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Abstract: The reconstruction of gene regulatory networks based on gene expression data can ef-
fectively uncover regulatory relationships between genes and provide a deeper understanding of
biological control processes. Non-linear dependence is a common problem in the regulatory mech-
anisms of gene regulatory networks. Various methods based on information theory have been
developed to infer networks. However, the methods have introduced many redundant regulatory
relationships in the network inference process. A recent measurement method called distance cor-
relation has, in many cases, shown strong and computationally efficient non-linear correlations. In
this paper, we propose a novel regulatory network inference method called the distance-correlation
and network topology centrality network (DCNTC) method. The method is based on and extends
the Local Density Measurement of Network Node Centrality (LDCNET) algorithm, which has the
same choice of network centrality ranking as the LDCNET algorithm, but uses a simpler and more
efficient distance correlation measure of association between genes. In this work, we integrate
distance correlation and network topological centrality into the reasoning about the structure of gene
regulatory networks. We will select optimal thresholds based on the characteristics of the distribution
of each gene pair in relation to distance correlation. Experiments were carried out on four network
datasets and their performance was compared.

Keywords: distance correlation; gene regulatory networks; integrate; network topology centrality

1. Introduction

Systems biology is not only an emerging field, but more importantly, it represents
a new approach to biological research [1,2]. In the past, the structure of gene regulatory
networks (GRNs) was inferred from experimental interventions, but such experiments
required considerable time and cost. With the rapid development of high-throughput
technologies, a large number of research studies have generated a large amount of gene
expression data [3,4], which has made it possible to infer gene regulatory networks from
these expression data based on computational methods. In recent years, network inference
based on computational methods has become one of the most important goals in the post-
genomic era. To this end, the “Dialogue on Reverse Engineering Evaluation and Methods”
challenge aims to stimulate researchers to develop new and efficient arithmetics [5].

Much progress has been made in inferring GRNs’ structure from gene expression data.
In the early days, Boolean networks [6,7] were popular in GRN inferencing, where the
states of genes were represented by Boolean variables, and interactions between genes were
represented by Boolean functions, which determined the states of genes on top of some
other regulatory gene states. At present, information-theoretic approaches are increasingly
being used for reconstructing GRNs. Several mutual information (MI)-based methods have
been successfully applied to infer GRNs, such as the relevance network (REL), context
likelihood of relatedness (CLR), and the ARACNE and minimum redundancy network
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(MRNET). The REL algorithm [8] calculates MI values between genes and then infers inter-
actions based on the threshold values. The CLR algorithm [9] extends the REL algorithm,
which infers interactions based on scores derived from the background distribution of
mutual information. For both the REL and CLR algorithms, it is easy to introduce indirect
interactions, which can lead to more false edges. In order to eliminate indirect interactions,
Margolin et al. proposed the ARACNE algorithm [10] based on data-processing inequality,
which takes into account indirect interactions in interaction triangles. The MRNET algo-
rithm [11] by Meyer is a network inference algorithm using a feature selection strategy,
in which an iterative search process is applied to select direct interactions. PCA-CMI [12]
measures the dependence between genes through conditional mutual information(CMI),
successfully differentiated direct interaction, and indirect association. CMI2NI [13] calcu-
lated the mutual information between two genes when given the third gene by calculating
the Kullback–Leibler divergence between the hypothetical distributions at the boundary
between the two genes. Although MI can characterize nonlinear dependence, MI’s calcula-
tion usually requires probability or density estimation, which often requires assumptions.
However, it is not accurate because the distribution of gene expression data is uncertain.

Recently, a novel and simple statistic of dependency relationships, distance correlation [14],
has emerged, which is sensitive to any deviation from independent behaviors, such as non-
linear or non-monotone dependent structures [15]. Better than MI, the distance correlation
statistics were calculated very merely without any distribution assumptions. Recently, an
approach has been proposed to infer GRNs based on distance correlation. It successfully
combined distance correlation with existing CLR algorithms and MRNET algorithms to
raise the accuracy of the GRNs [16].

