
algorithms

Article

Constant-Time Complete Visibility for Robots with Lights: The
Asynchronous Case †

Gokarna Sharma 1,* , Ramachandran Vaidyanathan 2 and Jerry L. Trahan 2

����������
�������

Citation: Sharma, G.; Vaidyanathan,

R.; Trahan, J.L. Constant-Time

Complete Visibility for Robots with

Lights: The Asynchronous Case.

Algorithms 2021, 14, 56. https://

doi.org/10.3390/a14020056

Academic Editor: Frank Werner

Received: 13 December 2020

Accepted: 5 February 2021

Published: 9 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Kent State University, Kent, OH 44242, USA
2 Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA;

vaidy@lsu.edu (R.V.); jtrahan@lsu.edu (J.L.T.)
* Correspondence: sharma@cs.kent.edu; Tel.: +1-330-672-9065
† This paper combines preliminary results that appeared in SSS’17 and IPDPS’17.

Abstract: We consider the distributed setting of N autonomous mobile robots that operate in Look-
Compute-Move (LCM) cycles and use colored lights (the robots with lights model). We assume obstructed
visibility where a robot cannot see another robot if a third robot is positioned between them on the
straight line segment connecting them. In this paper, we consider the problem of positioning N
autonomous robots on a plane so that every robot is visible to all others (this is called the COMPLETE

VISIBILITY problem). This problem is fundamental, as it provides a basis to solve many other problems
under obstructed visibility. In this paper, we provide the first, asymptotically optimal,O(1) time,O(1)
color algorithm for COMPLETE VISIBILITY in the asynchronous setting. This significantly improves on
an O(N)-time translation of the existing O(1) time, O(1) color semi-synchronous algorithm to the
asynchronous setting. The proposed algorithm is collision-free, i.e., robots do not share positions, and
their paths do not cross. We also introduce a new technique for moving robots in an asynchronous
setting that may be of independent interest, called Beacon-Directed Curve Positioning.

Keywords: distributed algorithms; autonomous mobile robots; robots with lights; complete visibility;
collisions; convex hull; obstruction; runtime

1. Introduction

The classical model of distributed computing by mobile robots models each robot as a
point in the plane that is equipped with a local coordinate system and sensory capabilities
to determine the positions of other robots [1]. The local coordinate system of a robot may
not be consistent with that of other robots. The sensory capability of a robot, generally
called vision, allows a robot to determine the positions of other robots in its own coordinate
system. The robots are autonomous (no external control), anonymous (no unique identifiers),
indistinguishable (no external identifiers), and disoriented (no agreement on local coordinate
systems or units of distance measures).

They execute the same algorithm. Typically, robots have unobstructed visibility, that
is, robots are transparent such that three collinear robots can see each other. Each robot
proceeds in Look-Compute-Move (LCM) cycles: When a robot becomes active, it first gets a
snapshot of its surroundings (Look), then computes a destination based on the snapshot
(Compute), and finally moves towards the destination (Move). Moreover, the robots are
oblivious, i.e., in each cycle, each robot has no memory of its past LCM cycles [1]. Further-
more, the robots are silent because they do not communicate directly, and only vision and
mobility enable them to coordinate their actions.

While silence has advantages, many other situations, e.g., hostile environments, as-
sume direct communication. The robots with lights model [1–3] incorporates direct com-
munication, where each robot has an externally visible light that can assume colors from
a constant-sized set; robots explicitly communicate with each other using these colors.

Algorithms 2021, 14, 56. https://doi.org/10.3390/a14020056 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-4930-4609
https://orcid.org/0000-0003-4160-0013
https://doi.org/10.3390/a14020056
https://doi.org/10.3390/a14020056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14020056
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/14/2/56?type=check_update&version=2

Algorithms 2021, 14, 56 2 of 35

The colors are persistent, i.e., the color is not erased at the end of a cycle. Except for the
lights, the robots are oblivious as in the classical model. In addition, robots have obstructed
visibility such that robot b in line between robots a and c blocks the views of a from c and
vice versa.

The following fundamental problem, COMPLETE VISIBILITY on the robots with lights
model is the main focus of this paper. Given an arbitrary initial configuration of N robots
located at distinct points on a real plane, they autonomously arrange themselves in a
configuration in which each robot is in a distinct position and from which it can see
all other robots. In the initial configuration, some robots may be obstructed from the
view of others and the robots themselves do not know the total number of robots, N.
Solving COMPLETE VISIBILITY enables solutions to many other robot problems under
obstructed visibility, including gathering, pattern formation, and leader election. For
example, we recently solved the problem of pattern formation in Reference [4], which uses
the solution to COMPLETE VISIBILITY presented in this paper in the first step of its four-step
algorithm. Indeed, after the robots reach a configuration of complete visibility, they know
the value of N and each robot can see all the robots in the system as in robots model with
unobstructed visibility, i.e., any solution to COMPLETE VISIBILITY recovers unobstructed
visibility configuration starting from an obstructed visibility configuration.

Di Luna et al. [5] gave the first algorithm for robots with lights to solve COMPLETE

VISIBILITY on a real plane. They arranged robots on the corners of a N-corner convex
hull, which immediately solves COMPLETE VISIBILITY since each robot positioned on a
corner of a convex hull sees all other N − 1 robots positioned on N − 1 other corners. In
the real-world setting, the convex hull based COMPLETE VISIBILITY solution might also
help to make a barrier around the site of interest so that the intruders entering the site from
one point may be monitored and reported to all the points of interests (provided by robots).
Di Luna et al. [5] focused mostly on correctness proving that the problem can be solved
in finite time. The question of minimizing the number of colors and the precise bound on
runtime was left open. Reference [6,7] provided solutions minimizing number of colors
with finite runtime. References [8,9] provided solutions with provable runtime bounds
keeping the number of colors constant. For example, Reference [9] showed that COMPLETE

VISIBILITY can be solved in O(1) time using O(1) colors in the semi-synchronous setting.
There is no existing work that provides a runtime bound for COMPLETE VISIBILITY in the
asynchronous setting, which is the main goal of this paper.

A straightforward algorithm can be designed to solve COMPLETE VISIBILITY in
the asynchronous setting with runtime O(N) using O(1) colors, combining the semi-
synchronous algorithm of Reference [9] for COMPLETE VISIBILITY with the result of
Das et al. [2]. The result of Das et al. [2] is as follows: Any algorithm (for any prob-
lem) in the robots with lights model that uses k > 1 colors in the semi-synchronous setting
can be simulated in the asynchronous setting with, at most, 5 · k colors. Since the semi-
synchronous COMPLETE VISIBILITY algorithm of Reference [9] uses 12 colors, the total
number of colors in the new algorithm becomes 5 · 12 = 60 = O(1). However, Das et al. [2]
does not say anything about the runtime of their simulation and it can be shown that, for
N robots, this combination increases the runtime by a O(N)-factor, meaning that O(1)
runtime for COMPLETE VISIBILITY in the semi-synchronous setting becomes O(N) time for
COMPLETE VISIBILITY in the asynchronous setting. In this paper, we present an algorithm
for COMPLETE VISIBILITY that runs in O(1) time using O(1) colors even in the asyn-
chronous setting. Note thatO(1) runtime is optimal for COMPLETE VISIBILITY, irrespective
of the number of colors.

1.1. Contributions

The robot model used in this paper is the same one as in Di Luna et al. [5]; namely,
robots are oblivious except for a persistent light that can assume a constant number of
colors. The robots considered here are points. If robots have mass and occupy an area (and
volume), then the algorithm we present will not work, and a different algorithm needs to

Algorithms 2021, 14, 56 3 of 35

be designed that works respecting the mass of the robots. There is a line of work that solves
COMPLETE VISIBILITY for the robots with mass; please refer to Reference [10–12] for some
of the most recent works in that line of work. Robots’ visibility can be obstructed by other
robots in the line of sight, robots are unaware of the number, N, of robots in the swarm, and
the robots may be disoriented. Further, we assume that the robot setting is asynchronous, i.e.,
there is no notion of common time and robots perform their Look-Compute-Move cycles at
arbitrary time. Robot moves robots are rigid, i.e., a robot in motion cannot be stopped (by
an adversary) before it reaches its destination point. Our algorithms are collision-free; that
is, two robots do not head to the same destination, and their paths of motion do not cross.

In Section 3, we develop a framework called Beacon-Directed Curve Positioning
that moves a set of robots onto a (k-point) curve in O(log k) time using three colors in
the asynchronous setting, under the condition that 2k robots (called beacons) are already
properly laid out on the curve. Furthermore, robots move need to be collision-free, and
their paths cannot intersect the curve at more than one point (Definition 2).

Using this framework, we prove the following result (comparison is in Table 1),
which, to our knowledge, is the first algorithm for COMPLETE VISIBILITY that achieves
sub-linear runtime for robots with lights in the asynchronous setting. In fact, this runtime
is asymptotically optimal as Ω(1) is a trivial lower bound for the problem.

Table 1. Comparison of COMPLETE VISIBILITY results for the robots with lights model with monotonic
movements on a 2-dimensional Euclidean plane.

Source Model Runtime No. of Colors

Di Luna et al. [5],
Di Luna et al. [6],
Sharma et al. [7]

asynchronous – 10, 3, 2 = O(1)

Vaidyanathan et al. [8] fully synchronous O(log N) 12 = O(1)

Sharma et al. [9] semi-synchronous O(1) 12 = O(1)

Das et al. [2] with
Sharma et al. [9] asynchronous O(N) 60 = O(1)

Theorem 1 asynchronous O(1) 47 = O(1)

Theorem 1. For any initial configuration of N ≥ 1 robots with lights in distinct positions on a
real plane, there is an algorithm that solves COMPLETE VISIBILITY in the asynchronous setting in
O(1) time with O(1) colors and without collisions.

Our algorithm is deterministic and has three stages, Stages 0–2, that execute one after
another. Stage 0 is needed only if the initial configuration has robots on a straight line; it
breaks this initial linear arrangement and places all robots within or on a convex polygon P
(convex hull of points) in O(1) time. After that, Stage 1 places all robots on the corners and
sides of a convex polygon P′′. (P is first transformed to P′, which is completely contained
inside P, and then P′ is transformed to P′′. All this happens during Stage 1, which operates
in five sub-stages, Stage 1.1–1.5.) Finally, Stage 2 moves each robot on a side of polygon P′′

to a corner of a new convex polygon P′′′ (the points that are positioned on the corners of P′′

do not move at this stage). (The precise definitions of all these convex polygons are given
later in Section 2). Keys to Stage 1 are corner moving, internal moving, and the beacon-directed
curve positioning procedures that permit all interior robots of P to move to the sides of P′′

executing each stage in O(1) time, even in the asynchronous setting. An important part of
Stage 2 is a corner insertion procedure that moves side robots of P′′ to corners of P′′′ in O(1)
time while retaining convexity.

This paper is a combination of the ideas presented in IPDPS’17 [13] and SSS’17 [14].
We proved all the properties of Theorem 1 in Reference [13] (IPDPS’17), except that the
runtime is O(log N). Moreover, there were three stages, Stages 0–2, with Stage 1 having 5
sub-stages, Stage 1.1–1.5. Stages 0 and 2 run in O(1) time, and Stages 1.1 and 1.4 also run

Algorithms 2021, 14, 56 4 of 35

in O(1) time. The O(log N) time was due to the run time of Stages 1.2, 1.3, and 1.5, each of
them taking O(log N) time. The Beacon-Directed Curve Positioning framework developed
in Reference [14] (SSS’17) allows to run Stages 1.2, 1.3, and 1.5 in O(1) time each, giving
overall time complexity O(1). Therefore, the combination of the ideas of [13,14] makes the
runtime of O(1) claimed in this paper possible.

1.2. Related Work

The problem of COMPLETE VISIBILITY has been getting much attention recently, after
it was proposed for the very first time by Di Luna et al. [5] in 2014. They proposed the
problem on a 2-dimesional real plane and we also consider the problem on the real plane.
The most closely related works on a plane are listed in Table 1. Di Luna et al. [5] designed
the first algorithm for robots with lights to solve COMPLETE VISIBILITY. Their algorithm
uses 6 colors in the semi-synchronous setting and 10 colors in the asynchronous setting.
Their algorithm arranged robots on corners of a convex polygon, which naturally solves
this problem. Although other ways exist to solve COMPLETE VISIBILITY without forming a
convex hull, such a convex hull solution provides additional advantages [10,15] in solving
some other problems. One example is our recent work on pattern formation [4], where we
use the convex hull based COMPLETE VISIBILITY result of this paper in the first step of the
four-step algorithm for pattern formation in the asynchronous setting presented in that
paper. In this paper, we, too, form a convex hull as a solution to COMPLETE VISIBILITY. Di
Luna et al. [5] established the correctness of their algorithm, including a proof of (finite-
time) termination; however, the work does not include a runtime analysis. Subsequent
work [6,7] reduced the number of colors used for the algorithm. The minimum number of
colors is 2, and Sharma et al. provided 2-color algorithm for the semi-synchronous and
asynchronous settings of monotonic robot movements (defined later) and 3-color algorithm
in the asynchronous setting with non-monotonic robot movements. Therefore, with respect
to optimizing the number of colors, there is not much work left except designing a 2-color
algorithm for the asynchronous setting of non-monotonic robot movements.

Therefore, the recent focus is mostly on runtime [8,9], keeping the number of colors
constant, i.e., O(1). Runtime is a critical factor when robots have to arrange themselves in
a target configuration, frequently while working in real-time after being deployed in their
work environments. In this direction, Vaidyanathan et al. [8] designed the first algorithm
with O(log N) runtime, and with the use of O(1) colors in the fully synchronous setting.
Sharma et al. [9] improved on this result with O(1) runtime using O(1) colors in the
semi-synchronous setting. Whether this O(1) runtime, O(1) colors result extends to the
asynchronous setting, is an important open question left from these existing works, which
we address in this paper by designing such an algorithm that works inO(1) time usingO(1)
colors. Of the three models typically considered, fully synchronous, semi-synchronous,
and asynchronous, the asynchronous setting is the weakest, and full synchronous is the
strongest; asynchronous algorithms present significant challenges in their design and
analysis. Therefore, our work considers the problem in the most difficult setting, and, since
the algorithm we present works in this most difficult setting, it subsumes all the existing
works designed for the relatively simpler fully synchronous and semi-synchronous settings.

It is interesting to consider whether COMPLETE VISIBILITY can be solved when robots
may experience faults. Di Luna et al. [6] observed that their COMPLETE VISIBILITY

algorithm for non-faulty robots can solve COMPLETE VISIBILITY tolerating a faulty robot if
the faulty robot is in the perimeter of the convex hull formed by the initial configuration
of the robots. Aljohani and Sharma [16] provided an algorithm that tolerates one faulty
robot (irrespective of whether the faulty robot is in the interior or not) when robots have
both-axis agreement in the semi-synchronous setting under rigid movements. The idea
was to position all the robots on the corners of a convex hull except the faulty robot that
may still be in the interior of the hull in the final configuration. Aljohani and Sharma [16]
also showed that COMPLETE VISIBILITY can be solved tolerating, at most, 2 faulty robots
under certain assumptions on initial configurations. Recently, Poudel et al. [17] assumed a

Algorithms 2021, 14, 56 5 of 35

weaker one-axis agreement and presented an algorithm for COMPLETE VISIBILITY in the
asynchronous setting that can tolerate any number of faulty robots. An interesting property
of their algorithm is that it solves COMPLETE VISIBILITY without arranging (non-faulty)
robots on the corners of a convex hull.

