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Abstract: Cluster analysis is widely applied in the neuropsychological field for exploring patterns 

in cognitive profiles, but traditional hierarchical and non-hierarchical approaches could be often 

poorly effective or even inapplicable on certain type of data. Moreover, these traditional approaches 

need the initial specification of the number of clusters, based on a priori knowledge not always 

owned. For this reason, we proposed a novel method for cognitive clustering through the affinity 

propagation (AP) algorithm. In particular, we applied the AP clustering on the regression residuals 

of the Mini Mental State Examination scores—a commonly used screening tool for cognitive impair-

ment—of a cohort of 49 Parkinson’s disease, 48 Progressive Supranuclear Palsy and 44 healthy con-

trol participants. We found four clusters, where two clusters (68 and 30 participants) showed almost 

intact cognitive performance, one cluster had a moderate cognitive impairment (34 participants), 

and the last cluster had a more extensive cognitive deficit (8 participants). The findings showed, for 

the first time, an intra- and inter-diagnostic heterogeneity in the cognitive profile of Parkinsonisms 

patients. Our novel method of unsupervised learning could represent a reliable tool for supporting 

the neuropsychologists in understanding the natural structure of the cognitive performance in the 

neurodegenerative diseases. 
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1. Introduction 

Cluster analysis is an unsupervised learning technique introduced by Tryon [1], 

which has an aim to partition objects into homogenous groups for detecting the natural 

structure as well as the underlying patterns of a dataset according to a measure of simi-

larity, for example geometrical distance. Unlike supervised learning [2,3], clustering is 

totally data-driven and clustering methods such as traditional hierarchical [4,5] and non-

hierarchical [6,7] represent a valuable support to the neuropsychologists [8–10] for clus-

tering patients and discovering different patterns of cognitive impairment or multiple 

cognitive profiles within diagnostic groups [11–15]. Moreover, cluster analysis resulted to 

be a powerful tool for finding the intra- and inter-diagnostic heterogeneity of psycholog-

ical and cognitive performance of participants with bipolar disorder or depression syn-

drome [11–14] or of patients with Mild Cognitive Impairment [15]. The clustering was 

also recently applied for exploring patterns of cognitive impairment in Alzheimer’s dis-

ease (AD) patients [16], where different cognitive subtypes in the early onset AD subjects 

were found using the Ward’s method [5] on the regression residuals of the cognitive 

scores. Together with the wide application of cluster analysis for the cognitive clustering 
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of the AD [17], also the Parkinson’s disease was largely investigated with this technique 

[18], focusing the attention both on the motor and non-motor symptoms [19–24]. 

However, the vast majority of clustering approaches for understanding the natural 

structure of cognitive performance in the neurodegenerative diseases [17,18] are tradi-

tional methods such as K-means [25], K-median and Ward’s [5], which are less effective, 

or even inapplicable, on certain kind of cognitive data [8]. Moreover, a crucial issue of 

these clustering algorithms is the initial choice of the optimum number of clusters for the 

specific dataset [26,27], which choice, in most applications, could not be based on a priori 

knowledge [8].  

Frey and Dueck [28] proposed in 2007 a clustering algorithm, called affinity propa-

gation (AP), which does not explicitly require to provide the number of clusters, while it 

identifies an ensemble of representative samples in the dataset to serve as clusters centers. 

Once these special points, called exemplars, are found, the other data points are connected 

to the exemplar which has the maximum similarity value [29]. More in detail, the AP al-

gorithm is based on passing messages between data points, where the value of the mes-

sages measures the current eligibility of a candidate point to serve as exemplar for another 

data point [28]. The AP algorithm showed efficiency in handling high dimensional prob-

lems [8,28–30] and it was applied widely in the physical sciences, especially for the clus-

tering of gene expression.  

Given the three main advantages, that is (i) the ability of handling different type of 

similarity measures, (ii) the automatic discovery of the number of clusters and (iii) the 

computational efficiency [8], the AP algorithm resulted to be the best candidate approach 

for exploring, for the first time here, the natural structure of cognitive deficits in Parkin-

sonisms patients.  

In the present work, Parkinson’s disease and Progressive Supranuclear Palsy sub-

jects, together with healthy control participants, were evaluated with the Mini Mental 

State Examination (MMSE) [23–25], which is the most widely used cognitive screening 

tool. In particular, we wanted to evaluate whether an intra- and inter-diagnostic hetero-

geneity exists in the altered cognitive functioning of Parkinsonisms and whether the 

eleven MMSE subscales could capture this possible heterogeneity. With this aim, we pro-

posed a novel approach consisting in clustering through the AP algorithm, the multiple 

linear regression residuals of the MMSE subscale scores, obtained by controlling the raw 

data for age, sex and education levels with the method ordinary least squares, for assuring 

that the discovery of the cognitive clusters is not driven by these three cofounding varia-

bles, but only by the diagnosis. 

