2, it follows that the robots would solve the k-circle formation problem
under one axis agreement within finite time. Since we have considered the scheduler to be
asynchronous, the robots do not have any common notion of time. As a result, the actual
time to solve the k-circle formation problem depends upon the scheduling of the robots.
We use the notion of an epoch [30] to discuss the runtime complexity of our proposed
algorithm. An epoch is the time interval in which all the robots in the configuration have
performed their LCM cycles at least once. According to this definition, the time is divided
into global epochs. We also assume that the robots have rigid motion, i.e., the robot is
guaranteed to reach its destination whenever it moves. In such a setting, we have the
following observations:

1. If a candidate robot does not have to pass through a saturated circle in order to
reach the circle centered at its target fixed point, then it would reach the circle within
one epoch.

2. If a candidate robot has to pass through a saturated circle in order to reach the circle
centered at its target fixed point, then it would reach the circle in at most three epochs.
This is because the movement path would intersect the saturated circle either one or
two times.

From the above two observations, it follows that a candidate robot would reach the
circle centered at its target fixed point within 2(m− 1)+ 1 = 2m− 1 epochs. This is because,
it might have to pass through (m− 1) number of saturated circles. Since AlgorithmOneAxis
is sequential, each target fixed point would need at most k(2m − 1) epochs to become
saturated. Therefore, the k-circle formation problem would be solved within O(m2k)
epochs. This is a loose upper bound on the running time of AlgorithmOneAxis in terms of
epochs.

6. Relationship between the k-Circle Formation Problem and the k-epf Problem

Given m > 0 fixed points and n = km robots for some positive integer k, the k-epf
problem asks exactly k robots to reach and remain in each fixed point. Since the definition of
the k-circle formation problem asks for distinct robot positions, we only consider the initial
configurations with distinct robot positions. We want to prove the following theorem.

Theorem 3. For a given initial configuration with distinct robot positions and a positive integer
k, if the k-circle formation problem is deterministically solvable then the k-epf problem is also
deterministically solvable.

In order to prove the above theorem, we modify the proposed algorithm
AlgorithmOneAxis, to solve the k-epf problem deterministically within finite time.

Algorithm for the k-epf Problem

Let C(0) be the given initial configuration. Suppose the k-circle formation problem has
been solved in C(t), for some t ≥ 0, with radius ρ, by the execution of AlgorithmOneAxis.
In order to solve the k-epf problem, the robots must reach the fixed points. The robots can
accomplish this by moving in a straight line towards the fixed point. Since the robots are
oblivious, they do not remember any information about the past events. Therefore, if any
robot stops before reaching the fixed point for some t′ > t, it would not remember that the
k-circle formation problem has already been solved. As a result, it will again start executing
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AlgorithmOneAxis. In order to resolve such a situation, consider the following definition.
A configuration is said to satisfy Property 1, if the following conditions hold:

1. Each robot lies within ρ distance from some fixed point.
2. For each fi ∈ F, there are at most k robots, which lie within ρ distance from fi.

Given a configuration which satisfies Property 1, let A be an algorithm as follows:

1. If there exists a robot ri such that 0 < d(ri, f j) ≤ ρ for some f j ∈ F, then ri moves
along ri f j towards f j.

Define algorithm Algokep f as follows:

1. If the current configuration satisfies Property 1, then execute A.
2. Else the robots execute AlgorithmOneAxis.

During an execution ofA, it must be ensured that none of the robots have any inherent
motion, which is not directed towards the fixed point. Since all the robots are stationary in
the initial configuration, if C(0) satisfies Property 1, then none of the robots would have
any inherent motion.

Lemma 10. During an execution of AlgorithmOneAxis if t > 0 is the earliest possible point of
time at which the configuration C(t) satisfies Property 1, then none of the robots would have any
inherent motion in C(t).