GRNs, or more generally, biochemical networks are sparse, meaning that a gene is
regulated by a small number of genes relative to the total number of genes in the network.
A range of sparsification-based features have now been proposed to infer GRNs from gene
expression data [17,18]. Currently, we can sparse networks by using graph properties in
the network [19,20]. In the existing studies, most algorithms only consider the connections
in the gene expression data. Still, they do not include the known graph attributes in the
reasoning process, which reduces these methods’ prediction veracity rates and restricts
their availability in practice [21]. A large number of studies have shown a hierarchical,
scale-free nature of biological networks [5,22]. This attribute makes most nodes in the
network sparsely connected, where a few positively associated genes account for most of
the interaction, which are hub nodes. The hub node is a node with high network centrality.
The connection rules between nodes reflect the relative position information between nodes
to some extent. Recently, the LDCNET algorithm has successfully merged MI and network
topology centrality for reconstructing GRNs [23].

In this article, we develop a novel method, namely DCNTC, which incorporate the
distance correlation and network topology centrality into GRNs inferring algorithms and
test the performance. Our approach adopts a novel estimation of measurement, and the
sparse (scale-free) structure of the gene regulatory network is used to calculate the network
topology centrality. Compared with the traditional methods, we use the latest distance
correlation statistics to measure the nonlinear relationship, and combine the network
topology centrality to infer the gene regulation network. At the same time, we select the
optimal threshold according to the distribution characteristics of the values calculated by
the distance correlation of each gene pair. Real data from the SOS DNA repair network
and DREAM-simulated data suggest that the DCNTC algorithm can improve the GRNs’
inference accuracy.

2. Methods

In this section, the definitions of distance correlation and network topology centrality
will be reviewed, as well as the algorithm of the DCNTC for inferring GRNs.
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2.1. Distance Correlation

Distance correlation provides a new approach to the problem of testing the joint
independence of random vectors [14,24]. The energy package in R provides the calculation
function of distance correlation [25]. Distance correlation [14] was raised as an innovative
method to detect the dependence. The key idea is to calculate the difference between the
joint eigenfunction and the product of its marginal eigenfunction in a special, weighted L2
space. Specifically, for random variables (X, Y), denote an innovative method of (X, Y) by
f(X,Y), and its marginal eigenfunction f(X) and f(Y). The distance covariance between X
and Y is defined as the root of the following equation:

dcov2(X, Y) =
∫

R(p+q)
| f(X,Y)(t, s)− fX(t) fY(s)|2w(t, s)dtds, (1)

where p and q are the dimensions of X and Y, respectively, and w(t, s) is the weight function
given by (CpCq|t|q+1

p )−1 with Cp = π1+p/2Γ(1 + p)/2 and Cq = π1 + q/2Γ((1 + q)/2).
By standardizing the distance covariance, the distance correlation can be defined as,

dcor(X, Y) =
dcov(X, Y)√

dcov(X, X)
√

dcov(Y, Y)
. (2)

2.2. Network Topology Centrality

Network centrality is a network topology feature used to measure nodes’ importance
because it can effectively evaluate the network position relative to other nodes in a local
scope. Therefore, network topology centrality can be applied to assess the significance of
nodes in a network. Commonly used network centralities are closeness centrality, degree
centrality, and betweenness centrality. In the network, the node’s importance is usually
calculated by its degree centrality of the node. Degree centrality was formally defined
as the count of links on a node, which is often known as an analytical method of how
nodes can be affected by flow into a given network [26]. In an undirected graph, the node’s
degree is the count of other nodes to which it is connected. In a graph G with n nodes, we
commonly use the adjacency matrix A = [aµυ] to describe the connectivity between nodes.
Define the adjacency matrix A, where aµυ = 1, µ is adjacent to υ, and aµυ = 0, µ is not
adjacent to υ or µ = υ. Degree centrality is based on the number of connected edges of node
υ as the importance of node υ. The calculation of node centrality is as follows:

DC(υ) = ∑
µ∈VNB(υ)

aµυ, (3)

where aµυ is the element in the adjacency matrix A, and VNB(υ) is the adjacency subgraph
of υ.