COMPLETE VISIBILITY was also studied in the classical oblivious robots model (no
lights) [1]. Di Luna et al. [15] provided the first algorithm in this model considering the
semi-synchronous setting. Sharma et al. [12] then provided an algorithm with runtime
O(N) in this model under the fully synchronous setting. They also showed that the
algorithm of Di Luna et al. [15] has runtime Ω(N2). Bhagat et al. [18] solved COMPLETE

VISIBILITY under one-axis agreement in the asynchronous setting.
Recently, COMPLETE VISIBILITY was also studied in the so-called fat robots model (with

or without lights) [10,19] in which robots are not points, but non-transparent unit discs
with mass occupiying certain area. In the fat robots with lights model, Sharma et al. [11]
provided an O(N) runtime COMPLETE VISIBILITY algorithm using 9 colors in the fully
synchronous setting under rigid (monotonic) movements. In the fat robots (without lights)
model, Sharma et al. [12] provided an O(N) runtime COMPLETE VISIBILITY algorithm
in the semi-synchronous setting under rigid movements, with some assumptions on the
initial configurations.

Additionally, there is a recent interest in solving COMPLETE VISIBILITY in the grid
setting, which discretizes the Euclidean real plane. The grid setting is interesting from the
aspect of real applications of robots. Adhikary et al. [20] provided a solution to COMPLETE

VISIBILITY using 11 colors in the grid setting and no runtime analysis. We provided an
algorithm with a provable runtime bound keeping the number of colors constant [21].
These solutions do not arrange robots on the corners of a convex hull, in contrast to what
we do in this paper. Finally, Hector et al. [22] provided matching lower and upper bounds
on arranging robots on a convex hull in the grid setting, analogous to what we do in
this paper.

Beyond COMPLETE VISIBILITY, the computational power of the robots with lights
compared to classical oblivious robots was studied in Reference [2], while the robots are
working on the Euclidean plane, and in Reference [23], while the robots are working
on graphs.

The obstructed visibility, in general, was also considered in the different problems
in different settings. One problem that considers obstructed visibility is the problem
of uniform spreading of robots on a line [24]. The robots considered there are classical
robots [1] (without lights). The fat robots model, in which an individual robot is a unit
disc (rather than a point), also assumes obstructed visibility [10,19,25–27]. However, this
body of work do not analyze runtime. Pagli et al. [28] study the problem of collision-free
GATHERING classical robots to a small area; however, they do not provide a runtime
analysis. Similarly, much work on the classical robot model [24,29–31] for GATHERING

does not have runtime analysis, except in a few cases [32–36]. Furthermore, Izumi et al. [37]
considered the robot scattering problem (opposite of GATHERING) in the semi-synchronous
setting and provided a solution with an expected runtime ofO(min{N, D2 + log N}); here,
D is the diameter of the initial configuration. Our paper focuses on runtime analysis and
provides an optimal O(1) runtime algorithm for COMPLETE VISIBILITY on a plane for
point robots in the lights model in the asynchronous setting keeping the number of colors
constant. It will be interesting to see where our runtime approach can help to provide
runtime bounds for some/all problems that we discussed above in the paragraph.

1.3. Roadmap

In Section 2, we detail the robot model and discuss some preliminaries. We define the
beacon directed framework for positioning a set of robots on a curve in
Section 3. Sections 4–7 are devoted to proving Theorem 1 using the framework of Section 3.
In Section 8, we provide some concluding remarks.

Algorithms 2021, 14, 56 6 of 35

2. Model and Preliminaries
Robots

Let Q = {r0, r1, · · · , rN−1} be a set of N robots (agents) in a distributed system. Each
robot is represented as a (dimensionless) point that moves in R2, the infinite 2-dimensional
real plane. In this paper, a point will denote a robot, as well as its position. A robot ri
can see, and be visible to, another robot rj iff there is no third robot rk in the line segment
joining ri and rj. Each robot has a light that can assume one color at a time; this color comes
from a set with a constant number of colors.

Look-Compute-Move

At any given time, a robot ri can be active or inactive. When robot ri becomes active,
it performs the “Look-Compute-Move” (LCM) cycle described below.

• Look: For each robot rj that is visible to ri, robot ri observes the position of rj and the
color of its light. It is assumed that ri is visible to itself.
Each robot observes position of other robots accurately, but within its own local frame
of reference. That is, two different robots observing the position of the same point
may produce different coordinates.

• Compute: After observing the position and light color of visible robots, robot ri may
perform an arbitrary computation using only the positions and colors observed during
the “look” portion of the current LCM cycle. This computation includes determination
of a (possibly) new position to move to and light color for robot ri for the start of
next cycle.

• Move: At the end of the LCM cycle, robot ri changes its light to the new color (deter-
mined during the compute phase) and moves to its new position.
Robot ri maintains this new light color from the current LCM cycle until it is possibly
changed in the move phase of the next LCM cycle.

Robot Activation and Synchronization

In the fully synchronous setting (FSYNC), every robot is active in every LCM cycle.
In the semi-synchronous setting (SSYNC), at least one robot is active, and over an infinite
number of LCM cycles, every robot is active infinitely often. In the asynchronous setting
(ASYNC), robots have no common notion of time. No limit exists on the number and
frequency of LCM cycles in which a robot can be active except that every robot is active
infinitely often. Complying with the ASYNC setting, we assume that a robot “wakes up”
and performs its Look phase at an instant of time. An arbitrary amount of time may elapse
between the Look and Compute phases and between the Compute and Move phases. We
also assume that during the Move phase it moves in a straight line at some (not necessarily
constant) speed, but without stopping or changing direction. We will call such robot moves
monotonic movements.

Runtime

For theFSYNC setting, time is measured in rounds. Since a robot in the SSYNC and
ASYNC settings could stay inactive for an indeterminate number of rounds, we introduce
the idea of an epoch to measure runtime. An epoch is the smallest number of rounds within
which each robot is active at least once [38]. Let t0 denote the start time of the algorithm.
Epoch i (i ≥ 1) is the time interval from ti−1 to ti where ti is the first time instance after
ti−1 when each robot has completed at least one complete LCM cycle. Therefore, for the
FSYNC setting, a round is an epoch. We will use the term “time” generically to mean
rounds for the FSYNC setting and epochs for the SSYNC and ASYNC settings.

Convex Polygon

For N ≥ 3, represent a convex polygon as a sequence P = (c0, c1, · · · , cN−1) of corner
points in a plane that enumerates the polygon vertices in clockwise order. Figure 1 shows
a 5-corner convex polygon (c0, c1, c2, c3, c4). A point s on the plane is a side point of P iff

Algorithms 2021, 14, 56 7 of 35

there exists 0 ≤ i < N such that ci, s, c(i+1)(mod N) are collinear. Figure 1 shows nine side
points s1–s9. A side S = (ci, s1, s2, · · · , sm, ci+1) is a sequence of collinear points in which
its beginning and end are adjacent corner points and in which its remaining points are
side points. For any pair of points a, b, we denote the line segment connecting them by ab
and the length of this segment by length(ab). Moreover, we denote the infinite line passing
through a, b by

←→
ab .

corridor
region
safe

interior of polygon

exterior of side

interior of side

h

c2s2

s3
s4

s5

s1

s9

c4

s8

s7

s6

c3

c0 c1

Figure 1. A convex polygon P = (c0, c1, c2, c3, c4) with five corner points ci and nine side points sj.
The figure also illustrates the interior and exterior of side c0c1.

A given polygon P divides the plane into interior and exterior parts. Figure 1 shows
the interior of the polygon (the rest of the plane is the exterior). For a given side S of P, the
infinite line obtained by extending side S divides the plane into the interior and exterior
parts of the side. The interior part of S contains the interior of the polygon. Figure 1 shows
the interior and exterior of side c0c1. The corridor of S is the infinite subregion on its exterior
that is bounded by S and perpendicular lines through points ci, ci+1 of S. The corridors of
the sides of P are disjoint except for the corner points.

Configuration and Local Convex Polygon

A configuration Ct = {(rt
0, colt

0), . . . , (rt
N−1, colt

N−1)} defines the positions of the robots
in Q and their colors for any time t ≥ 0. A configuration for a robot ri ∈ Q, Ct(ri), defines
the positions of the robots in Q that are visible to ri (including ri) and their colors, i.e.,
Ct(ri) ⊆ Ct, at time t. The convex polygon formed by Ct(ri), Pt(ri), is local to ri since Pt(ri)
depends on the points that are visible to ri at time t. We sometimes write C, P, C(ri), P(ri)
to denote Ct, Pt, Ct(ri), Pt(ri), respectively.

Corner Triangle, Corner Line Segment, Triangle Line Segment, and Corner Polygon

Let ci be a corner of a convex polygon P. Let ci−1 and ci+1 be the neighboring corners
of ci on the boundary of P. Let xi, yi be the points on sides cici−1 and cici+1 at distance
length(cici−1)/8 and length(cici+1)/8, respectively, from ci. We pick distance 1/8-th for
our convenience; in fact, any factor less than or equal to 1/2 works for our algorithm. We
say that triangle cixiyi is the corner triangle for ci, denoted as T(ci), and line segment xiyi
is the triangle line segment for ci, denoted as TLi. We say that the interior of P except the
corner triangles is the special polygon of P, denoted S(P). Let r be any robot inside T(ci)
and Si be the line segment parallel to xiyi passing through r. Let T′(r) be the portion of
T(ci) between Si and ci. We say that Si is the corner line segment for ci, denoted as CLi, if
there is no robot inside T′(r). Let Li−1, Li+1 be the lines perpendicular to cici−1 and cici+1,
respectively, passing through their midpoints. We say the interior of P divided by Li−1, Li+1
towards ci is the corner polygon of ci, denoted as CP(ci). Figure 2 shows T(ci), TL3, CL3,
CP(c3), and a 5-corner convex polygon P with corners c0 − c4.

Algorithms 2021, 14, 56 8 of 35

c0
c1

c2

c3

c4

P

CP()c3

x0

x1

x2

x3

x4

y1

y2
y3

y4

y0

CL3
r

TL3

L2

L3 T()c2

Figure 2. Example of corner triangle, corner line segment, triangle line segment, and corner polygon.

Eligible Area and Eligible Line

Let ci be a corner of P and let a, b be the neighbors (sides or corners) of ci in the
perimeter of P, and let u, w be the midpoints of cia, cib, respectively. The eligible area for
ci, denoted as EA(ci), is a polygonal subregion inside P within triangle ciuw, omitting
the lines from each robot to ci [9]. The eligible areas for any two corners of P are disjoint.
EA(ci) is computed based on C(ci) and the corresponding polygon P(ci). Figure 3 depicts
eligible area for ci where the shaded area is EA(ci). To make sure that all the robots in the
interior of P see ci when it moves to a point in EA(ci), the points inside the outer boundary
of EA(ci) that are part of the lines←→cix, connecting ci with all the robots in C(ci)\{a, b, ci}
are not considered as the points of EA(ci). When ci moves to any point inside EA(ci), two
prominent properties of the eligible area hold: (i) all the points in the sides and interior of
P can see ci (and vice versa), and (ii) ci remains as a corner of P.

!"

!′
!′′

$%

& '
()*

*′
+*,- .

/, (,

Figure 3. Eligible area computation; the shaded area depicts EA(ci).

Lemma 1 (Reference [9]). The eligible area EA(ci) for each corner ci of P is bounded by a non-
empty convex polygon. Moreover, when ci moves to a point inside EA(ci), then ci remains as a
corner of P and all internal and side robots of P are visible to ci (and vice versa).

It is easy to see that edges cia and cib are always in the perimeter of the polygonal
subregion EA(ci). Let xi, yi be two points in cia and cib, respectively, that are also in the
perimeter of EA(ci). Points xi, yi can be any point in cia and cib between ci and e and ci
and f , respectively, where e, f are the neighbor corners of ci in EA(ci). We say line xiyi is
the eligible line for ci and denote it by ELi (Figure 3 illustrates these ideas).

Lemma 2. The eligible line ELi for each corner ci of P contains no point outside of EA(ci), except
for the points intersecting lines from internal robots to ci.

Algorithms 2021, 14, 56 9 of 35

Proof. This lemma is immediate since the eligible area EA(ci) for each corner ci of P
is a non-empty convex polygon (Lemma 1); hence, any line connecting any two points
on the perimeter of P visits only the points that are in the interior of EA(ci), except for
intersections with lines from internal robots to ci.

Convex Polygons P, P′, P′′, and P′′′

P is the convex polygon of the points in Q. P′ is the convex polygon connecting the
corners of P after all of them moved to their eligible areas, EA(∗). P′′ is the convex polygon
with the corners of P′ and the side robots of P from those sides with at least two robots.

P′′′ is the convex polygon after all side points in P′′ become corner points moving to
the exterior of the side of P′′ to which they belong. Observe that P contains P′ and P′′, but
not P′′′. The left part of Figure 4 depicts P, P′, P′′, and the right part depicts P′′′ formed
from P′′.

c0
c1

c2

c3

c4

P

P’
P’’

r

c0
c1

c2

c3

c4

P’
P’’

P’’’

Figure 4. Example of convex polygons P, P′, P′′, and P′′′.

3. Beacon-Directed Curve Positioning

The Beacon-Directed Curve Positioning framework uses robots that we call as beacons
to define a curve and to guide other robots from their initial positions to final positions on
the curve. The beacons start at their final positions on the curve, and all robots areASYNC
robots with lights. Section 4 will use the Beacon-Directed Curve Positioning framework as
a tool in constructing an O(1) time COMPLETE VISIBILITY algorithm.

The destination curve is a “k-point curve” (Definition 1) that the positions of the k
points can specify, so the positions of the k beacons in the framework determine.

Definition 1. Let A ⊂ R be a finite interval in the real line. Let f : A −→ R be a (single-valued)
function in which its equation y = f (x) defines a curve on the plane. A k-point curve is a function
f such that a set of k points {(xi, f (xi)) : 0 ≤ i < k} suffices to determine the constants in the
equation y = f (x).

For example, the curve can be a straight line that function y = ax + c describes. Two
points on this curve (line) enable one to determine constants a and c and so the line. As
another example, the curve can be a semicircle that equation (y − a)2 + (x − b)2 = c2

describes. Three points on this curve enable one to determine the constants and the curve.
As another example, c + 1 points can determine a cth order polynomial. Note that this
section uses a global coordinate system to describe the framework, but the framework
works with robots that each have only a local coordinate system.

In most robot algorithms, the movement of a robot in the move portion of an LCM
cycle is along a straight line. The Beacon-Directed Curve Positioning framework assumes
monotonic movement but does not require straight-line movement. So, for this section, we

Algorithms 2021, 14, 56 10 of 35

define a path pi in an LCM cycle of robot ri as a finite curve from initial point (xi, yi) to final
point (x′i , y′i).

Let f : A −→ R denote a k-point curve. Let R = {ri : 0 ≤ i < m} denote a set of m
robots with lights. The “curve positioning” goal of Beacon-Directed Curve Positioning for
each ri at distinct initial point (xi, yi) is to move ri to distinct final point (x′i , y′i) = (x′i , f (x′i))
on the k-point curve. We refer to robots in R as “waiting robots” as they are waiting to
move to the curve. The left beacons are robots b`,i, for 0 ≤ i < k, are initially on the curve at
points with x-coordinates smaller than the x-coordinates of the final positions of all waiting
robots. Similarly, right beacons are robots br,i, for 0 ≤ i < k, are initially on the curve at
points with x-coordinates larger than the x-coordinates of the final positions of all waiting
robots. Figure 5 depicts these concepts.

left

right
f

beacons

beacons

x-axis
A

Figure 5. An illustration of Beacon-Directed Curve Positioning (BDCP). Red (resp., white) circles
denote the initial (resp., final) positions of n = 4 robots. Blue circles denote the beacons.