2. Materials and Methods  

2.1. Participants 

The participants were recruited between 2017 and 2020 by the Movement Disorders 

Unit of the local University Hospital. The cohort consisted of 140 subjects, divided in 49 

Parkinson’s disease patients (PD, mean age ± std 66.7 ± 9.38, 22 females), 48 Progressive 

Supranuclear Palsy patients (PSP, mean age ± std 70.1 ± 8.32, 22 females), and 44 healthy 

control subjects (CTRL, mean age ± std 62.6 ± 11.5, 25 females). Clinical diagnosis for PSP 

patients was established according to the diagnostic criteria for PSP [31–33] and clinical 

diagnosis for PD patients was established according to international diagnostic criteria 

[34,35]. For each patient, a complete medical history with neurological examination and 

clinical assessment was performed by trained physicians with more than 10 years of ex-

perience in movement disorders. Inclusion criteria for healthy participants were absence 

of major or unstable medical illness; absence of neurologic (e.g., stroke, movements disor-

ders, epilepsy) and psychiatric disorders; no use of neurological or psychiatric medica-

tions; no history of concussion or brain surgery; normal neurological examination. The 

study was approved by the local Ethical Committee, according to the Helsinki Declaration 

and written informed consent was obtained from all participants. 
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2.2. MMSE Assessment 

All participants were evaluated with a neuropsychological battery [36] comprising 

the Mini Mental State Examination (MMSE) [37–39] for cognitive functions, always by the 

same neuropsychologist (M.G.V.) with more than 10 years of experience in neuropsycho-

logical assessment of neurological and neurodegenerative diseases. The MMSE is used to 

screen cognitive impairment and consists of eleven subscales: temporal orientation (TO), 

orientation in space (OS), registration of three words (Reg), attention and calculation (AC), 

recall of three words (Rec), language divided into object naming (N) and sentence repeti-

tion (SR), praxis (P), writing a sentence (W) chosen by the patient, reading a sentence and 

performing what is read from the sentence “close your eyes” (CE), and copy a drawing 

(D). Each subscale has specific instructions and if the participant does not answer a ques-

tion for any reason, a zero score is awarded. In particular, the score of each MMSE subscale 

is a discrete value from 0 to a maximum of five points, depending on the subscale. The 

minimum and maximum values are related to the calculation of the score obtained by the 

subject at each task of each subscale. In detail, TO subscale contains 5 questions, each task 

can be assigned a score of 1 if correct or 0 if incorrect (min 0–max 5); OS subscale contains 

5 questions, each task can be assigned a score of 1 if correct or 0 if incorrect (min 0–max 

5); Reg subscale contains 3 tasks each task can be assigned a score of 1 if correct or 0 if 

incorrect (min 0–max 3); AC contains 5 calculation operations, each task can be assigned 

a score of 1 if correct or 0 if incorrect (min 0–max 5); in Rec subscale a score of 1 can be 

assigned to each word remembered (min 0–max 3); N subscale consists of two tasks each 

task can be assigned a score of 1 if correct or 0 if incorrect (min 0–max 2); SR contains only 

one task and each task can be assigned a score of 1 if correct or 0 if wrong (min 0–max 1); 

P subscale consists of three manual exercise and each task can be assigned a score of 1 if 

correct or 0 if incorrect (min 0–max 3); W, CE and D subscales consist of one task, each 

task can be assigned a score of 1 if correct or 0 if incorrect (min 0–max 1) for each subscale. 

2.3. Statistical Analysis 

The analyses, both statistical and clustering, were performed with a home-made 

script in python (v. 3.8.6), by using the packages scikit-learn (v. 0.23) [40], numpy (v. 1.19) 

[41], matplotlib (v. 3.3.3) [42], pandas (v. 1.1.4) [43] and statsmodels (v. 0.12.1) [44]. The 

implemented code in python can be found in Appendix A. 

Differences in the sex distribution among the groups and the clusters were assessed 

with pairwise Pearson Chi-square tests (p < 0.05). Analysis of variance (ANOVA) was em-

ployed for comparing age and education levels in years among the three diagnostic 

groups (CTRL, PD and PSP) and among the clusters found by our proposed algorithm. 

An analysis of covariance (ANCOVA) was applied for finding differences in each of the 

MMSE among the three diagnostic groups and the clusters, by adding age, sex and years 

of education as covariates. 

An analysis of covariance (ANCOVA) was applied with age, sex and education as 

covariates for comparing the MMSE scores among the groups and among the clusters. 

The significance of post-hoc of ANOVA and ANCOVA were corrected for multiple 

comparisons with Tukey’s honest significant difference (HSD) test (p < 0.05). 