Proof of Lemma 10. Since C(t) satisfies Property 1, each robot lies within ρ distance from
some fixed point. Furthermore, notice that there are no oversaturated circles in C(t). Let
f j be the target fixed point which became saturated at time t due to the movement of
a candidate robot (say ri). Notice that if f j lies on the y-axis and the configuration is
symmetric, there would be two such candidate robots. In that case, we assume that both of
them reached C( f j, ρ) at time t. Otherwise, the configuration C(t) cannot possibly satisfy
Property 1. Suppose ri became a candidate robot at some time t1 < t by the execution of
CandidateRSelection. Note that in the time interval [t1, t), the distance of ri from f j was
greater than ρ. Otherwise, the choice of t is wrong. If there were two candidate robots for
f j, then this is true for both the candidate robots. Furthermore, at time t1 there were no
robot position (say ra) such that d( f j, ra(t)) < ρ. Otherwise, ra would have been selected
as a candidate robot. Notice that the candidate robot(s) was the only robot which was
moving towards C( f j, ρ). Therefore, all the robots on C( f j, ρ) are static at t. Next, consider
a fixed point fl ∈ F such that fl has higher configuration rank than f j. All the robots
within ρ distance from fl must lie on C( fl , ρ). This is because, during an execution of
CandidateRSelection for a fixed point, a robot within ρ distance from that fixed point is
given higher preference than any robot at greater than ρ distance from that fixed point.
Since C( fl , ρ) is not oversaturated, all the robots are static at time t. Next, consider a fixed
point fb ∈ F such that fb has lower configuration rank than f j. By the choice of f j and ri,
none of the robots within ρ distance from fb were selected as a candidate robot. Therefore,
all the robots within ρ distance from fb are static at time t. Hence, if the configuration C(t)
satisfies Property 1, then none of the robots have any inherent motion in C(t).

Theorem 4. If the initial configuration C(0) ∈ {I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5} and C(0) does not
satisfy the unsolvability criterion stated in Theorem 1, then the robots would eventually solve the
k-epf problem under one axis agreement, by the execution of algorithm Algokep f .

Proof of Theorem 4. First, consider the case when the configuration does not satisfy Prop-
erty 1. The robots would start executing AlgorithmOneAxis. From Theorem 2, it follows
that the configuration would eventually satisfy Property 1. Next, consider the case when
the configuration satisfies Property 1. From Lemma 10, it follows that all the robots would
be static in such a configuration. The robots would start executing A. During an execution
of A, each robot moves in a straight line by at least δ distance, towards the fixed point
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from which it is at the closest distance. Since ρ is finite and there are finitely many robots,
eventually each of the fixed points will contain exactly k robots.

Hence, the robots would eventually solve the k-epf problem by the execution of
algorithm Algokep f .

The above theorem provides an evidence that a deterministic distributed algorithm
to solve the k-circle formation problem can be modified to solve the k-epf problem and
proves Theorem 3. Notice that during an execution of algorithm Algokep f , the robots
are only allowed to create a multiplicity on the fixed points. Therefore, the existence of a
deterministic distributed algorithm which solves the k-epf problem, without allowing a
robot multiplicity point outside the fixed points, is guaranteed by Theorem 3.

7. Conclusions

This paper studies the k-circle formation problem by asynchronous, autonomous,
anonymous and oblivious robots in the Euclidean plane. The problem is investigated in a
setting where the robots have an agreement on the direction and orientation of the y-axis.
The following three main results have been proved:

1. If the initial configuration C(0) is symmetric about the y-axis such that Fy 6= ∅ (there
are fixed points on the y-axis) and Ry(0) = ∅ (there are no robot positions on the
the y-axis), then the k-circle formation problem is deterministically unsolvable for
odd values of k. This is the complete set of the initial configurations and values of k
for which the k-circle formation problem is deterministically unsolvable under this
setting.

2. For the rest of the configurations and the values of k, a deterministic distributed
algorithm has been proposed under one axis agreement.

3. It has also been shown that if the k-circle formation problem is deterministically
solvable then the k-epf problem is also deterministically solvable. This has been
established by modifying AlgorithmOneAxis; the modified algorithm Algokep f de-
terministically solves the k-epf problem.

Future work: The assumption of agreement on the y-axis has a strong influence on
the results. The natural follow up work would be to consider the problem without this
assumption. It is expected that the set of unsolvable initial configurations would increase
significantly. Another direction of future work would be to consider the problem with
different radii for the circles. The problem can also be considered with two different
objectives: (i) minimize the total distance traveled by all the robots; (ii) minimize the
maximum distance traveled by a single robot. It is to be noted that there is no guarantee
that the problems are solvable with these objectives. Another significant assumption used
in this paper is unlimited visibility. This problem can be considered for different visibility
models namely limited visibility, i.e., a robot can observe the plane up to a fixed radius
around it and obstructed visibility, i.e., the robots block each other’s vision.
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