Definition 2. Let f : A −→ R be a k-point curve, and let R = {ri : 0 ≤ i < m} be a
set of waiting robots with paths pi from initial position (xi, yi) to final position (x′i , f (x′i)). Let
B` = {b`,i : 0 ≤ i < k}, and Br = {br,i : 0 ≤ i < k} be the sets of left and right beacons placed
on f to the left and right of the robot setR. Then, the triplet 〈 f ,R,B` ∪ Br〉 is admissible iff the
following conditions hold. (a) For distinct i, j, paths pi and pj do not intersect. (b) For distinct i, j,
any line through the initial position of ri intersects pj at, at most, one point. (c) For any i, a line
through the initial position of ri intersects curve f (within its domain A) at exactly one point. (d)
With all robots inR at their initial positions, all 2k beacons in B` ∪ Br are visible to each ri ∈ R.

Definition 3. The Beacon-Directed Curve Positioning Problem is defined as follows: Let f : A −→
R be a k-point curve, letR = {ri : 0 ≤ i < m}, and let B be a set of k left and k right beacons on
f such that 〈 f ,R,B〉 is admissible. Let the initial color of each robot ri ∈ R be wait, and let the
beacons in B be colored beacon. The objective is to move each robot ri ∈ R to its final position on
f and then change its color to beacon.

The three condition-action pairs below present robot actions to solve the Beacon-
Directed Curve Positioning Problem.

Condition 1: Robot r has color wait, and it can see at least k robots with color beacon.
Action 1: Robot r changes its color to not-waiting, determines the equation for the

k-point curve, f , and moves monotonically on its path p to position itself on curve f .
Condition 2: Robot r has color not-waiting.
Action 2: Robot r changes its color to beacon.
Condition 3: Robot r has color beacon, and it cannot see any robot colored wait.
Action 3: Terminate.
Call as a transient robot any robot that is in motion along its path (between its initial

and final positions); clearly, a transient robot was a waiting robot at the start of its cycle and
is on its way to becoming a beacon at the end of its next cycle. Observe that, if a waiting
robot cannot see some beacon, then there must be a transient robot that blocks its view.

We now establish conditions on the number of transient robots and the look times of
waiting robots required to block the view of beacons from the waiting robots (Lemmas 3–6).

Algorithms 2021, 14, 56 11 of 35

Then, we will lower bound the increase in the number of beacons from one epoch to the
next (Lemma 7) toward establishing an O(log k) epoch run time for the Beacon-Directed
Curve Positioning algorithm. In the remainder of this section, we will implicitly assume in
all lemmas that admissibility is satisfied; we also consider any robot with color beacon or
not-waiting as a beacon. Recall that all robot movements are monotonic.

For any robot ri, define the projection of ri on a k-point curve f : A −→ R (denoted by
proj(ri)) as the x-coordinate, x′i , of the final position of ri. For a beacon b, its projection on f
is proj(b), the x-coordinate of its position. When applied to a set S of robots, proj(S) refers
to the smallest interval within A in which the projections of all elements of S lie.

Lemma 3. For left (resp., right) beacon b and waiting robot ri, if a transient robot u blocks b from
ri, then proj(b) < proj(u) < proj(ri) (resp., proj(ri) < proj(u) < proj(b)).

Proof. Recall that admissibility requires that paths not cross. Suppose b is a left bea-
con, then proj(b) < proj(ri). If proj(u) > proj(ri), then the paths of u and ri must cross
(see Figure 6b), providing the necessary contradiction. The proof for a right beacon is
analogous.

x-axis
proj(b)proj(u) proj(ri) proj(rj)

f

b
pj

pi

p

u
rj

ri x-axis
proj(b)proj(ri) proj(u) proj(rj)

f

b
pj

p

pi

u
rj

ri x-axis
proj(b)proj(u) proj(ri) proj(rj)

f

b

p pi
pj

rirj
r

(a) (b) (c)

Figure 6. An illustration of the proofs of Lemmas 3 and 4: (a) illustrates no path crossing for the robots even when the
transient robot u blocks the beacon b from ri and/or rj when they move, and (b,c) illustrate a path crossing scenario.

Lemma 4. LetR = {ri : 0 ≤ i < m} be a set of m waiting robots and let b be a left beacon with
proj(b) 6∈ proj(R). For 0 ≤ i < m, let ti denote the time when ri performs its look operation. Let u
be a transient robot that blocks the view of b from every waiting robot in the setR. Then, for any
distinct 0 ≤ i, j < m, if proj(b) < proj(ri) < proj(rj), then ti < tj.

Proof. Without loss of generality, let the x-axis be a horizontal line and let the projection
of b be to the left of the projections of all elements of R (see Figure 6a). Since u blocks b
from all robots ofR, we must have proj(b) < proj(u) < proj(ri), for all ri ∈ R (Lemma 3).
Suppose that proj(ri) < proj(rj) and ti > tj. Then, again, the paths of ri and rj will have to
cross (see Figure 6c), providing the necessary contradiction.

Remark 1. An analogous version of the lemma applies to a right beacon, as well.

Lemma 5. Let b′ be a right beacon and letR = {ri : 0 ≤ i < m} be a set of m waiting robots. For
0 ≤ i < m, let ti denote the time when ri performs its look operation. For any distinct 0 ≤ i, j < m,
let proj(ri) < proj(rj) and let ti < tj. Then, a transient robot u can block the view of b′ from at
most one waiting robot fromR.

Proof. Suppose there exist distinct i, j such that a single transient robot u blocks right
beacon b′ from the view of both waiting robots ri, rj. Then, proj(u) must lie between proj(b′)
and proj({ri, rj}). Without loss of generality, let proj(ri) < proj(rj) < proj(u) < proj(b′); this
implies that ti < tj (from the lemma statement). By a result analogous to that of Lemma 4
applied to a right beacon b′, we have ti > tj; this provides the necessary contradiction so
that u cannot block b′ from the view of more than one waiting robot.

Algorithms 2021, 14, 56 12 of 35

Lemma 4 orders the “look-times” of waiting robots that are blocked from viewing a
left beacon by a single transient robot. Given this order, Lemma 5 shows that each right
beacon will have to be blocked by a different transient robot, for the same set of waiting
robots. For left and right beacons b, b′ and waiting robots r0, . . . , rm−1, in order from left to
right, observe that, at the time instant at which r0 looks and transient robot u blocks b from
r0, some transient w blocks b′ from r0, and w cannot block the view of b′ from r1, . . . , rm−1
when they look. The following result captures this observation.

Lemma 6. Let b, b′ be left and right beacons and letR = {ri : 0 ≤ i < m} be a set of m waiting
robots. Let u be a transient robot that blocks the view of b from every waiting robot inR. Then, at
least m transient robots are needed to block b′ from the view of all waiting robots ofR.

Proof. By Lemma 3, proj(b) < proj(u) < proj(ri), for every ri ∈ R. Without loss of
generality, let proj(ri) < proj(ri+1), for any 0 ≤ i < m− 1. Therefore, by Lemma 4, ti < ti+1;
again, ti is the time when ri looks. For the right beacon b′, we have proj(ri) < proj(ri+1) <
proj(b′) with ti < ti+1. By Lemma 5, each transient robot v can block b′ from at most one
element ofR. Consequently, at least |R| = m transient robots are needed to block b′ from
the view of all waiting robots ofR.

Next, we lower bound the increase in the number of beacons in each epoch.

Lemma 7. If the first epoch of the algorithm started with m waiting robots and an epoch e ≥ 1
starts with v ≥ 2k beacons, then epoch e + 1 starts with at least min{m + 2k, 3v

2 } beacons.

Proof. The min{·} is only to capture the idea that we cannot have more robots on f than
we start out with. Blocking two different beacons, bi, bj from the view of a given waiting
robot w requires at least two transient robots. Therefore, blocking at least v− k + 1 ≥ k + 1
beacons from any given waiting robot (so that it sees, at most, k− 1 beacons and fails to
move during the epoch) needs at least v− k + 1 transient robots, so the next epoch begins
with at least v− k + 1 more beacons. Observe that this is independent of the location of the
beacons on f .

Thus, the number of beacons at the start of epoch e + 1 is at least 2v− k + 1 > 3v
2 for

v ≥ 2k ≥ 4.

Observe that (3
2)
O(log k) > k2. Therefore, from Lemma 7, in O(log k) epochs, all initial

waiting robots have been converted to beacons. This gives the following main result of this
section. We use this result in Section 4 with k = 2 and k = 3. For these cases, the number of
epochs needed is, at most, 5 and 7, respectively.

Theorem 2. The algorithm for the Beacon-Directed Curve Positioning Problem using a k-point curve
runs on the robots with lights model in O(log k) epochs, using 3 colors in the ASYNC setting.

4. O(1)-Time ASYNC COMPLETE VISIBILITY Algorithm

Our algorithm consists of three stages, Stages 0–2. In each stage, the robots make
progress on converging toward a configuration where all the robots are in a convex hull
(see Figure 7).

• Stage 0 (initialization) handles the case of a collinear initial configuration. The
endpoint robots move a small distance perpendicular to the line, which ensures that,
in the resulting configuration, not all robots are collinear. Figures 7a and 8 depict a
worst case scenario, where all robots are initially collinear. In an FSYNC setting, this
stage runs for one round [9]. In anASYNC setting, we show later that this stage runs
in O(1) epochs.

• Stage 1 (interior depletion) moves all interior robots of P to the sides of P′′ (Figure 7c).
Stage 1 achieves this in five sub-stages, Stages 1.1–1.5, that work as follows.

Algorithms 2021, 14, 56 13 of 35

– Stage 1.1 starts as soon as the robots in C0 reach a non-collinear configuration
(Figure 9a). Stage 1 moves the corner robots of P (Figure 9a) to make them corners
of P′ (Figure 9b).

– Stage 1.2 first computes the eligible lines for the corners of P′ and then moves (at
least) 4 interior robots of P′ (all these robots have color start) to those eligible
lines. Figure 9c illustrates this stage.

– Stage 1.3 moves all the remaining interior robots of P′ to the eligible lines of the
corners of P′. Figure 9d shows how the robots in the interior of P′ in Figure 9c
move to EL3.

– Stage 1.4 moves the robots on the eligible lines to the sides of P′.
Figure 9e shows how the robots on the eligible lines in Figure 9d become side
robots of P′.

– Stage 1.5 moves the side robots of P and P′ to the sides of P′′. Figure 9f shows
how the side robots of P and P′ in Figure 9e become side robots of P′′.

Stage 1 starts as soon as the robots in C0 reach to a non-collinear configuration
(Figure 7b).
In an FSYNC setting, this stage runs for four rounds [9]. In an ASYNC setting,
we show later that each sub-stage runs on O(1) epochs and Stage 1 finishes in O(1)
epochs.

• Stage 2 (edge depletion) relocates the side robots of P′′ (Figure 7d) to the corners of
P′′′. Figure 7e shows the resulting convex hull. In an FSYNC setting, this stage runs
for four rounds [9]. In an ASYNC setting, we show later that this stage runs for O(1)
epochs.

At the initial configuration C0, all robots in Q have color start. Each robot ri works
autonomously having only the information about C(ri). If P(ri) is a line segment and
N > 3, Stage 0 to a non-collinear C0. Stage 1 proceeds autonomously until all robots are
colored either corner or side. This acts as the starting configuration for Stage 2, which
proceeds autonomously until all robots have color corner for their lights. The algorithm
then terminates.

Phase 0 Phase 1 Phase 2

(a) (b) (c) (d) (e)

Figure 7. The three stages (or phases) of the algorithm: (a) shows an initial linear configuration in Stage 0; (b) shows either
the initial non-linear configuration or when the initial linear configuration in (a) is transformed to a non-linear configuration;
(c) shows the configuration of robots at the end of Stage 1, in which all the robots are on the perimeter of a convex polygon;
(d) shows how the sides robots of the convex polygon moving towards the exterior of the polygon in Stage 2 to become
corners of a polygon; and finally (e) shows the final configuration in Stage 2 in which all robots are on the corners of a
convex polygon solving COMPLETE VISIBILITY.

The robots execute the stages sequentially one after another. One could use (only for
brevity of this discussion) a different palette of colors for each stage (while keeping the
number of colors used a constant). Thus, the algorithm can explicitly synchronize at the
end of each stage, and our analysis can consider each stage separately. We will indicate
on high level (for brevity) how robots collectively and consistently detect the end of each
stage. Table 2 gives the transition of colors of the corner, side, and interior robots during

Algorithms 2021, 14, 56 14 of 35

the execution of the algorithm. Though robots are oblivious, the colors and configurations
that the robots in Q assume synchronize execution of the stages (Table 3) so that robots
execute stages (and sub-stages) sequentially one after another.

The algorithm uses 47 colors and runs for a total of O(1) epochs.

Table 2. Color transitions of the robots during the execution of the algorithm. A color inside {} indicates that not all corners
(sides or internals) may assume that color during the execution.

Robot Color Transition
start→ {start_moving} → ready→ ready_moving→ corner1→ {corner2→ corner21

Corners → corner22→ corner22_moving→ corner23→ corner23_moving}
→ {corner3→ corner4} → {corner5} → corner
(i) start→ side1→ side→ {transient} → {scout1} → {scout1_moving}

Sides → {scout2} → {beacon} → corner;
(ii) start→ side1→ special→ temp_corner→ corner
start→ {internal→ internal_moving} → {start_moving} → {transit

Internals → transit_moving→ transit1→ transit1_moving→ transit2→ transit2_moving
→ eligible} → {side2→ side2_moving} → {side3→ side3_moving} → side

Table 3. An illustration of how the colors of robots synchronize execution of the stages.

Stages Synchronization Conditions

0 & 1.1 When Stage 0 starts, all robots have color start, and each robot sees,
at most, two other robots collinear with it.
When Stage 1.1 starts, all robots have color start or ready.
Each robot sees at least two other robots not collinear with it.

1.1 & 1.2 When Stage 1.2 starts, each interior robot of P′ sees at least one robot with
color corner2, and all corners have color corner, corner2, or corner3.

1.2 & 1.3 When Stage 1.3 starts, at least one robot has color corner4, and
all corners have color corner, corner4, or corner5.

1.3 & 1.4 When Stage 1.4 starts, there are robots with color internal,
internal_moving, or corner4, and at least one
robot has color corner5.

1.4 & 1.5 When Stage 1.5 starts, the only possible robot colors are corner, side2,
side1, and special.

1.5 & 2 When Stage 2 starts, all robots of Q are on the corners and sides of P′′

with color corner and side, respectively.
When Stage 2 finishes, all the robots in Q are in the corners of P′′′

with color corner.

We showed in Sharma et al. [13] that Stages 0, 1.1, 1.4, and 2 run for O(1) time and
Stages 1.2, 1.3, and 1.5 run for O(log N) time. We showed in Sharma et al. [14] that Stages
1.2, 1.3, and 1.5 can be made to run in O(1) time. This improvement was achieved by
satisfying the conditions of the Beacon-Directed Curve Positioning framework (Section 3)
to run Stages 1.2, 1.3, 1.5, and 2 in O(1) time; Stage 2 does not require the Beacon-Directed
Curve Positioning framework as it already runs in O(1) time without it, but the use of
the Beacon-Directed Curve Positioning framework helps to streamline the presentation
of the ideas. This provides the overall O(1) run time for the algorithm. For Stages 1.2,
1.3, and 1.5 that use the Beacon-Directed Curve Positioning framework to run in O(1)
time, we first describe the O(log N) run time ideas which are simpler to understand. The
Beacon-Directed Curve Positioning framework requires each robot moving to a k-point
curve to see the 2k beacons that are on the curve in the beginning and all the robots that
move to the curve (in addition to the 2k beacons in the beginning) during the execution

Algorithms 2021, 14, 56 15 of 35

of the framework, if there is no robot currently in transit to the curve. This turned out
to be particularly challenging for Stages 1.2 and 1.3, among the other conditions listed in
Definition 2.