2.3.1. Residuals Calculation 

We applied a multiple linear regression with the method ordinary least squares (ols) 

[45] for taking into account the influence of the covariates (age, sex and education years) 

on the scores of the eleven MMSE subscales. In particular, given Y(n × m), the matrix of 

the MMSE subscale scores, and X(n × k) the matrix of covariates, the multiple linear re-

gression equation is:  

���� =  ��
�  + ��

���,� + ⋯ +  ��
���,� +  ���  (1)
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where, ���� is the predicted value of the i-th observation (i = 1, ..., n) of the j-th MMSE 

subscale (j = 1, ..., m) (the dependent variable), ��
�, …, ��

� are the i-th values of the covari-

ates in X(k) (independent variables), ��
� is the intercept, ��

�, …, ��
� are the coefficients and 

��� is the model deviation. Then, we obtained the residual ��� of the i-th observation of 

the j-th MMSE subscale score as: 

��� = ���  −  ���� (2)

that is the difference between the observed and fitted value. The matrix of regression re-

siduals E(n × m) was then used as input for the cluster analysis through affinity propaga-

tion, as described in the next section. 

2.4. Affinity Propagation 

Affinity propagation (AP) is a non-hierarchical clustering method based on graph 

theory proposed by Frey and Dueck [28], in which each data point is treated as a node of 

the network, and the nodes exchange iteratively “messages” through the edges of the net-

work itself. An important feature introduced by the AP approach is the concept of exem-

plars, representative points, which identify centers of clusters. Exemplars are different 

than centroids of K-Means—barycenter of the points in a cluster—since they have to be 

one of the actual samples or participants as in the present work. The AP algorithm simul-

taneously considers all the participants as probable candidates to become centers of the 

clusters and propagate exchanges of messages between the other participants until the 

emergence of the best exemplars that maximize the intra-cluster similarity [8,28]. At each 

iteration of the AP algorithm, the message between two nodes represents the current “af-

finity” that a sample has for selecting another sample as its exemplar. For this reason, the 

AP method does not require the initial specification of the number of clusters, as for ex-

ample in k-centers and k-means approaches. 

The AP algorithm requires as input an n × n similarity matrix, S = [sij], where n is the 

number of participants to be clustered and i and j are the participant’s indices. A com-

monly used measure of distance or dissimilarity is the squared Euclidean distance. If there 

are two points in an m dimensional space where m is the number of measured variables 

(the eleven MMSE subscales), then the squared Euclidean distance is defined as: 

��� = �(��� − ���)�

�

���

 (3)

where eiz is the value of the z-th variable for the i-th residual and eik is the value of the z-th 

variable for the j-th residual in E(n × m), the matrix of regression residuals, calculated as 

described in Section 2.3.1. Larger values of sij indicate a greater degree of similarity be-

tween i and j than smaller values of sij. It is assumed that sii = 0 (for all 1 ≤ i ≤ n) in the 

formulation. In the present work, the negative squared Euclidean distance was used, as 

suggested by Frey and Dueck [28]. 

The definition of the suitability of each participant for serving as an exemplar is con-

tained in the second input of the AP algorithm: the preferences (pi, for 1 ≤ i ≤ n, which may 

also be specified as the n × 1 vector p). In other words, the preferences represent an a priori 

knowledge of how good a participant could be eligible as an exemplar [29]. Usually, all 

samples are equally eligible to be an exemplar, thus their value p is the same constant 

[8,29]. Anyhow, the preferences vector is none other than a control parameter and increas-

ing the value of one sample results in an increase in the likelihood that the sample will be 

chosen as exemplar [28,29]. The default specification for the preferences is the median of 

the similarity values (SM) [8,28], although it has been shown that by using the median, the 

number of clusters could be dramatically overestimated [8,46]. A reliable alternative is to 

specify the preference as the minimum of the similarity measures: pi = Smin, for 1 ≤ i ≤ n, 

resulting in a smaller number of clusters [28]. For assessing which between the median 

and the minimum of the similarity matrix is to prefer in the case of the clustering of the 
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MMSE scores, we used both preference values and then we compared their findings with 

a Silhouette analysis [47] as described in Section 2.5. 

In addition to the similarity matrix, the AP algorithm works on two other matrices: 

the responsibility matrix (R) and the availability matrix (A) [8,28,30]. The final results are 

stored in a fourth matrix named criterion matrix (C). These three matrices are iteratively 

updated by the following four equations: 

��� ← ��� −  ������.�.����{���� + ����} (4)

��� ← � ���
���.�.����

{0, ����} (5)

��� ← ��� �0, ��� + � ���
���.�.����,�

�0, ����� � (6)

��� ← ��� + ���  (7)

where i and j are respectively the rows and columns indices (1 ≤ i ≤ n and 1 ≤ j ≤ m ) of the 

associated matrix. Both the responsibility and availability represent the messages ex-

changed between nodes, bringing two different kind of competition [28]. In particular, the 

responsibility r(i, j) is sent by the point i to the candidate exemplar point j, and it quantifies 

the eligibility of the point j to serve as an exemplar for the sample i, considering also other 

competing exemplar points, e.g., j′ (Figure 1 for a schematic representation). On the con-

trary, the availability a(i, j) is sent by the candidate exemplar point j to point i, transmitting 

the information on how is suitable for the point i to choose the point j as its exemplar, 

considering also the ”opinion” of other supporting point, e.g., i′, regarding the eligibility 

of j as exemplar (Figure 1 for a schematic representation). 