2.3. GRNs Inference with DCNTC Algorithm

In this paper, we propose an algorithm DCNTC for inferring the structure of a regula-
tory network based on network topology centrality and distance correlation, which is based
on the network properties and correlation between genes. The algorithm consists of three
main parts: (1) Initialisation of the regulatory relationships, (2) calculation of the network
topology centrality and optimisation of the ranking, and (3) inference of the regulatory
network structure.

2.3.1. Initialization of Regulatory Relationships

The first step in the DCNTC algorithm is to initialize and pre-treat the regulatory
relationships between the genes. As distance correlation is an effective way to quantita-
tively describe non-linear relationships between genes, a distance correlation matrix M
is constructed for the input gene expression data based on Equation (2). The greater the
value of the elements in this matrix, the greater the likelihood that the gene pair to which
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it is addressed has a regulatory relationship. Considering the high noise level of gene
expression data and the sparse nature of the regulatory network, elements of the M-matrix
need to be pre-processed to eliminate some of the redundant regulatory relationships before
the network structure can be inferred. This is usually done by setting a fixed threshold
value. When the value of an element in the matrix is greater than the given threshold
value, there is a preliminary regulatory relationship between the two genes to which the
element corresponds; when the value of an element in the matrix is less than the threshold
value, there is no regulatory relationship between the two genes to which the element
corresponds, and the matrix element is set to zero.

In the regulatory relationship matrix, we considered that there was no regulatory
relationship between pairs of genes with small distance correlations, which can also be
described as redundant relationships. In the process of selecting the threshold for initial
de-redundancy, we further analysed the distribution of distance correlation values for each
gene pair in the different datasets, as shown in Figure 1. In Figure 1, we separated the range
of distance correlations (0–1) in steps of 0.1 and counted the ratio of how many values
there were in each interval across the different datasets. We found a single peak in the
distance correlation distribution plot. To initially remove redundant relationships from the
gene regulatory network, we chose the left boundary value of the interval where the peak
was located as the threshold value θ for redundancy removal. This allowed us to initially
remove redundant relationships from the initially obtained regulatory relationship matrix
by threshold θ.

Figure 1. Distribution characteristics of distance correlation statistics.(A) Distribution of yeast 10-
distance correlation characteristics. (B) Distribution of yeast 50-distance correlation characteristics.
(C) Distribution of yeast 100-distance correlation characteristics. (D) Distribution of distance-related
features in the sos dataset.

2.3.2. Calculation of the Network Topology Centrality and Optimization of the Ranking

The algorithm then uses the pre-processed gene regulatory relationships and the
matrix M to calculate and rank the network topology centrality of each gene. Given the
simple and easy-to-implement nature of node centrality, the algorithm uses it as a measure
of the neutrality of the network topology of each gene. In this paper, distance correlation is
used to measure the regulatory relationships between genes, so that the degree centrality
of gene gυ in the network G can be expressed as follows:

DC(υ) =
n

∑
j=1

χ((dcor(gυ, gj))− dc) (4)
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χ(x) =
{

1, x ≥ 0
0, x < 0

,

where dc represents the given cut-off distance. Essentially, the value of DC(υ) is equal to
the number of genes for which the value associated with gene gυ distance exceeds the given
cut-off distance dc. From Equation (4), it can be seen that the topological centrality of a gene
network is influenced by the value of the cut-off dc. The magnitude of the value is directly
related to the calculation of the topological centrality of the gene network. Specifically,
for the updated regulatory relationship matrix M, Mij represents the initial regulatory
relationship values for genes i and j. The sequence Mij(i ≤ j) is ranked downwards,
and the resulting sequence is M1 ≤ M2 ≤ ... ≤ MT . We set the dc value from the αT
regulatory relationship value in the sequence, where the parameter α is set to 20% by
default. This strategy uses statistical means to obtain the truncation distance values, so the
values obtained are more scientifically valid.