We managed to address this challenge by exploiting the eligible area EA(∗) of the
corners of P. Notice that all the points inside EA(ci) for each corner ci are visible to all
the robots in the interior of P (while they are not moving). Therefore, we first develop a
technique to compute an eligible line ELi for each corner ci of P by the interior robots of P.
We then develop a technique to place (at least) four interior robots on an eligible line ELi
(note that ELi is inside EA(ci)), two as left beacons and two as right beacons (Definition 3).
After that, we develop a technique to maintain the property that the interior robots always
see ci (irrespective of the robots on ELi), and, when there is no transient robot, they see
all the robots on ELi. This idea also turned out to satisfy the remaining three conditions
(Definition 2) of the Beacon-Directed Curve Positioning framework. Putting these ideas
altogether achieves O(1) runtime for Stages 1.2 and 1.3. We then extend these techniques
in the same spirit to run Stages 1.5 and 2 in O(1) time. We provide details of Stages 0–2
separately below and outline the major properties they satisfy.

5. Stage 0-Initialization

The goal of this stage is to transform a collinear initial configuration C0 to a non-
collinear C0. Initially at C0, all N ≥ 1 robots are stationary and have color start. Let C
denote the condition that a robot x can see only one other robot y (for C to be true for x, all
robots in Q must be collinear with x a robot at one end of the line). Otherwise, this stage is
not needed since all the robots in Q are already on the corners, sides, and interior of a hull
P with (at least) three corners.

If C holds, x sets its color to start_moving and moves perpendicular to line xy for
a small distance δ. Robot x then changes its color to ready when it becomes active next
time. When at least one robot does this move, the configuration changes to a non-collinear
configuration for N > 3 (see Figure 8). The cases of N ≤ 3 can be treated separately as
special cases. For N = 3, if the robots are not collinear after at least x (or y) moved once,
we already have a polygon with three corners. However, if all three robots y, z, x in Q are
again collinear after x, y are moved and colored ready, the middle robot z sets its color
to ready and moves orthogonal to line xy for δ > 0. Since x, y are already colored ready,
they do not make the perpendicular move again, and the move of z guarantees that the
collinear configuration translates to a triangle configuration. When N = 1, the only robot
x can simply terminate since it sees no other robot. If N = 2, one robot sees the light of
other robot ready and figures out that there are only two robots in Q and terminates. This
happens at the second (and final) round of the algorithm.

x y x

y

z z

Figure 8. Examples of initially linear configurations.

Lemma 8. At the end of Stage 0, one of the following holds: (i) for N = 1, the only robot simply
terminates with color start; (ii) for N = 2, both the robots terminate changing their color to ready
from start; (iii) for N = 3, all three robots are in the vertices of a triangle with color ready; and
(iv) for N > 3, there exists a hull P such that all robots in Q are in the corners, sides, and the
interior of P with color ∈ {start, ready}.

Theorem 3. Stage 0 finishes in (at most) three epochs.

Proof. For N = 1, it is immediate that the algorithm terminates in one epoch. For N > 3,
any collinear configuration translates to a non-collinear configuration in the first epoch,

Algorithms 2021, 14, 56 16 of 35

since the two endpoint robots move orthogonal to the line segment in that epoch. For
N = 2, the only two robots change their color to start_moving in the first epoch. In the
second epoch, they again find themselves in a line and change their color to ready. In the
third epoch, each realizes that the other is the only robot in the system and terminates. For
N = 3, by the third epoch, the middle robot realizes that it is the only robot between two
endpoint robots in the line segment and moves orthogonal to the line by δ > 0 setting its
color to ready. Since the endpoint robots have color ready and do not move, this gives a
non-collinear (triangle) configuration by the end of that epoch.

c0
c1

c2

c3

c4

P’

P P
c0

c1

c2

c3

c4

P’

P

L3

L1 c0
c1

c2

c3

c4

P’

L3

(a) (b) (c) (d)

c0 c1

c2

c3

c4

P’

c0 c1

c2

c3

c4

P’’

(e) (f)

Figure 9. The five sub-stages, Stages 1.1–1.5, of Stage 1: (a) starting configuration for Stage 1, and (b–f) after
Stages 1.1–1.5, respectively.

6. Stage 1-Interior Depletion

The goal of this stage is to move the corner, side, and interior robots of P to the corners
and sides of P′′. At the start of Stage 1, each robot is colored start or ready (Lemma 8). A
robot with color ready is located at a corner of P. A robot with color start is located at a
corner or side or in the interior of P. From Stage 0, we have that P is not a line segment.

Let Qc,Qs,Qi be the sets of robots at corners, sides, and the interior of P, respectively.
For a robot ri, if all other visible robots are within an angle of <180◦ (=180◦, >180◦, re-
spectively), then ri is a corner (side, interior, respectively) robot. Stage 1 moves robots in
all Qc,Qs,Qi to corners and sides of P′′ and colors them as corner and side. Figure 9
illustrates Stage 1.

This stage needs four rounds in the FSYNC setting [9]. In Round 1.1, all corners of
P become corners of P′ with color corner, and the side robots of P change their color to
side1 without moving. In Round 1.2, all interior robots of P (also interior in P′) assume
color transit moving closer to their closest corners in P′, and the robots with color side1
move to the closest sides of P′ assuming color side. In Round 1.3, some transit colored

Algorithms 2021, 14, 56 17 of 35

robots become side robots of P′, and, by the end of Round 1.4, all transit colored robots
become side robots of P′.

Stage 1 organizes into five sub-stages in the ASYNC setting: Stage 1.1 translates
Round 1.1, Stages 1.2, 1.3, and 1.5 translate Round 1.2, and Stage 1.4 translates Rounds
1.3 and 1.4 of the FSYNC algorithm. Table 3 explains how robots explicitly synchronize
stages (and sub-stages) so that a next stage begins only after the current stage finishes.

• Stage 1.1 is to move the corner robots of P (Figure 9a) to the corners of P′ (Figure 9b)
so that all interior robots of P see them (and vice versa). Each corner robot of P
first moves to some point inside the eligible area in the interior of P and colors itself
corner1. After that, each corner that has a robot in its corner triangle changes color to
corner2. Otherwise, if an interior robot in present in P′, it changes color to corner3,
while if no interior robot is present, it changes color to corner. The side robots of P
first color themselves side1, and some of them later change color to special.

• Stage 1.2 is to move all the robots that are inside corner triangle T(ci) of each corner
ci of P′ to the points on the corner line segment Li and color them transit. After that,
the corners of P′ with color corner2 change color to corner3. Figure 9c shows how
the robots inside T(c3) in Figure 9b move to L3.

• Stage 1.3 is to position all the robots that are inside S(P′) to the corner and triangle
line segments of the corners of P′. The robots change color to transit after they reach
their respective (corner or triangle) line segments. Figure 9d shows how the robots
inside S(P′) in Figure 9c move to triangle and corner line segments.

• Stage 1.4 is to move the robots in the corner line segments and the triangle line
segments to the sides of P′. Let r be a robot on the triangle line segment xiyi of a
corner ci of P′ (the case for r being on the corner line segment is analogous). Robot r
moves to either cixi or ciyi and takes color side2. Figure 9e shows how the transit
robots in Figure 9d become sides of P′.

• Stage 1.5 is to make the side robots of P and P′ the side robots of P′′. For this, if
there is only one robot in a side of P, it moves to the closest side in P′ and takes color
side. If there are at least two robots in a side of P, then the side robots of P′ move
to the sides of P′′ and take color side. The robots with colors side1 and special
also change their color to side. Figure 9f shows how the side robots of P and P′ in
Figure 9e become side robots of P′′. At the end of this stage, all the robots in Q are on
the corners and sides of P′′ with corners colored corner and sides colored side.

In the following, we provide details of Stages 1.1–1.5 separately below and show that
each stage runs for O(1) epochs each.

6.1. Stage 1.1-Making Corners of P the Corners of P′

At the start of Stage 1.1, a corner of P may have color ready or start. If a corner ci of
P becomes active and has color start, then it assumes color ready. The side robots Qs of
P change their color to side1 from start.

Definition 4. Let ra and rb be the counterclockwise and clockwise neighbors of a corner ci of P in
the boundary of P. If there are no side robots in cici−1 (cici+1), then ra is ci−1 (rb is ci+1).

After ci has color ready, if it sees both ra, rb have color ∈ {ready, side1, corner1},
then it assumes color ready_moving and moves to a point in EA(ci). When ci becomes
active next time, it is already in EA(ci), and each robot in the sets Qs,Qi sees it (Lemma 1).
Corner ci then changes its color to corner1. After that, ci does not move in any future
epochs (but it may assume new colors).

After all corners of P move to their EA(∗), they form P′. Any robot with color side1
changes its color to special when it becomes a corner (due to the moves of corners of P)
and it sees at least one other robot with color side1 or special in the side of P to which
it belongs. If the robot with color side1 is the only robot in that side, then it retains color
side1. The robot can easily identify this situation since it is in the corridor of the side of

Algorithms 2021, 14, 56 18 of 35

P′ that is formed from the moves of the corners in the side of P to which it belongs. For
example, if si is the only side robot in a side S of P, then it sees no other robot in the corridor
of S besides itself.

Lemma 9 (Reference [9]). The interior robots of P remain as the interior robots of P′.

Lemma 10. P′ has the same number of corners as P.

Proof. A corner ci of P moves to EA(ci) only after it sees both ra, rb have color ∈ {ready,
side1, corner1}. Since the interior robots of P do nothing, it only remains to show that
side robots of P remain in their original positions. This is immediate since, if ra and/or rb
are side robots of P, then they take color side1 before ci moves to EA(ci). Moreover, after
ra and/or rb take color side1, they do not move to their eligible areas even if they become
corners of P. The only possibility is that ra, rb might change their color to special.

Lemma 11. The corners of P become corners of P′ and take color corner1 in (at most) three epochs.

Proof. All the robots in the sets Rc and Rs (corners and sides of P, respectively) change
their colors to ready and side1, respectively, in, at most, one epoch. All the corners in Rc
then move to their EA(∗) by the end of the next epoch with color ready_moving. By the
end of the third epoch, the robots that moved to EA(∗) change their color to corner1.

We now describe how the corners of P′ change their colors from corner1 to corner2,
corner3, or corner. For a corner ci with color corner1, we will define conditions to be
satisfied on both adjacent sides that will depend on ra, its side Sa, and the neighboring
corner on that side ci−1 and, likewise, rb, Sb, and ci+1. Figure 10 shows ci (as c0) and its
neighboring sides ci−1 and ci+1 (as w′ and w′′) as it moves from P to P′.

c0 w’’’

rb

ra

w’

w

w’’

c0

rb

ra

w’

w

w’’

w’’’
Sa

Sb
Sb

Sa

Figure 10. An illustration of how a corner c0 of P moves during Stage 1.1.

The following lemma deals with visibility of the neighboring corners.

Lemma 12. Corner ci of P′ sees both neighboring corners ci−1 and ci+1.

Proof. Since ci, ci−1, and ci+1 were the endpoints of Sa and Sb of P and now moved to their
EA(∗), the remaining side robots in Sa and Sb do not block the view of ci to see both ci−1
and ci+1. This is because ci and ci−1 and ci and ci+1 are not in the sides Sa and Sb anymore,
and the interior robots of P remain as interior in P′ (Lemma 9).

Corner ci waits until ra and ci−1 satisfy one of the conditions below for side Sa and rb
and ci+1 satisfy a corresponding condition for side Sb.

(C1) If ra is corner ci−1, then ci−1 has color ∈ {corner1, corner2, corner3, corner}.
(C2) If ra is the only side robot on Sa, then ra has color side1 and ci−1 has color ∈ {corner1,

corner2, corner3, corner}.

Algorithms 2021, 14, 56 19 of 35

(C3) If ra is one of multiple side robots on Sa, then ra has color special and ci−1 has color
∈ {corner1, corner2, corner3, corner}.

When the robots of both sides adjacent to ci satisfy the appropriate conditions, then ci
takes a color changing action as follows. If at least one robot is inside corner triangle T(ci)
(defined with respect to P′), then change color to corner2. Otherwise, if at least one robot
is in the interior of P′, then change color to corner3, but, if no robot is in the interior of P′,
change color to corner.

Lemma 13. When Stage 1.1 finishes, all the corners of P′ are colored ∈ {corner2, corner3,
corner}.

Proof. If there is a corner of P′ with color start, ready, ready_moving, then either condi-
tion C1 or conditions C2 and C3 do not hold for at least one corner of P′ with color corner1,
and that corner cannot change its color to corner2, corner3, or corner.

Lemma 14. All corners of P′ are colored ∈ {corner2, corner3, corner} in (at most) one epoch
after they are colored corner1.

Proof. The proof is immediate since, after all corners of P′ are colored corner1, either
condition C1 or both C2 and C3 hold for each corner of P′.

The corollary below follows from Lemmas 11 and 14.

Corollary 1. Stage 1.1 finishes in (at most) four epochs.

6.2. Stage 1.2: Positioning the Robots Inside Corner Triangles of the Corners of P′ on the Corner
Line Segments

Note that after Stage 1.1 finishes, the corner robots of P′ have color corner2, corner3,
or corner. The side robots of P have color side1 or special. The interior robots of P′

have color start. We first provide an high level overview of an algorithm that finishes
Stage 1.2 in O(log N) epochs and then provide details of an algorithm that runs Stage 1.2
in O(1) epochs.

The O(log N)-epoch algorithm for Stage 1.2 works as follows. The goal is to move
all the interior robots inside corner triangles to position them on the corner line segments
CLi. First, two robots are positioned on CLi of each triangle sequentially, if no such two
robots are already on CLi. In fact, the robots that are closest to CLi are chosen to perform
those actions. Others remain stationary. Those robots that now moved to CLi are colored
differently to indicate that they are on that line segment. This can be done in O(1) epochs.
After two robots are positioned on CLi of each triangle and colored appropriately, the
remaining robots start to move to CLi. For a robot ri to move to CLi, it has to correctly
identify CLi. For that, ri has to see (at least) two robots that are on CLi. Therefore, in one
epoch after two robots are positioned on CLi, at least a robot moves to CLi since it sees two
robots on CLi. In the next epoch, at least a robot moves to CLi. This makes 4 robots on CLi.
Therefore, in the third epoch, at least two robots move to CLi, making total 6 robots. Then,
4, 8, 16, . . . number of robots can move to CLi in each subsequent round. Since there are
n robots all internal robots may be inside a corner triangle, this whole process finishes in
O(log N) epochs. This approach was developed in our IPDPS’17 paper [13].

We are now ready to describeO(1)-epoch algorithm for Stage 1.2 which we developed
in our SSS’17 paper [14]. We execute Stage 1.2 in two sub-stages. In Stage 1.2.1, we compute
eligible lines for the corners of P′. In Stage 1.2.2, we put (at least) four interior robots in
each of those lines to serve as left and right beacons as required in the Beacon-Directed
Curve Positioning framework of Section 3 to run Stage 1.3 in O(1) epochs.