Once the value of the cut-off dc has been determined, the centrality of the node is
calculated for each gene in turn, according to Equation (4). From this process, it can be seen
that there may be cases where two or more genes have the same node centrality value. In
order to effectively distinguish the importance of genes with the same nodal centrality, we
consider the re-sequencing of all genes with the same nodal centrality. The ranking process
takes into account the nodal centrality of all the genes directly adjacent to the target gene,
and measures the importance of the target gene according to the following formula:

SDC(µ) = ∑
υ∈VNB(µ)

DC(υ), (5)

where VNB(µ) represents the set of nodes whose distance from node µ is more correlated
than dc. The larger the value of this formula, the greater the importance of the target gene.

For different genes with the same node centrality, we calculate the corresponding
values according to Equation (5), where the gene with the higher score is positioned ahead
of the gene with the lower score, and the new standard sequence

[
q′i
]
i = 1, 2, ...n is obtained.

2.3.3. Inference of the Regulatory Network Structure

In order to construct the complete gene regulatory network, we will select regulatory
genes for each gene based on the final sequencing results obtained. According to the
scale-free nature of the network, genes with high network centrality will be linked to genes
with low network centrality, so that in sequence a, genes with lower order are linked by
genes with higher order. Additionally, given the sparsity of biological networks, we limit
the number of regulatory genes selected for the target gene to one, meaning that we select
only the gene with the greatest distance correlation to the target gene as the regulatory gene.
For a network with n genes, this indirectly limits the number of correct edges predicted
to, at most, n − 1. In summary, the computational process can be implemented by the
following function:

Xj = arg max
Xk

dcor(Xi, Xk), (6)

where Xk is the gene whose position precedes gene Xi in the standard sequence
[
q′i
]
i =

1, 2, ...n. This function allows us to select the genes with the greatest distance correlation to
gene Xi as regulatory genes for gene Xi from among the genes whose sequence position
precedes gene Xi. When the regulatory genes for all the genes are available, we can then
construct them into a complete regulatory network structure. The complete algorithm
implementation flow is shown in Algorithm 1.
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Algorithm 1 DCNTC algorithm
Input: Microarray data G = g1, g2, ...gn, the threshold θ
Output: A gene network
1: Initialize Q← ∅
2: Construct a distance correlation matrix M according to Equation (2)
3: Adjust matrix M using the threshold θ
4: for each gene gc: 1 to n do do
5: compute the DC value of gc according to Equation (4)
6: Rank the genes gc ∈ G according to the DC value in descending order and store in Q
7: for each gene gc:1 to n do do
8: select a regulatory gene of gc using Equation (6) from Q
9: return result

3. Results

In this section, we describe extensive experiments evaluating the performance of
the proposed method. Four regulatory network datasets were used in the experiments.
Our proposed method was compared with four network inference algorithms based on
information theory: CLR, ARACNE, MRNET, LDCNET, and two methods based on dis-
tance correlation: REL-DC and MRNET-DC. For the ARACNE algorithm, we chose the
default threshold to discriminate the final regulatory relationship. The CLR and MR-
NET algorithms were implemented using the optimal threshold selection method from
article [27]. The code for all the algorithms was implemented in R and Matlab, respec-
tively. The distance dependence was calculated using the existing dcor function in R. The
REL, CLR, ARACNE, and MRNET algorithms were implemented using the existing R
package MINET [28]; the LDCNET and DCNTC algorithms were edited and implemented
in Matlab.

All of the experiments were performed on four network datasets, including simulated
and real data. The datasets can be obtained from previous studies.

The DREAM3-10 gene dataset [5], contains 10 samples for 10 genes. It is from the
DREAM (“Dialogue for Reverse Engineering Assessments and Methods”) project, and
represents a yeast gene network. The true network is composed of 10 nodes and 10 edges.

The DREAM3-50 gene dataset [5], contains 50 samples for 50 genes. It also belongs to
the DREAM project and represents a yeast gene network. The true network is composed of
50 nodes and 77 edges.

The DREAM3-100 gene dataset [5], contains 100 samples for 100 genes. It also belongs
to the DREAM project and represents a yeast gene network. The true network is composed
of 100 nodes and 166 edges.

SOS [29,30], contains nine samples for nine genes. It is an SOS DNA repair network in
Escherichia coli. The true network is composed of 9 nodes and 24 edges.

To contrast the reasoning methods objectively, it is necessary to measure their per-
formance quantitatively. The predictive results are defined as follows: false-positive (FP),
true-positive (TP), false-positive rate (FPR), true-positive rate (TPR), positive predictive
value (PPV), accuracy (ACC), and Matthews coefficient constant (MCC) [31]. Mathemati-
cally, they are defined by:

TPR =
TP

TP + FN
(7)

FPR =
FP

FP + TN
(8)

PPV =
TP

TP + FP
(9)

ACC =
TP + TN

TP + FP + TN + FN
(10)
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MCC =
(TP ∗ TN − FP ∗ FN)√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
(11)

where TP, FP, TN, and FN are the elements in the formula. These are accounts of true-
positives, false-positives, true-negatives, and false-negatives, respectively.

3.1. Results for DREAM3 Challenge Network

To test the prediction effect of the DCNTC algorithm on simulated data, DREAM
challenge data, which were widely used, will be used as test data to reconstruct the
GRNs [32]. DREAM3 is one of many DREAM Challenge subprojects that provide users
with baseline data and control networks to test and evaluate the regulatory network
model’s effectiveness. We validated our approach on the DREAM3 dataset, where the sizes
of the yeast knockout gene expression data were 10, 50, and 100, respectively.

In the first, we tested the DCNTC algorithm on the yeast gene expression data of
network size 10 and a sample size of 10. Figure 2 indicates the network extrapolated from
gene expression data in different ways. Figure 2A is the real GRN with 10 nodes and
10 edges chosen from an experimentally validated network in yeast genomes. Figure 2B is
the network derived from gene expression data with the LDCNET algorithm. The edges
of solid dotted black lines are correctly deduced, and the edges of red dotted lines are
incorrect. On the edge of false inferences, G2–G9 is a redundant edge, whereas edge G3–G5
is unfound. Figure 2C shows the network deduced from the gene expression data, which is
the network inferred from us. Clearly, in our network, the inexistent regulations of G2–G9
were successfully removed. The performance data for each of the seven algorithms is
shown in Table 1.

Table 1. Comparison of the performance of different methods for inferring a 10-gene network
in DREAM3.

Method TP FP TN FN TPR FPR PPV ACC MCC

CLR 6 10 25 4 0.600 0.286 0.375 0.689 0.273
ARACNE 6 6 29 4 0.600 0.171 0.500 0.778 0.403
MRNET 6 12 23 4 0.600 0.343 0.333 0.644 0.218
REL-DC 10 4 31 0 1 0.114 0.714 0.911 0.795
MRNET-

DC 10 13 22 0 1 0.371 0.435 0.711 0.523

LDCNET 8 1 34 2 0.8 0.029 0.889 0.933 0.802
DCNTC 9 0 35 1 0.9 0 1 0.978 0.936

Figure 2. Comparison of a 10-gene network inferred from a DREAM3 dataset. (A) The true network
with 10 nodes and 10 edges. (B) The network inferred by LDCNET from gene expression data.
The edge with red dotted lines G3–G5 is false-positive, while the edge G2–G9 is false-negative. (C)
The network inferred from gene expression data. The false-negative edge G2–G9 in LDCNET was
successfully removed by DCNTC.
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In the second, we tested the DCNTC algorithm on the yeast gene expression data
of network size 50 and a sample size of 50. The real network consists of 50 nodes and
77 edges. In Table 2, we can find that the REL algorithm predicts more accurate edges,
but this algorithm also expects a lot of wrong edges. The MRNET algorithm can only
predict a tiny number of edges among the four algorithms. In comparison, among the four
algorithms, the DCNTC algorithm has higher accuracy (ACC) and lower FPR.