Algorithms 2021, 14, 56 20 of 35

6.2.1. Stage 1.2.1-Computing Eligible Lines for the Corners of P′

Let ci be a corner of P′ colored corner2. If there are robots inside corner triangle
T(ci), then pick the corner line segment CLi; otherwise, pick the triangle line segment TLi.
Denote this line as Li. We first put four interior robots of P′ in Li (Figure 11a) and color
them transit. This helps later to compute the eligible line ELi for ci.

ci

ci+1

P’

ci-1

Li

t1

t2

t3

t4

ci

ci+1

P’

ci-1

Li

t1

t2

t3

t4

(a) (b)

ci

ci+1

P’

ci-1

Li

t1

t2

t3

t4

Li’

xi

yi

ELi

opi

ci+1

P’

ci-1

Li

t1

t2

t3

t4

Li’

ci

yi

ELi

(c) (d)
opi

ci+1

P’

ci-1

Li

t1

t2

t3

t4

Li’

ci

yi

ELi

ci

ci+1

P’

ci-1

Li

t1

t2

t3

t4

Li’

xi

yi

ELi

(e) (f)

ci

ci+1

P’

ci-1

Li

t1

t2

t3

t4

Li’

xi

yi

ELi

r4

r1

QC(t1)

QC(t4)

ci

ci+1

P’

ci-1

Li

t1

t2

t3

t4

Li’

xi

yi

ELi

r4

r1

QC(t1)

QC(t4)

(g) (h)

Figure 11. An illustration of how the corner and interior robots of P′ move during Stage 1.2.1.2: (a) four robots on line Li

which is either a corner line segment CLi or a triangle line segement TLi; (b) two robots from Li moving to a line parallel to
Li towards corner ci; (c) corner ci moving to ELi on the intersection point of ELi and cici−1; (d) one orange robot moves to
ELi; (e) corner robot ci now moves back to the corner; (f) another orange robot moves to ELi; (g) the orange robots on ELi

move away from each other making room for two robots on Li to move to it; and finally (h) fours robots are on ELi.

Stage 1.2.1.1: Moving Four Interior Robots in P′ to Li:
Let ri be the first robot to be activated among the interior robots Qi after Stage 1.1

finishes. Suppose corner ci of P′ is closest to ri. Robot ri sees ci and its neighbor corners
ci−1 and ci+1 in P′ (Lemma 1). Therefore, ri can find whether it is inside T(ci) or not.

Suppose first that ri is inside T(ci). Let Lri be the line parallel to ci−1ci+1 passing
through ri. If there is no robot in P′ divided by Lri towards ci, ri changes its color to

Algorithms 2021, 14, 56 21 of 35

transit. Notice that, in this case, Lri is in fact the corner line segment CLi. Let r′′ 6= ri be
the robot inQi closest to CLi (w.r.t. the line parallel to CLi) and also closest to ci (among the
corners of P′). Robot r′′ changes its color to start_moving and moves to the intersection
point w of CLi and line cir′′. It then changes its color to transit when it becomes active
next time. Until r′′ takes color transit, no other robot in Qi moves toward ci because each
robot r′′′ in Qi closer to ci sees at least a robot with color start or start_moving in the
area divided by line Lr′′′ (parallel to CLi) towards ci. Similarly as r′′′, two other robots can
sequentially move to CLi and take color transit. The remaining robots in Qi do not move
toward ci after four transit robots are in CLi since either they see at least a robot with
color start or start_moving toward ci from their position or four transit robots already
on Li.

Suppose now that ri is not inside T(ci). It moves to TLi at the intersection point of TLi
and ciri assuming color start_moving and colors itself transit when it becomes active
next time. The three other robots in Qi closest to ci then move sequentially to TLi as the
previous paragraph discussed and color themselves transit.

Corner ci changes its color to corner21 after it sees (exactly) four robots on Li with
color transit. This synchronizes it with the interior robots as they also do not move to
Li after four robots are already on it. After ci takes color corner21, the robots in the set
Qi (with color start) that find ci closest among the corners of P′ assume color internal
(without moving). After all robots in Qi take color internal, ci assumes color corner22
(changing from corner21). All this is possible because ci sees all the robots inQi (with color
start), and vice versa (Lemma 1). The robots in the set Qi, after taking color internal,
wait until all corners of P′ have color ∈ {corner3, corner5, corner}. This is because they
see all the corners of P′.

Observe that it is possible for some of the corners of P′ to have fewer than four robots
(or even no robot) on Li even after all robots in Qi have color internal. Those corners
change their color directly to corner5 from corner2.

Stage 1.2.1.2-Computing Eligible Lines for the Corners of P′: We describe how to com-
pute ELi for ci. Let t1, t2, t3, t4 be the four robots in Li of corner ci (Stage 1.2.1.1) with t2 and
t3 between t1 and t4, and t2, t3 being closer to t1, t4, respectively (Figure 11a). We ask t1 and
t4 to move to the lines cit2 and cit3, respectively, assuming color transit_moving. Robots
t1, t4 perform this move only when they have color transit and ci has color corner22.
The position they move to in those lines is the 1/8-th point from ci to t2 and t3, respectively.
They then change their color to transit1 (Figure 11b). After ci sees both t1, t4 with color
transit1, it computes EA(ci) and a point xi on cici−1 (or yi on cici+1) so that the line, say
L′i, parallel to t1t4 passing through xi (or yi) crosses EA(ci). According to the construction,
t1t4 is parallel to t2t3, and also parallel to ci−1ci+1. Let xi on cici−1 be the point so that L′i
crosses EA(ci). Observe that L′i is in fact the eligible line ELi. Corner ci then moves to xi
(the procedure for ci moving to point yi is analogous) assuming color corner22_moving
(Figure 11c) and changes its color to corner23. Let opi be the position of ci before it moves
to xi.

We now describe a technique to put all t1, t2, t3, t4 on L′i (which is ELi) so that the
interior robots of P′ can recognize it as ELi. Let t1 be closer to ci than t4 from the new
position xi of ci (the case of t4 being closer to ci than t1 is analogous). Robot t1 moves to the
intersection point of L′i and t1t2 assuming color transit1_moving (Figure 11d) and then
changes its color to transit2 when it becomes active next time. After ci sees t1 colored
transit2, it moves back to its previous position opi (where it was colored corner22)
assuming color corner23_moving (Figure 11e). Although ci has no memory of opi, it can
compute opi since opi is the intersection point of lines t1t2 and t4t3. Robot ci then assumes
corner24. After this, t4 with color transit1 moves to the intersection point of L′i and t4t3
assuming color transit1_moving (Figure 11f). It then assumes color transit2.

Let op1, op4 be the current positions of t1, t4, respectively. The robots t1 and t4 (after
taking color transit2) move either left or right in L′i to make room for robots t2 and t3
to move to L′i without blocking any internal colored robots to see ci and also the robots

Algorithms 2021, 14, 56 22 of 35

t1, t2, t3, t4 on L′i. Robot t1 (and similarly t4) moves as follows. Let
←→
cit1 be a line that connects

t1 with ci. Let L′ be a line connecting ci with an internal colored robot r in the left or right
of
←→
cit1 such that, in the cone area QC(r) formed by L′ and

←→
cit1, there is no other internal

colored robot. Let w be the intersection point of L′i and L′. Robot t1 moves to the midpoint
m of the line segment that connects it with w (note that all three points w, t1, and m are in
L′i) assuming color transit2_moving (Figure 11g). It then changes its color to eligible
when it becomes active next time. After t2 and t3 see both t1 and t4 with color eligible,
t2 moves to point op1 (the position of t1 in L′i before it moved to point m) and t3 moves
to op4 (the position of t4 in L′i before it moved) (Figure 11h). Robots t2, t3 then assume
color eligible. After ci sees all t1, t2, t3, t4 are on L′i with color eligible, it assumes color
corner3.

Lemma 15. During Stage 1.2.1, four interior robots of P′ inside the corner polygon CP(ci) are
correctly placed on the eligible line ELi of ci and colored eligible and the corners of P′ are colored
∈ {corner3, corner5, corner}. Stage 1.2.1 runs for O(1) epochs avoiding collisions and Stage
1.2.1 starts only after Stage 1.1 finishes.

Proof. It is easy to see that, if the robot r in the interior of P′ is not inside CP(ci), it does
not move to ELi since r does not find ci closest to it among the corners of P′. We first show
that four robots on CP(ci) correctly move to Li (which is TLi or CLi) and then show that
they are then correctly positioned on the eligible line ELi.

To prove the first case, it is sufficient to show that an internal robot ri always sees its
closest corner ci and two neighboring corners ci−1 and ci+1 of ci in P′ during Stage 1.2.1.
This will allow ri to correctly compute Li and move to it if it is closer to Li than any other
interior robot of P′.

Notice that ri sees all the corners of P′ in the beginning of Stage 1.2.1 as no robot
has moved to lines CLi or TLi at that time. Let ri−1, ri+1 be the closest interior robots to
corners ci−1, ci+1, respectively. Let ri−1 (ri+1) be currently moving or have moved to Li−1
(Li+1). We will show that ri−1, ri+1 do not block ri to see ci−1, ci+1, respectively. Observe
that, since ri−1 (ri+1) is currently moving to or has moved to Li−1 (Li+1), that means ri−1
(ri+1) is closer to ci−1 (ci+1) than any other internal robot of P′. Moreover, according to the
algorithm for Stage 1.2.1.1, except ri−1 (ri+1), no other robot is currently moving to ci−1
(ci+1).

Let Lri be the line parallel to ci−1ci+1 passing through ri. Define lines Lri−1 , Lri+1

similarly. Note that, if ri−1 (ri+1) is moving to or has already moved to Li−1 (Li+1), then no
other robot with color start is inside the triangle divided by line Lri−1 (Lri+1) towards ci−1
(ci+1). Moreover, since the corners ci, ci−1, ci+1 have already moved to their eligible areas, a
unique line connects every internal robot with these corners. Therefore, as ri, ri−1, and ri+1
are moving toward different corners of P′, they do not block the view of ri to see corners
ci−1 and ci+1. Furthermore, no more than four robots will move to Li because the interior
robot in CP(ci) that is closest to Li after four robots are in Li sees all the robots in Li and,
hence, simply waits.

We now show that these four robots on Li are correctly positioned on ELi. Note that
ci sees all four robots on Li. Robot ci simply waits until four robots are on Li. After four
robots are on Li, ci can wait for two of them to take color eligible. At this time, the two
robots t1, t4 are on a line in the triangular area divided by line Li towards ci and the line
t1t4 is parallel to Li (Figure 11b). As ci now computes EA(ci) and moves to the point xi on
one side cici−1 (Figure 11c), the line parallel to t1t4 going through xi must pass through
EA(ci). Now, since the four robots are arranged on two lines t1t4 and Li with two robots on
each of them, they provide the bearing to move t1, t4 to ELi. After that, the color eligible
of t1, t4 will provide the bearing for t2, t3 to move to ELi.

The colors {corner3, corner5, corner} of the corners are immediate.
We now show that Stage 1.2.1 finishes in O(1) epochs. The four robots can move to Li

in, at most, 8 epochs, i.e., a robot takes, at most, 2 epochs. In the first epoch, a robot moves
to Li. In the next epoch, it changes its color to transit. After that, in one epoch, corner

Algorithms 2021, 14, 56 23 of 35

ci changes its color to corner21. The robots in CP(ci) then color themselves internal in
one epoch. Each corner ci then colors itself corner22 or corner5 in one epoch. Therefore,
Stage 1.2.1.1 finishes in, at most, 11 epochs. Similarly, since we are moving four robots on
Li to ELi, Stage 1.2.1.2 also needs O(1) epochs.

We now show that the execution of Stage 1.2.1 is collision-free. Note that the robots
moving to two different corners do not collide since they are closer to those corners than
others. The robots moving to Li in Stage 1.2.1.1 do not collide because the lines joining
them with the corner ci intersect only at ci (and they do not reach ci). For Stage 1.2.1.2, it is
clear from the construction (see Figure 11) that the robots never share the same positions,
and their paths do not cross.

Finally, since all the interior robots of P see all the corners of P′, the interior robots do
not start Stage 1.2.1 since they see at least a robot with color corner1 until all corners of P′

are colored corner2, corner3, or corner.

Lemma 16. Let ri be a robot with color internal in the interior of P′. When Stage 1.2.1 finishes,
ri sees ci and all four eligible colored robots in the eligible line ELi.

Proof. We have from Lemma 1 that, in the beginning of Stage 1.2, all interior robots of P′

can see ci as ci is positioned at a point inside EA(ci). Since all the interior robots of P can
see ci, a unique line joins ci with each interior robot rj of P′. Therefore, it is easy to see that
two lines cirj and cirk joining ci with two interior robots rj, rk of P′ intersect only at ci.

In Stage 1.2.1.1, when four interior robots t1, . . . , t4 of P′ move to Li, they move in their
lines citj, 1 ≤ j ≤ 4, to reach Li; hence, they do not block any other internal robot in P′ to
see ci (and vice versa). Note that we consider only the robots that are colored internal
(or colored start in Stage 1.2.1.1). In Stage 1.2.1.2, when t1, . . . , t4 move to ELi, t2, t3 move
again in lines cit2 and cit3 and t1 and t4 move to the points of ELi that are not on any line
cirk joining any interior robot rk (with color internal) with ci (note that rk has not yet
moved to Lj or ELj of any corner cj of P′). Therefore, all the interior robots (with color
internal) see ci even after t1, . . . , t4 moved to ELi.

We now show that all the interior robots of P′ see all t1, . . . , t4 (in addition to ci) after
t1, . . . , t4 are positioned on ELi. We have from Lemma 1 that any point inside EA(ci) is
visible to all the interior robots (with color internal) of P′. Moreover, since ci is already
in EA(ci) due to its move in Stage 1.1 and ELi joins two points in the neighbor edges of ci
in the perimeter of P′, the lines joining interior robots with ci intersect ELi exactly at one
point, and no two interior robots of P′ are in any line cirj of an interior robot rj. Therefore,
t1, . . . , t4 are visible to all the interior robots of P′ even after that are positioned on ELi (and
vice versa). Moreover, since t1, . . . , t4 are in ELi, they are colored eligible.

6.2.2. Stage 1.2.2: Positioning (at least) Four Interior Robots on the Eligible Lines of the
Corners of P′

After computing the eligible line ELi for a corner ci of P′ in Stage 1.2.1, the goal in this
stage is to see whether the four robots on ELi with color eligible can serve as left and
right beacons to apply the Beacon-Directed Curve Positioning framework of Section 3 to
reposition the remaining interior robots of P′ (with color internal) to the eligible lines in
O(1) epochs. If those four robots are positioned such that all the interior robots of P′ inside
the corner polygon CP(ci) are within the cone area QC(ci) formed by lines

←→
cit2,
←→
cit3, then

these robots serve as left and right beacons and this stages finishes with ci changing its
color to corner4. Otherwise, (at most) four robots inside CP(ci) move to ELi in this stage
so that two of them serve as left beacons and two of them serve as right beacons for the
Beacon-Directed Curve Positioning framework. Figure 12 illustrates these ideas.

Algorithms 2021, 14, 56 24 of 35

ci

ci+1

P’

ci-1

xi

yi

ELi

r1
r3

QC’(r3)

QC’’(r1)t2t1
t3 t4

r2
QC’’(r2)r4

QC’(r4)

L’’

L’

CP(ci)

ci

ci+1

P’

ci-1

ELi

t’

L’’

L’

yi

xi

t’’

QC(ci)

Figure 12. An illustration of how the interior robots of P′ move to the eligible lines during Stage 1.2.2.

The details are as follows. Let ri be the first robot with color internal to be activated
after all the corners of P′ are colored corner3, corner5, or corner with at least a corner
colored corner3. Let ri be closest to corner ci of P′ than any other corner of P′. Robot ri sees
ci (Lemma 16) which has color corner3. Robot ri also sees both the neighboring corners
ci−1, ci+1 of ci in P′ and eligible colored robots t1, t2, t3, t4 that are on the eligible line ELi
of ci (Lemma 16).

Let QC′(ri) be the cone area of P′ formed by line ←→ciri and side cici−1 of P′; the left
of Figure 12 shows the cone areas QC′(r3) and QC′(r4) of two internal robots r3 and
r4. QC′′(ri) for ri formed by lines ←→ciri and cici+1 can be defined similarly; the left of
Figure 12 also shows QC′′(r1) and QC′′(r2) of two internal robots r1 and r2. If there is no
other robot with color internal in QC′(ri) (and/or QC′′(ri)) that is closer to ci than ri, then
ri moves to ELi at the intersection point of ELi and ciri assuming color internal_moving.
As depicted in the left of Figure 12, r1 does not see any other robot closer to ci in QC′′(r1)
and moves to ELi. It then assumes color eligible when it becomes active next time.