Table 2. Comparison of the performance of different methods for inferring a 50-gene network
in DREAM3.

Method TP FP TN FN TPR FPR PPV ACC MCC

CLR 19 165 983 58 0.247 0.144 0.103 0.818 0.070
ARACNE 13 125 1023 64 0.170 0.109 0.094 0.846 0.046
MRNET 21 215 933 56 0.273 0.187 0.089 0.779 0.053
REL-DC 34 49 1099 43 0.442 0.043 0.410 0.925 0.385
MRNET-

DC 70 465 683 7 0.909 0.405 0.131 0.615 0.247

LDCNET 23 26 1122 54 0.299 0.023 0.469 0.935 0.342
DCNTC 29 20 1128 48 0.377 0.017 0.592 0.945 0.445

In the third, we tested the DCNTC algorithm on yeast gene expression data with a
network size of 100 and a sample size of 100. The whole network consists of 100 nodes and
166 edges. In Table 3, we can find that the MRNET algorithm predicts more accurate bound-
aries, but this algorithm also expects a lot of unfair advantages. In comparison, among the
four algorithms, the DCNTC algorithm has higher accuracy (ACC) and lower FPR.

Table 3. Comparison of the performance of different methods for inferring a 100-gene network
in DREAM3.

Method TP FP TN FN TPR FPR PPV ACC MCC

CLR 39 713 4071 127 0.235 0.149 0.052 0.830 0.044
ARACNE 20 417 4367 146 0.121 0.087 0.046 0.886 0.403
MRNET 49 984 3800 117 0.295 0.206 0.047 0.778 0.040
REL-DC 121 386 4398 45 0.729 0.081 0.239 0.913 0.385
MRNET-

DC 145 2011 2773 21 0.874 0.421 0.067 0.590 0.165

LDCNET 45 54 4730 121 0.271 0.011 0.455 0.965 0.334
DCNTC 55 42 4742 111 0.331 0.009 0.567 0.969 0.419

On the simulated dataset, the algorithm in this paper performed better in all aspects,
mainly because only genes with the greatest distance correlation to the target gene were
selected when picking regulatory genes for the target gene. This controls the introduction
of false-positive edges to a certain extent. Compared to the other algorithms, the ARACNE
algorithm removes the introduction of redundant edges to some extent by removing the
loops present in the gene regulatory network; the MRNET algorithm uses a maximum
correlation and minimum redundancy strategy to select regulatory genes, which can predict
more true-positive edges, but also introduces the most false-positive edges in humans,
leading to a decrease in prediction performance. In summary, our algorithm can better
control the introduction of redundant edges, thus improving the prediction accuracy.

3.2. Result for SOS Network in E. coil

The SOS network [29] is a signal pathway in the DNA repair system. It is inferred
from real gene expression data and is frequently used to test the effectiveness of network
inference methods. Here, we test the DCNTC on the network of E. coli. Table 4 shows the
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results of the seven methods applied to the SOS network in the E. coli dataset. The results
show that the method outperforms all other methods except MRNET and LDCNET in
terms of MCC. Although our method did not identify the most correct edges, it produced
the least redundant edges of most methods. Furthermore, the validity of the model
on the SOS network was not satisfactory compared to previous experiments on other
datasets. The main reason for this finding is related to the characteristics of the SOS
network and is due to two main factors: firstly, noise in the real data can be taken into
account, making the calculation of node centrality inaccurate and leading to biases in the
relative positions between gene regulation, resulting in fewer true-positive edges being
predicted; secondly, the SOS network consists of nine nodes and 22 edges. In the final
construction of the network, the algorithm selects only the connected edges with the most
important relationships to the target gene regulation, which indirectly limits the count of
boundaries in the prediction network to eight. Although the experimental results are not
ideal, Table 4 shows that our method is no more effective than any other test method other
than MRNET and LDCNET.

Table 4. Comparison of different methods on the SOS DNA repair network.

Method TP FP TN FN TPR FPR PPV ACC MCC

CLR 12 5 7 12 0.500 0.417 0.706 0.528 0.079
ARACNE 7 3 9 17 0.292 0.250 0.700 0.444 0.044
MRNET 17 6 6 7 0.708 0.500 0.739 0.639 0.205
REL-DC 6 3 9 18 0.250 0.250 0.667 0.417 0
MRNET-

DC 12 9 3 12 0.500 0.750 0.572 0.417 −0.239

LDCNET 6 1 11 18 0.250 0.083 0.857 0.472 0.199
DCNTC 6 2 10 18 0.25 0.167 0.75 0.444 0.095

4. Discussion

In this paper, we fused simple distance correlation and network topological cen-
trality into a structural inference algorithm for GRNs and tested its performance. We
selected simulated and real data sets commonly used in gene regulatory network con-
struction algorithms and compared them with existing mutual information-based and
distance-correlation-based algorithms. The algorithm can better control the introduction of
redundant relationships by ranking the network topological centrality and selecting the
maximum distance correlation as the regulatory gene. Therefore, it is conducive to the
extension of large-scale network applications, but with many nodes in large-scale networks,
there may be more genes with the same node importance when measuring node impor-
tance, which may require consideration of higher-order neighbourhood information to
measure node importance. As the number of genes increases, it can also lead to inaccuracies
and difficulties when inferring the network.

Node centrality is an important metric to characterise the criticality of a node. Many
node importance metrics have been proposed, including degree centrality, median central-
ity, proximity centrality, and eigenvector centrality. The degree centrality is the simplest
metric to characterise the importance of a node. Gabrys et al. found that in scale-free or
exponential networks, there are only a small number of nodes of large degree, and this are
of high importance [33]. Median centrality and proximity centrality are good measures of
the importance of nodes in terms of network connectivity, but are computationally complex
due to the need to know global information about the network in advance, and are not
suitable for large and complex networks. Fabian et al. investigated the extent to which
different centrality measures (degree, strength, tightness, mediation, and eigenvectors) re-
cover potential causal interactions in directed acyclic graphs [34,35], whereas feature vector
centrality shows powerful effects in measuring the importance of nodes. In summary, the
algorithm in the paper has some limitations. In the next study, we will try to reconstruct
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the gene regulatory network using different approaches to compute the centrality of the
network topology.

The DCNTC algorithm has a clear advantage over the distance-based REL algorithm
and the distance-based MRNET algorithm in every performance indicator. The algorithm is
similar to the LDCNET algorithm in that both have a central network node location. In com-
bination with the distance-dependent initial network redundancy and network topology
centrality, the DCNTC algorithm can predict the structure of the GRN more accurately.

5. Conclusions

In this article, we proposed a novel algorithm DCNTC for inferring GRNs from gene
expression data, taking into account the sparse structure of GRNs and the nonlinear depen-
dence. In this method, the nonlinear dependence is represented by distance correlation
(without assuming the probability distribution) between this gene pair. The sparse (scale-
free) control structure of the gene regulatory network is used to calculate the network
topology centrality and test the predictive performance of the algorithm on four data sets,
which can effectively predict the structure of the gene regulatory network. However, the
algorithm has certain limitations. How could we further confirm the direction of the gene
regulatory network structure and its centrality in exploiting the network topology? Further
research is still needed in the precise construction of gene regulatory networks.
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