Robot ri determines whether there is some other robot rj in the cone area QC′(ri)
(and/or QC′′(ri)) that is closer to ci than itself as follows. Let L′, L′′ be two lines perpendic-
ular to cici−1 and cici+1, respectively, passing through their midpoints, forming the convex
polygon CP(ci). If there is a robot rj with color internal in QC′(ri) (QC′′(ri)) divided by
line L′ (L′′) towards ci, then ri assumes that rj is closer to ci in QC′(ri) (QC′′(ri)).

Note that ri always sees ci (Lemma 16). However, ri may not see ci−1 or ci+1 when
there is another robot r′ in CP(ci) that it currently transient to ELi. Nevertheless, observe
that the robots moving to ELi−1 and ELi+1 do not block the view of ri to see ci−1 and ci+1.
Therefore, ri decides to move to ELi if and only if the first robot it sees in both the left and
right of ci has color ∈ {corner3, corner4, corner5, corner}. Finally, when ri sees two
robots with color eligible in its cone area QC′(ri) (and/or QC′′(ri)), it does not move to
ELi (even if there is no other robot r′ closer to ci in QC′(ri) and/or QC′′(ri) than itself).

As soon as the corner ci sees (at least) four eligible robots in ELi, it assumes color
corner4 if the following holds. Let t′ (t′′) be the second robot in ELi from the either end

xi, yi of ELi (Figure 12). Let QC(ci) be the cone area formed by lines
←→
cit′ and

←→
cit′′ (the

area between two thick dotted lines in the right of Figure 12). If all the robots with color
internal inside the corner polygon CP(ci) lie within QC(ci), ci assumes color corner4.
The right of Figure 12 illustrates these ideas, where all the internal robots (shown as
black) are within QC(ci).

Lemma 17. Let there be at least four eligible colored robots on ELi. All the robots with color
internal inside the corner polygon CP(ci) see ci and the robots on ELi. Furthermore, ci sees all
the robots on ELi.

Proof. The proof is to extend the argument of Lemma 16 for the robots that move to ELi
during Stage 1.2.2. We have from Lemma 16 that the points on ELi are visible to all the
interior robots of P. Moreover, since any interior robot rj moves to ELi following the line
cirj joining ci with rj, it does not block the visibility of ci to see the robots inside CP(ci).

Algorithms 2021, 14, 56 25 of 35

Moreover, ci sees all the robots on ELi since there is no other robot in the interior of P′

divided by ELi towards ci.

Observe that it is possible for some corner cj of P′ to not have (at least) four eligible
robots in ELj even after all the robots inside CP(cj) moved to ELj. In this case, cj assumes
color corner5 (directly from corner3). Observe also that there can be, at most, eight robots
on ELi before any corner ci changes its color to corner4 since all four robots t1, t2, t3, t4 that
are positioned on ELi in Stage 1.2.1.2 are such that they are positioned within QC(ci) and
four new robots inside CP(ci) need to be moved to ELi so that there will be two robots
to act as left beacons and two robots to act as right beacons on ELi. This configuration is
needed for an admissible configuration for Stage 1.3.

Lemma 18. During Stage 1.2.2, (at least) four internal robots of P′ are positioned on the eligible
lines and colored eligible. Stage 1.2.2 runs for O(1) epochs avoiding collisions and Stage 1.2.2
starts only after Stage 1.2.1 finishes.

Proof. We have from Lemma 16 that, when Stage 1.2.1 finishes, any robot with color
internal in the interior of P′ sees ci and all four eligible colored robots on ELi. Robot ri
also sees ci−1 and ci+1 if no robot is currently in transit to ELi (irrespective of the interior
robots in transit to ELi−1 and ELi+1). Note that only the robots inside CP(ci) move to ci
since, otherwise, they will be closest to some other corner of P′ than ci. Therefore, any robot
ri inside CP(ci) can see all ci, ci−1, ci+1 if no robot inside CP(ci) is currently in transit to
ELi (Lemma 17). Therefore, ri can compute the cone areas QC′(ri) and QC′′(ri). Moreover,
since ri sees all ci, ci−1, ci+1, it can find whether there is some robot inside cone QC′(ri)
and/or QC′′(ri). Therefore, ri can correctly move to ELi.

We now show that Stage 1.2.2 runs for O(1) epochs. Note that since four robots are
already on ELi due to the execution in Stage 1.2.1, at most, four new robots move to ELi
at Stage 1.2.2. A robot can move to ELi in two epochs; hence, it needs eight rounds to put
four new robots on ELi. After that, the corner ci can color itself corner4 in one epoch.

The execution is collision-free since the robots moving to different eligible lines do not
collide. Moreover, the robots moving to the same eligible line also do not collide since the
straight lines (joining them with ci) they follow to reach ELi do not intersect before ci.

Finally, Stage 1.2.2 starts only after Stage 1.2.1 finishes because the robots in the interior
of P′ with color internal see at least a corner with color /∈ {corner3, corner5, corner}
during Stage 1.2.1.

6.3. Stage 1.3-Positioning the Remaining Internal Robots of P′ on the Eligible Lines

In the beginning of Stage 1.3, all corners of P′ have color ∈ {corner4, corner5,
corner} with at least a corner colored corner4 (otherwise, there is no interior robot with
color internal in P′).

Using the O(log N)-epoch approach developed in IPDPS’17 [13], all interior robots
of P′ that are on the corner line segments have color eligible and the rest have color
internal. The goal is to move the internal colored robots to position themselves on the
corner line segments. This is done as follows: Each robot colored internal find the closest
corner of P′. It then moves toward that corner to be positioned on the corner line segment
if it sees at least twp robots that are positioned on that corner line segment with color
eligible. The O(log N)-epoch argument for this approach is in the lines of the argument
we provided in Stage 1.2.

We now describe the O(1)-epoch approach developed in SSS’17 [14]. At the end of
Stage 1.2, all interior robots of P′ that are on the eligible lines have color eligible and
the rest have color internal. Let ci be a corner of P′ colored corner4, and let r be a robot
with color internal that is inside the corner polygon CP(ci). Note that r is closer to ci than
other corners of P′ and it always sees ci (Lemma 16). Robot r moves as follows.

Condition 1.3.1: Robot r has color internal and it can see at least two eligible
colored robots towards ci.

Algorithms 2021, 14, 56 26 of 35

Action 1.3.1: Let Lr be the line formed by those eligible robots. Robot r assumes
color internal_moving and moves to the intersection point w of lines Lr and cir.

Condition 1.3.2: Robot r has color internal_moving.
Action 1.3.2: Robot r assumes color eligible.
As soon as ci does not see any robot with color internal or internal_moving (i.e., all

robots in the interior of P′ are placed in the eligible lines), it assumes color corner5. We
can prove the following two lemmas.

Lemma 19. During Stage 1.3, the eligible colored robots positioned on ELi of a corner ci of P′

are seen by all the internal colored robots inside CP(ci) (and vice versa), if there is no transient
robot towards ELi.

Proof. We have from Lemmas 16 and 17 that the robots inside CP(ci) see all the robots
on ELi at the end of Stage 1.2. The direct extension of those lemmas shows that, if a robot
inside CP(ci) moves to ELi, it will also be visible to the remaining robots inside CP(ci)
waiting to move to ELi. Therefore, if some interior robot rl inside CP(ci) does not see any
robot re on ELi, then there must be some robot r f that is blocking the view of re from rl .
Since the interior robots do not block the view while they are waiting to move to ELi, there
must be a robot currently in transit to ELi.

Lemma 20. During Stage 1.3, all the robots in the interior of P′ (with color internal) are
correctly positioned on the eligible lines of the corners of P′ and colored eligible. Moreover, the
corners of P′ are colored corner5. Furthermore, Stage 1.3 runs for O(1) epochs avoiding collisions
and Stage 1.3 starts only after Stage 1.2.2 finishes.

Proof. The idea is to show that the configuration at the end of Stage 1.2 satisfies all the
conditions of Definition 2 to apply the Beacon-Directed Curve Positioning framework of
Section 3 to run this stage in O(1) epochs. We have that the final positions of the robots
inside CP(ci) on the eligible line ELi (a 2-point curve) are in the positions enclosed within
the cone area QC(ci) and two eligible robots (that serve as left beacons) are in the left of
QC(ci) and two eligible robots (that serve as right beacons) are in the right of QC(ci). We
argue that all four conditions of Definition 2 are satisfied in Stage 1.3. Condition (a) is
satisfied since the paths pi, pj of two different robots ri, rj in the interior of CP(ci) do not
intersect while moving to ELi. Condition (b) is also satisfied since the robots move in
straight lines joining them with ci. Condition (c) is satisfied since the paths pi, pj intersect
ELi at one point. Finally, Condition (d) is also satisfied since all four beacons are visible to
each robot ri in their initial positions (Lemma 17). Therefore, due to Theorem 2, Stage 3
runs in O(1) epochs.

The execution is collision-free since the paths of any two robots do not intersect and
they do not land up in the same position in ELi.

Finally, Stage 1.3 starts only after Stage 1.2 finishes because the remaining robots in
the interior of P′ do not see ci colored corner4 until Stage 1.2 finishes.

6.4. Stage 1.4-Positioning the Robots on the Eligible Line to the Sides of P′

Let r be a robot on the corner line segment Li or the triangle line segment xiyi. Note
that, if there are robots in Li, then there are no robots in xiyi (and vice versa). Therefore,
for simplicity, we denote by xiyi both the corner and triangle line segments of ci. The goal
is to move r to a position on side cici−1 or cici+1 of P′ between points ci and xi (cixi) or ci
and yi (ciyi). At the end of Stage 1.4, all the transit colored robots are on the sides of P′

with color side2. To move robots on xiyi to cixi or ciyi, each robot on xiyi should be able to
recognize sides cici−1 and cici+1 of P′.

Let yi−1 and xi+1 be the points in sides cici−1 and cici+1 at distance length(cici−1)/8
and length(cici+1)/8 from ci−1 and ci+1, respectively. It is easy to show that each robot on
xiyi sees all robots that are positioned on cici−1 and cici+1 between points xi and yi−1 and
yi and xi+1. Therefore, we first move two robots on (i) xiyi and xi+1yi+1 to yixi+1 and (ii)

Algorithms 2021, 14, 56 27 of 35

xiyi and xi−1yi−1 to xiyi−1 and color them side2. After that, all robots in xiyi can move to
cixi or ciyi. Figure 13 illustrates the ideas of this stage.

Lemma 21. Let α be the robot on xiyi and β be the robot on xi+1yi+1 that are closest to side cici+1
among the robots in xiyi and xi+1yi+1, respectively. At least one of α, β sees both ci and ci+1.

Proof. Robot α can see ci as it is closest to xiyi, and no robots are in the triangle {cixiyi}.
Similarly, β can see ci+1. If α can also see ci+1, then the lemma is satisfied. Otherwise, a
robot on xi+1yi+1 blocks the view. In that case, β, at the end of xi+1yi+1, can see ci as its
line of sight passes between α and cici+1, and the lemma is satisfied.

c0
c1

c2

c4

P’

x0

x1

x4

y4

y0

α β

c0
c1

c2

c4

P’

x0

x1

x4

y4

y0

r

L
L’

w

w’

Figure 13. An illustration of how robots on ELi move to the sides of P′ in Stage 1.4

Suppose α sees both ci and ci+1 (the case of β seeing ci, ci+1 is analogous). Robot α
assumes color transit_moving and moves to the point ρ at distance length(cici+1)/4 from
ci in cici+1. Then, α changes its color to side2. Repeat this process so that one more robot
α′ places itself at point $ at distance length(cici+1)/4 from ci+1 in cici+1. This robot α′ will
be β unless the next robot γ on xiyi after α determines that β cannot see ci, and then α′ will
be γ.

Lemma 22. Each robot on xiyi sees the robots with color side2 placed at points ρ and $ of side
cici+1. Moreover, they see two robots placed at points ρ′ and $′ on cici−1 defined analogously to ρ
and $.

Proof. As noted above, each robot on xiyi sees all robots that are positioned on cici−1
and cici+1 between points xi and yi−1 and yi and xi+1. Robots at ρ, $, ρ′, and $′ are in
these ranges.

Robot r in xiyi, after seeing two side2 colored robots each in cici−1 and cici+1, moves

as follows. Let L and L′ be the lines perpendicular to ←→ρ$ and
←→
ρ′$′ passing through r,

respectively. Robot r assumes color transit_moving and moves to the intersection point w

of←→ρ$ and L or w′ of
←→
ρ′$′ and L, whichever is closest to it. When r becomes active next, it

changes it color to side2 from transit_moving.

Lemma 23. The robots in the corner and/or triangle line segments of P′ move to the sides of P′ and
assume color side2 in O(1) epochs. Furthermore, Stage 1.4 starts only after Stage 1.3 finishes.

Proof. The movement to a side of P′ is an instance of Beacon-Directed Curve Positioning.
Robots move to points ρ and $ on each side cici+1 of P′ and take color side2 in, at most,

Algorithms 2021, 14, 56 28 of 35

four epochs. The remaining robots on corner line segments or triangle line segments move
to a side of P′ and take color side2 in two more epochs.

Finally, Stage 1.4 starts only after this stage finishes since the eligible colored robots
on the eligible lines see at least a robot with color internal or internal_moving until
Stage 1.3 finishes. The corners can change their color to corner5 since they do not see any
robot with color internal or internal_moving after all robots in the interior of P′ moved
to the eligible lines of the corners of P′.

6.5. Stage 1.5-Making Side Robots of P′ the Side Robots of P′′

Let S be a side of P with ci, ci+1 its endpoints. There is a side S′ in P′ with ci, ci+1 its
endpoints and all the side robots in S are in the corridor of S′ with color either side1 or
special. The robots that become side robots in Stage 1.4 are on S′ with color side2. Stage
1.5 is for the side robots on S′. Stage 1.5 starts for the side robots on S′ when they do not
see any other robot with color except corner, side2, side1, special.

We assume in the description below that there are at least two side robots on S and
at least a side robot on S′. The cases of number of robots on S and S′ not satisfying this
assumption can be treated as special cases and can be executed in a constant number of
epochs. Let {s1, s2, . . . , sw} be the side robots on S with s1 being closer to ci. Robots s1, sw
have color special and the others have side1. Since ci, ci+1 are endpoints of S′, divide S
into three sides Sl , Sm, Sr, where Sl = cis1, Sm = s1sw, and Sr = swci+1. Let Ll , Lr be the
lines perpendicular to S′ passing through s1, sw, respectively. Let s′1, s′w be the intersection
points of Ll , S′ and Lr, S′, respectively. Points s′1, s′w divide S′ into three segments S′l , S′m, S′r,
where S′l = cis′1, S′m = s′1s′w, and S′r = s′wci+1. Figure 14 illustrates these ideas.

c0 c1

P’

S

S’

s1 sw
Sl

Sl’ Sm’ Sr’

Sr

Sm

sw’s1’

Ll Lr

Figure 14. Example configuration of side of P and side of P′ for Stage 1.5.

Recall that Stage 1.5 moves the robots on S′l , S′m, and S′r with color side2 to Sl , Sm, and
Sr, respectively, and colors them side.

We run two sub-stages, Stage 1.5.1 and Stage 1.5.2, one after another. In Stage 1.5.1,
the robots in S′l , S′r move to Sl , Sr, respectively. In Stage 1.5.2, the robots in S′m move to
Sm. Stages 1.5.1 and 1.5.2 synchronize by changing the colors of s1, sw from special to
temp_corner. In both the sub-stages, the idea is to satisfy the conditions for the Beacon-
Directed Curve Positioning we developed in SSS’17 to run Stage 1.5 in O(1) epochs. The
technique we used in IPDPS’17 initially moves a robot in the first and second epochs, two
robots in the third epoch, and 4, 8, 16, . . . in each subsequent epoch giving overall O(log N)
epochs runtime for each sub-stage of Stage 1.5, in the similar spirit of the argument of this
approach we outlined in Stage 1.2.

Observation 1. During Stage 1.5.1, the robots in segment S′m see both s1 and sw with color
special.

Algorithms 2021, 14, 56 29 of 35

6.5.1. Stage 1.5.1-Moving Robots on Segments S′l , S′r to Sl , Sr

We discuss here how robots on S′l move to Sl (the case of robots on S′r moving to Sr is
analogous). Our goal is to satisfy the conditions for the framework of Section 3 to run this
stage in O(1) epochs. In Sharma et al. [13], this stage runs in O(log N) epochs. Therefore,
we first move four robots from S′l to Sl perpendicular to S′l and color them side. To make
sure that they serve as left and right beacons for the robots on S′l , we move two robots in S′l
closer to ci and two robots on S′l closer to s′1 to Sl .

We first provide details on how we move four robots on S′l to Sl . Let s′ be the
robot adjacent to ci in S′l . Robot s′ knows Sl , as it sees both ci and s1. Let L′ be a line
perpendicular to S′l passing through s′. Robot s′ assumes color side2_moving and moves
to the intersection point of L′ and Sl . Robot s′ then assumes color side when it becomes
active next time. There are now three robots in Sl . The other robots on S′l simply wait
facilitating the sequential repositioning since they see a robot moving from S′l to Sl . Robot
s′′(6= s′) on S′l that sees three robots on Sl is then moved to Sl similarly as s′. After s′′

completes its move and assumes color side, there will be four robots on Sl . We then move
similarly the two robots on S′l closer to point s′1 to Sl sequentially. After there are four
robots on Sl , the robots on S′l that see at least three robots of Sl (with color side or special
or corner) move to Sl . That is, the robots with color side, special, and corner act as left
and right beacons for the robots on side S′l with color side2. They move assuming color
side3_moving and change that color to side when they become active next time. Robots
on S′l can determine that they can move to Sl when they see (at least) three robots of Sl
since they either (i) see more than six robots of Sl or (ii) if they see fewer than six robots,
then there must be (at least) a robot with color side3_moving they see and this indicates
that they can move. Moreover, the color side3_moving is not used in any other stage.

Since the robots on S′r are moving to Sr simultaneously with the robots on S′l moving
to Sl , we have to be careful that the robots of S′l (S′r) do not move to Sr (Sl). That is, we
have to guarantee that the robots on S′l do not mistake Sr as Sl . This is needed for the
collision-guarantee of the algorithm. We guarantee this as follows. Let X denote the set of
robots with color ∈ {corner, side, special} that the robot s on S′l sees when it becomes
active. The robots in X may be of Sl or Sr or both. Though Sl (Sr) is a 2-point curve, observe
that a special colored robot is at one end and a corner colored robot is at the other end
also acting as beacons. Let |X| ≥ 3; otherwise, s does not move. Let Ll denote the line
formed by at least three robots in X. Let X̂ denote the robots of X that do not belong to Ll .
Let Lr denote the line formed by the robots in X̂.

Let L denote the line through s perpendicular to S′l . Robot s moves to Ll if and only if
either of the following two conditions is satisfied.

(i) Not all robots on Ll are in the same side of L. That is, there is at least one robot of
Ll on the left and at least one robot of Ll on the right from the point x on Ll where L
intersects Ll . This is because the robots in Lr will always be on only one side of point
x.

(ii) If all the robots on Ll are in the one side of L, then there is at least one robot r with color
side3_moving that s sees in the other side of L (not necessarily on line Ll). Moreover,
robot r is closer to L than any robot r′ that is on line Lr (w.r.t. the perpendicular
distance from the robot r′ on Lr to L). If these conditions hold for r, then r must be
either a robot of L′l (that is already on Ll or on its way to Ll) or the robot is at w1.

Robots s1 and sw assume color temp_corner as soon as all the robots on S′l and S′r
reach to Sl and Sr, respectively, and take color side. Observe that sw (s1) sees the robots on
S′l (S′r) and the robots on Sl (Sr) except s1 (sw).

Lemma 24. During Stage 1.5.1, all the robots on S′l and S′r move to Sl and Sr, respectively, and
take color side. Moreover, Stage 1.5.1 runs for O(1) epochs avoiding collisions, and Stage 1.5.1
starts only after Stage 1.4 finishes.

Algorithms 2021, 14, 56 30 of 35

Proof. We prove this lemma for the robots on S′l moving to Sl (the proof for the robots on S′r
moving to Sr is analogous). Until four robots are on Sl , the robots on S′l move sequentially
one after another to position themselves on Sl . Moreover, as they move perpendicular to
S′l , they do not land on Sm or Sr. After four robots are on Sl , we show that the robots on S′l
satisfy all the conditions of the Beacon-Directed Curve Positioning framework. Condition
(a) is satisfied as the robots on S′l always move perpendicular to S′l to position themselves
on Sl . Conditions (b) and (c) are also satisfied due to the perpendicular moves of the robots
on S′l . Condition (d) is also satisfied as Sl is a line segment and all the waiting robots on
S′l are between two left and two right beacons with color side, and the waiting robots
on S′l have color side2. Therefore, through Theorem 2, all the robots on S′l move to Sl in
O(1) epochs.

We now show that the execution of Stage 1.5.1 is collision-free. This is immediate as in
the beginning of Stage 1.5.1, no side robots are on Sl or Sr. Moreover, the robots on S′l are
in distinct positions, and they always move perpendicularly to S′l . Therefore, the robots
moving from S′l to Sl do not collide. Furthermore, as robots on S′l do not move to Sr (and
vice versa), the robots from S′l and S′r do not collide.

Finally, Stage 1.5.1 starts only when side robots see other robots with colors only in
{corner, side2, side1, special}.

6.5.2. Stage 1.5.2-Moving Robots on Segment S′m to Sm

The robots on S′m do not move during Stage 1.5.1. In Stage 1.5.2, similarly to Stage 1.5.1,
two robots each on S′m closer to s1 and sw move to Sm sequentially and take color side3.
After that, the robots of S′m that see at least two side3 robots move perpendicularly to S′m to
the line Lm formed by those (at least) two side3 robots, assuming color side2_moving. The
robots of S′m after moving to Lm take color side3 when they next become active. It is easy
to prove that Lm is in fact Sm. After all robots on S′m move to Sm, the side robots on Sm take
color side and the endpoint robots of Sm take color corner. As Sm may already contain
side robots (which are, in fact, the side robots of P), when the robots on S′m move, they
may end up in the positions of Sm that other robots already occupy. In this case, the robot
moving from S′m to Sm finds the first position that is free to the left or right of the point m
on Sm at which a line L passing through the robot and perpendicular to S′m intersects Sm.
This guarantees collision freedom. Therefore, we have the following lemma.

Lemma 25. During Stage 1.5.2, all the side robots on S′m move to Sm and take color side, and the
endpoint robots on Sm take color corner. Moreover, Stage 1.5.2 runs for O(1) epochs avoiding
collisions, and Stage 1.5.2 starts only after Stage 1.5.1 finishes.

Proof. The proof of robots in S′m moving to Sm is similar to Lemma 24.
Stage 1.5.2 starts only after Stage 1.5.1 finishes as the robots on S′m see the colors of both

s1 and sw as special until all the robots on S′l and S′r move to Sl and Sr, respectively.

Lemmas 24 and 25 provide the following corollary.

Corollary 2. The side robots of P′ become the side robots of P′′ and take color side inO(1) epochs.

6.6. Correctness, Collision-freedom, and Runtime for Stage 1

The correctness and collision-freedom follow similarly as in Sharma et al. [9] and the
runtime follows combining Corollary 1, Lemmas 15, 18, 20, 23, and Corollary 2.

Theorem 4. Stage 1 executes in O(1) epochs avoiding collisions and uses O(1) colors.

7. Stage 2-Edge Depletion

After Stage 1.5 finishes, all robots inQ are on the sides and corners of P′′ colored side
and corner, respectively. The objective of Stage 2 is to move all side robots of P′′ to corners
of P′′′ using the Beacon-Directed Curve Positioning framework (see Figure 7d,e). The

Algorithms 2021, 14, 56 31 of 35

algorithm achieves this by working independently on each side S = (ci, s1, s2, · · · , sm, ci+1)
of P′′, placing all side robots of S on an arc of a circle (that is, a 3-point curve) in the
corridor of S that traverses the end points ci, ci+1 of S; call this circle a safe circle and
denote it by Circle(S). Clearly, this ensures that no three side points of S are collinear.
The algorithm further guarantees that P′′′ is convex, thus ensuring complete visibility.
Note that the technique we developed in IPDPS’17 [13] also runs Stage 2 in O(1) epochs
without using the Beacon-Directed Curve Positioning framework; however, the use of the
Beacon-Directed Curve Positioning framework streamlines the discussion as it was used in
Stages 1.2, 1.3, and 1.5.

Definition 5 (Reference [9]). Let u, v, w, x, y be points such that (a) v, w, x are collinear with w
between v and x, (b) u, y are not collinear with line segment vx, and (c) u, y lie on the same side
of vx such that line segments uv and xy do not intersect. Let (non-reflex) angles θ1, θ2 < 180◦ be
θ1 = ∠(u, v, w) and θ2 = ∠(w, x, y). Let φ1 = 45◦ − θ1

4 and φ2 = 45◦ − θ2
4 . Let L1 (resp., L2)

be the line traversing point v (resp., x) such that it forms an angle φ1 (resp., φ2) with vx. The point
of intersection h of L1, L2 is called the “safe apex” of w w.r.t. u, v, x, y and the triangle vxh is called
the “safe area” of vx (Figure 15).

L2L1 y

x

h

v

u

θ1
w

φ1
θ2

φ2

Figure 15. An illustration of safe apex and safe area.

Stage 2 has six stages (see Figure 16). We describe the effect of these stages; Sharma
et al. [9] established the correctness and collision-freedom of Stage 2 itself. Initially each
side S = (ci, s1, s2, · · · , sm, ci+1) has robots of color side and corner. In Stage 2.1 (the first
sub-stage of Stage 2), the two extremal side robots s1, sm (next to corners ci and ci+1) move
into the safe area of side S and become “scouts” d1 and dm with color scout1 (Figure 16(1)).
In Stage 2.2, each scout, d1 or dm, determines the circle C1 or Cm that traverses points
(ci, di, ci+1) or (ci, dm, ci+1), respectively.

ci

s1

s2

s3

s4

s5

s6

s7

s8

ci+1

in
te

ri
or

of
po

ly
go

n
P

s9

ci

s2

d1

s3

s4

s5

s6

s7

s8

d9

ci+1

b9

b1

s2
s3

s4

s5

s6

s7

s8

ci+1

ci

s3

s4

s5

s6

s7
b8

b9

b2

b1

ci

ci+1

ci

s3

b2

b1

s4

s5

s6

ci+1

b8

b9

b7

ci

b1

b2

b3

b4

b6

b5

b7

b8

b9

ci+1

ci

b1

b2

b3

b4

b6

b5

b7

b8

b9

ci+1

(0) (1) (2) (3) (4) (5) (6)

Figure 16. Stage 2 sub-stages. Part (i) shows the configuration of a side at the end of the ith sub-stage
or the beginning of the (i + 1)th sub-stage. The figure shows corners, side robots, scouts, and beacons
as black, red, green, and blue circles.

The scout dx with the lower radius circle Cx moves to the other circle and both
scouts now become “beacons” with color beacon (Figure 16(2)). The safe circle of side S
(denoted by Circle(S)) passes through both beacons b1 and bm and the corners ci, ci+1. In
Stage 2.3, the next pair of extremal points uses the corners and the two beacons to position
themselves on Circle(S) as two more beacons s2 and sm−1 with color beacon (Figure 16(3)).
Stage 2.4 similarly adds the third pair of beacons s3 and sm−2 to Circle(S) with color beacon
(Figure 16(4)). At this point, Circle(S) serves as a 3-point function, and the side robots

Algorithms 2021, 14, 56 32 of 35

execute the Beacon-Directed Curve Positioning algorithm. Therefore, in Stage 2.5, all
remaining side points, s4, s5, · · · , sm−3 move to Circle(S) (Figure 16(5)). When no points
remain in the interior of the polygon with color side, the beacons color themselves as
corners in Stage 2.6 and the algorithm terminates (Figure 16(6)).

During Stage 2, each robot can unambiguously determine with which side S it is
associated. This allows us to consider each side in isolation. We show below that this
stage satisfies all the conditions required to apply the Beacon-Directed Curve Positioning
framework, so it runs in O(1) epochs.

Lemma 26. During Stage 2, all the side robots of P′′ become corners of P′′′ and take color corner.
Stage 2 starts only after Stage 1.5.2 finishes. Moreover, Stage 2 runs for O(1) epochs avoiding
collisions and then the algorithm terminates.

Proof. Stages 2.1–2.4 run in O(1) epochs since only, at most, two robots are moving in
these stages. Stage 2.6 also runs in O(1) epochs as no robots move in this stage and only
color computation is needed.

Therefore, it remains to show that Stage 2.5 runs in O(1) epochs, even by ASYNC
robots, using the Beacon-Directed Curve Positioning framework. Observe that side S of
Circle(S) has 1 ≤ m < N − 8 side robots. Moreover, due to the moves of the side robots of
S in Stages 2.1-2.4, six beacons are already on the safe circle, Circle(S).

We now argue that Stage 2.5 satisfies all the conditions required to apply the Beacon-
Directed Curve Positioning technique. We first show that the waiting robots on S that
are yet to move to Circle(S) satisfy all the conditions for an admissible configuration
(Definition 2). Condition (a) is satisfied as the robots in S always move perpendicularly to
S to positions on Circle(S). Condition (b) is also satisfied due to their perpendicular moves.
Condition (c) is satisfied as the path of any robot on S perpendicular to S intersects Circle(S)
at exactly one point, as Circle(S) is a circle that passes through the beacons b1 and bm and
the corners ci and ci+1. Condition (d) is also satisfied as all the waiting robots are on a line
S and Circle(S) passes through the corners ci and ci+1 in the corridor of S. Furthermore, all
the waiting robots on S are between the three left beacons and three right beacons with
color beacon and the waiting robots on S have color side. Therefore, from Theorem 2,
Stage 2.5 finishes in O(1) epochs as k = 3 due to our use of Circle(S) as a curve for the final
positions of the robots on S. Thus, Stage 2 runs for O(1) epochs. The collision-freedom
in the execution of Stage 2 is immediate as the robots move perpendicularly to S. We also
observe that side robots can distinguish the interior of the polygon from the outside; hence,
each side S can proceed independently.

Stage 2 starts only after Stage 1.5.2 finishes as, otherwise, the robots on the sides of P′′

with color side see at least a robot with color that is not side or corner.
The algorithm terminates after Stage 2 as all the robots have color corner after Stage

2.5 finishes and that signifies that all the robots in Q are on the corners of a hull P, solving
COMPLETE VISIBILITY.

Theorem 5. Stage 2 executes in O(1) epochs avoiding collisions and uses 6 colors (2 colors are of
Stage 1).

Proof of Theorem 1. We have the runtime of Theorem 1 in theASYNC setting combining
the results of Theorems 3–5. We have the number of colors bound of Theorem 1 counting
the colors listed in Table 2, which totals 47 different colors.

8. Concluding Remarks

We have presented, to our knowledge, the first asymptotically optimal, O(1)-time
algorithm for COMPLETE VISIBILITY for point robots with lights using O(1) colors in the
asynchronous setting with monotonic robot movements in a 2-dimensional real plane. The
best previous results for this problem were O(log N) time in the fully synchronous setting
and O(1) time for the semi-synchronous setting, both using O(1) colors. The result of

Algorithms 2021, 14, 56 33 of 35

this paper significantly improves on these existing results through new techniques as the
asynchronous setting is the weakest and fully synchronous setting is the strongest among
the three settings, fully synchronous, semi-synchronous, and asynchronous.

The COMPLETE VISIBILITY problem is fundamental with application in solving other
problems under obstructed visibility. For example, the solution presented in this paper
already played a crucial role in solving the pattern formation problem considered in
Reference [4], where the solution was used in the first step of the four-step pattern formation
algorithm. The benefit was that since the algorithm presented here arranges robots on
the corners of a convex hull, we were able to exploit the knowledge of N obtained after
COMPLETE VISIBILITY is solved to plan for how to run steps 2–4 of the pattern formation
algorithm of [4].

Several questions remain open. The open questions can be categorized depending on
the focus on number of colors, runtime, color/runtime trade-off, and nature of a solution.
We discuss open problems in each categories below. Regarding the number of colors, a
major open question is to design a 2-color algorithm (ignoring runtime) that works in the
asynchronous setting even when robots have non-monotonic movements. Non-monotonic
movements meaning that robots may stop before reaching the destination point or change
direction before reaching the destination. The existing solutions in this direction provide a
2-color algorithm only in the case of monotonic movements in the asynchronous setting.
The same can be done for the case of fat robots and design a color-optimal algorithm.

Regarding runtime, a major open question is to design a provably-efficient runtime
algorithm in the asynchronous setting with non-monotonic movements. Our result in
this paper only provides O(1) runtime with monotonic movements. First, of all, it would
be interesting to see whether the algorithm of this paper can be extended to establish
O(D/∆) runtime algorithm, where D is the diameter of the initial configuration and ∆ > 0
is the minimum distance a robot travels in each move operation. ∆ cannot be zero since,
otherwise, the problem may not simply be solved. After that, it would be interesting to see
whether the O(D/∆) bound can be improved.

Regarding trade-off, a major open question is to minimize the number of colors from
current 60 to say 30 (the best possible is 2) without impacting runtime. Can we do better if
we could have two lights on a robot so that it can have information on two colors for the
two lights than just a single color for the single light?

Regarding nature of a solution, a major open question is to solve COMPLETE VISIBILITY

without robots needing to be arranged on the corners of a convex hull. Can the runtime of
O(1) can be achieved for such non-convex hull solution? What about the number of colors?
What about handling non-monotonic movements? This aspect can also be considered for
fat robots.

Furthermore, can the fault-tolerant algorithms be designed for COMPLETE VISIBILITY?
There are some algorithms that handle faults in certain cases, but this direction calls for
systematic effort to deal with faults under different settings. All the aforementioned aspects
can be considered for robots working on a grid setting, as well.

Finally, are there other algorithms and problems that can benefit from the Beacon-
Directed Curve Positioning framework the we developed in this paper?

Author Contributions: Conceptualization, G.S.; methodology, G.S. and R.V.; validation, G.S., R.V.
and J.L.T.; formal analysis, G.S., R.V. and J.L.T.; investigation, G.S.; resources, R.V. and J.L.T.; writing–
original draft preparation, G.S. and R.V.; writing–review and editing, J.L.T.; visualization, G.S. and
R.V.; supervision, J.L.T.; project administration, R.V.; funding acquisition, G.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Algorithms 2021, 14, 56 34 of 35

References
1. Flocchini, P.; Prencipe, G.; Santoro, N. Distributed Computing by Oblivious Mobile Robots. Synth. Lect. Distrib. Comput. Theory

2012, 3, 1–185. [CrossRef]
2. Das, S.; Flocchini, P.; Prencipe, G.; Santoro, N.; Yamashita, M. Autonomous mobile robots with lights. Theor. Comput. Sci. 2016,

609, 171–184. [CrossRef]
3. Peleg, D. Distributed Coordination Algorithms for Mobile Robot Swarms: New Directions and Challenges. In International

Workshop on Distributed Computing; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–12.
4. Vaidyanathan, R.; Sharma, G.; Trahan, J.L. On Fast Pattern Formation by Autonomous Robots. Available online: https:

//www.sciencedirect.com/science/article/abs/pii/S0890540121000146 (accessed on 18 January 2021).
5. Di Luna, G.A.; Flocchini, P.; Chaudhuri, S.G.; Santoro, N.; Viglietta, G. Robots with Lights: Overcoming Obstructed Visibility

Without Colliding. In Symposium on Self-Stabilizing Systems; Springer: Berlin/Heidelberg, Germany, 2014; pp. 150–164.
6. Di Luna, G.A.; Flocchini, P.; Chaudhuri, S.G.; Poloni, F.; Santoro, N.; Viglietta, G. Mutual visibility by luminous robots without

collisions. Inf. Comput. 2017, 254 Pt 3, 392–418. [CrossRef]
7. Sharma, G.; Busch, C.; Mukhopadhyay, S. Mutual Visibility with an Optimal Number of Colors. In International Symposium on

Algorithms and Experiments for Wireless Sensor Networks; Springer: Berlin/Heidelberg, Germany, 2015; pp. 196–210.
8. Vaidyanathan, R.; Busch, C.; Trahan, J.L.; Sharma, G.; Rai, S. Logarithmic-Time Complete Visibility for Robots with Lights.

In Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium, Hyderabad, India, 25–29 May
2017; pp. 375–384.

9. Sharma, G.; Vaidyanathan, R.; Trahan, J.L.; Busch, C.; Rai, S. Complete Visibility for Robots with Lights in O(1) Time. In In-
ternational Symposium on Stabilization, Safety, and Security of Distributed Systems; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 327–345.

10. Agathangelou, C.; Georgiou, C.; Mavronicolas, M. A Distributed Algorithm for Gathering Many Fat Mobile Robots in the Plane.
In Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing, Montreal, QC, Canada, 22–24 July 2013;
pp. 250–259.

11. Sharma, G.; Alsaedi, R.; Busch, C.; Mukhopadhyay, S. The Complete Visibility Problem for Fat Robots with Lights. In Proceedings
of the 19th International Conference on Distributed Computing and Networking, Varanasi, India, 4–7 January 2018; pp. 21:1–21:4.

12. Sharma, G.; Busch, C.; Mukhopadhyay, S. Complete Visibility for Oblivious Robots in O(N) Time. In Proceedings of the
Networked Systems-6th International Conference, NETYS 2018, Essaouira, Morocco, 9–11 May 2018; pp. 67–84.

13. Sharma, G.; Vaidyanathan, R.; Trahan, J.L.; Busch, C.; Rai, S. Logarithmic-Time Complete Visibility for Asynchronous Robots
with Lights. In Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium, Hyderabad, India,
25–29 May 2017; pp. 513–522.

14. Sharma, G.; Vaidyanathan, R.; Trahan, J.L. Constant-Time Complete Visibility for Asynchronous Robots with Lights. In In-
ternational Symposium on Stabilization, Safety, and Security of Distributed Systems; Springer: Berlin/Heidelberg, Germany, 2017;
pp. 265–281.

15. Di Luna, G.A.; Flocchini, P.; Poloni, F.; Santoro, N.; Viglietta, G. The Mutual Visibility Problem for Oblivious Robots. In Proceed-
ings of the Canadian Conference on Computational Geometry, Halifax, NS, Canada, 11–13 August 2014; pp. 348–354.

16. Aljohani, A.; Sharma, G. Complete Visibility for Mobile Robots with Lights Tolerating Faults. Int. J. Netw. Comput. 2018, 8, 32–52.
[CrossRef]

17. Poudel, P.; Aljohani, A.; Sharma, G. Fault-tolerant complete visibility for asynchronous robots with lights under one-axis
agreement. Theor. Comput. Sci. 2021, 850, 116–134. [CrossRef]

18. Bhagat, S.; Chaudhuri, S.G.; Mukhopadhyaya, K. Formation of General Position by Asynchronous Mobile Robots Under One-Axis
Agreement. In International Workshop on Algorithms and Computation; Springer: Berlin/Heidelberg, Germany, 2016; pp. 80–91.

19. Czyzowicz, J.; Gasieniec, L.; Pelc, A. Gathering Few Fat Mobile Robots in the Plane. Theor. Comput. Sci. 2009, 410, 481–499.
[CrossRef]

20. Adhikary, R.; Bose, K.; Kundu, M.K.; Sau, B. Mutual Visibility by Asynchronous Robots on Infinite Grid. In International Symposium
on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics; Springer: Berlin/Heidelberg, Germany,
2018; pp. 83–101.

21. Sharma, G.; Vaidyanathan, R.; Trahan, J.L. Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with
Lights. Int. J. Netw. Comput. 2021, 11, 607–616.

22. Hector, R.; Vaidyanathan, R.; Sharma, G.; Trahan, J.L. Optimal Convex Hull Formation on a Grid by Asynchronous Robots with
Lights. In Proceedings of the 2020 IEEE International Parallel and Distributed Processing Symposium, New Orleans, LA, USA,
18–22 May 2020; pp. 1051–1060.

23. D’Emidio, M.; Frigioni, D.; Navarra, A. Synchronous Robots vs Asynchronous Lights-Enhanced Robots on Graphs. Electr. Notes
Theor. Comput. Sci. 2016, 322, 169–180. [CrossRef]

24. Cohen, R.; Peleg, D. Local Spreading Algorithms for Autonomous Robot Systems. Theor. Comput. Sci. 2008, 399, 71–82. [CrossRef]
25. Dutta, A.; Chaudhuri, S.G.; Datta, S.; Mukhopadhyaya, K. Circle Formation by Asynchronous Fat Robots with Limited Visibility.

In International Conference on Distributed Computing and Internet Technology; Spring: Berlin/Heidelberg, Germany, 2012; pp. 83–93.
26. Gan Chaudhuri, S.; Mukhopadhyaya, K. Leader election and gathering for asynchronous fat robots without common chirality. J.

Discrete Algorithms 2015, 33, 171–192. [CrossRef]

http://doi.org/10.2200/S00440ED1V01Y201208DCT010
http://dx.doi.org/10.1016/j.tcs.2015.09.018
https://www.sciencedirect.com/science/article/abs/pii/S0890540121000146
https://www.sciencedirect.com/science/article/abs/pii/S0890540121000146
http://dx.doi.org/10.1016/j.ic.2016.09.005
http://dx.doi.org/10.15803/ijnc.8.1_32
http://dx.doi.org/10.1016/j.tcs.2020.10.033
http://dx.doi.org/10.1016/j.tcs.2008.10.005
http://dx.doi.org/10.1016/j.entcs.2016.03.012
http://dx.doi.org/10.1016/j.tcs.2008.02.007
http://dx.doi.org/10.1016/j.jda.2015.04.001

Algorithms 2021, 14, 56 35 of 35

27. Honorat, A.; Potop-Butucaru, M.; Tixeuil, S. Gathering fat mobile robots with slim omnidirectional cameras. Theor. Comput. Sci.
2014, 557, 1–27. [CrossRef]

28. Pagli, L.; Prencipe, G.; Viglietta, G. Getting Close Without Touching: Near-gathering for Autonomous Mobile Robots. Distrib.
Comput. 2015, 28, 333–349. [CrossRef]

29. Ando, H.; Suzuki, I.; Yamashita, M. Formation and agreement problems for synchronous mobile robots with limited visibility.
In Proceedings of the International Conference on Distributed Computing and Internet Technology, Bhubaneswar, India, 10–13
January 1995; pp. 453–460. [CrossRef]

30. Prencipe, G. Autonomous Mobile Robots: A Distributed Computing Perspective. In International Symposium on Algorithms and
Experiments for Sensor Systems, Wireless Networks and Distributed Robotics; Spring: Berlin/Heidelberg, Germany, 2013; pp. 6–21.

31. Yamashita, M.; Suzuki, I. Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci.
2010, 411, 2433–2453. [CrossRef]

32. Abshoff, S.; Cord-Landwehr, A.; Fischer, M.; Jung, D.; Meyer auf der Heide, F. Gathering a Closed Chain of Robots on a Grid.
In Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Chicago, IL, USA, 23–27
May 2016; pp. 689–699.

33. Cord-Landwehr, A.; Fischer, M.; Jung, D.; Meyer auf der Heide, F. Asymptotically Optimal Gathering on a Grid. In Proceedings of
the 28th ACM Symposium on Parallelism in Algorithms and Architectures, Pacific Grove, CA, USA, 11–13 July 2016; pp. 301–312.

34. Degener, B.; Kempkes, B.; Langner, T.; Meyer auf der Heide, F.; Pietrzyk, P.; Wattenhofer, R. A tight runtime bound for
synchronous gathering of autonomous robots with limited visibility. In Proceedings of the Twenty-Third Annual ACM
Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA, 4–6 June 2011; pp. 139–148.

35. Degener, B.; Kempkes, B.; Meyer auf der Heide, F. A local O(n2) gathering algorithm. In Proceedings of the Twenty-Second
Annual ACM Symposium on Parallelism in Algorithms and Architectures, Santorini, Greece, 13–15 June 2010; pp. 217–223.

36. Kempkes, B.; Kling, P.; Meyer auf der Heide, F. Optimal and competitive runtime bounds for continuous, local gathering of
mobile robots. In Proceedings of the Twenty-Fourth annual ACM Symposium on Parallelism in Algorithms and Architectures,
Pittsburgh, PA, USA, 25–27 June 2012; pp. 18–26.

37. Izumi, T.; Potop-Butucaru, M.G.; Tixeuil, S. Connectivity-preserving Scattering of Mobile Robots with Limited Visibility.
In Symposium on Self-Stabilizing Systems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 319–331.

38. Cord-Landwehr, A.; Degener, B.; Fischer, M.; Hüllmann, M.; Kempkes, B.; Klaas, A.; Kling, P.; Kurras, S.; Märtens, M.; Meyer auf
der Heide, F.; et al. A New Approach for Analyzing Convergence Algorithms for Mobile Robots. In International Colloquium on
Automata, Languages, and Programming; Springer: Berlin/Heidelberg, Germany, 2011; pp. 650–661. [CrossRef]

http://dx.doi.org/10.1016/j.tcs.2014.08.004
http://dx.doi.org/10.1007/s00446-015-0248-5
http://dx.doi.org/10.1109/ISIC.1995.525098
http://dx.doi.org/10.1016/j.tcs.2010.01.037
http://dx.doi.org/10.1007/978-3-642-22012-8_52

	Introduction
	Contributions
	Related Work
	Roadmap

	Model and Preliminaries
	Beacon-Directed Curve Positioning
	O(1)-Time ASYNC Complete Visibility Algorithm
	Stage 0-Initialization
	Stage 1-Interior Depletion
	Stage 1.1-Making Corners of P the Corners of P'
	Stage 1.2: Positioning the Robots Inside Corner Triangles of the Corners of P' on the Corner Line Segments
	Stage 1.2.1-Computing Eligible Lines for the Corners of P'
	Stage 1.2.2: Positioning (at least) Four Interior Robots on the Eligible Lines of the Corners of P'

	Stage 1.3-Positioning the Remaining Internal Robots of P' on the Eligible Lines
	Stage 1.4-Positioning the Robots on the Eligible Line to the Sides of P'
	Stage 1.5-Making Side Robots of P' the Side Robots of P''
	Stage 1.5.1-Moving Robots on Segments Sl',Sr' to Sl,Sr
	Stage 1.5.2-Moving Robots on Segment Sm' to Sm

	Correctness, Collision-freedom, and Runtime for Stage 1

	Stage 2-Edge Depletion
	Concluding Remarks
	References