A third input of the AP algorithm is the damping factor d, also called dampening 

parameter λ [8], which was introduced by Frey and Dueck [28] for assuring the conver-

gence. The purpose of this factor is to add a modest amount of random noise to the simi-

larity matrix and to damp percentage the updates of the responsibility and availability 

matrices at each iteration t, as follows [30]: 

�� = ����� +  (1 − �)��
� (8)

�� = ����� + (1 − �)��
�  (9)

where r′ and a′ are the undamped updates respectively of the responsibility and availa-

bility matrices, calculated by the Equations (4)–(6). The damping factor d is usually a value 

between 0.5 and 1. Indeed, it has been shown [48] that damping factor values in the inter-

val 0 ≤ d ≤ 0.4 could result in a significant degree of oscillation and issue with convergence 

of the algorithm [8]. Thus, in the present work, we used the recommended value of 0.5 [8], 

which means that 50% of the calculation of the responsibility and availability matrices at 

each iteration is based on information of the previous message exchanged and 50% of the 

calculation is based on the new message received.  
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Figure 1. Schematic representation of the functioning of the affinity propagation algorithm in a 3D 

fashion. Figure adapted and revised from Frey and Dueck [28]. 

The outputs of the AP algorithm are the number of exemplars ex (clusters) found and 

the n × 1 cluster assignment vector ξ, containing the labels which are none other than the 

exemplars (clusters) to which each participant (point) belongs. 

The complete algorithm here applied on the MMSE subscale scores, including the 

calculation of the regression residuals and the application of the AP algorithm for cogni-

tive clustering, is shown in Algorithm 1. 

Algorithm 1 Cognitive clustering of regression residuals trough Affinity Propagation 

Input: MMSE subscale scores matrix Y(n × m), covariates matrix X(k), damping factor d 

Output: Number of exemplars ex, cluster assignment vector ξ 

1: 
initialization: E(n × m), matrix of regression residuals; S(n × n), matrix of similarities; p(n × 1), preference 

vector of Affinity Propagation; 

2: for j = 1 to m do 

3: fitj = ols(yj ~ x1 + … + xk); fitted model of the j-th column in Y, with x1, …, xk as the columns in X 

4:    for i = 1 to n−1 do 

5:   eij = yij—fitj.predict(yij); regression residual = the difference between yij and its prediction by fitj 

6: for i = 1 to n do 

7:    for j = 1 to m do 

8:       for z = 1 to m do 

9:        sij = −∑ (��� − ���)��
��� ; negative squared Euclidean distance between eiz and ejz 

10:            pi = Smin OR pi = Smedian 

11: ap = AffinityPropagation(S, p, d); 

12: ex = size(ap.exemplars); 

13: ξ = ap.cluster_membership; 
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2.5. Clustering Accuracy Assessment 

Although previous works [8,28–30] showed that the AP algorithm provided satisfac-

tory results, it still could present a limitation due to the arbitrary choice of the initial pref-

erences vector p. For this reason, we compared different clustering results obtained by 

using the minimum and the median of the similarity matrix. A commonly used approach 

to assess the quality of clustering results is the Silhouette index, which is a measure of 

how close each point in a cluster is to the points in its neighboring cluster. Given a cluster 

Xj (j = 1, …, c where c is the number of clusters found), the Silhouette index Sili (i = 1, …, n 

where n is the number of points in the cluster) of the i-th point in the cluster Xj is given 

by: 

���� =
����(�) − ���(�)

���{���(�), ����(�)}
  (10)

where avd(i) is the mean distance between the i-th point and all the points in the cluster 

Xj, mavd(i) is the mean minimum distance between the i-th point and all the points in the 

cluster Xk (k = 1, …, c), and max is the maximum operator. The Silhouette values range 

varies from −1 to 1, where a value close to 1 could mean that the i-th point was accurately 

clustered to the optimum exemplar of the cluster. A value near to 0 could suggest that the 

i-th point could be attributed to the nearest cluster, whereas a value near to −1 could mean 

that the i-th point was misclassified [47]. Thus, for characterizing the heterogeneity and 

isolation of a cluster Yj (j = 1, …, c) it is possible to calculate the cluster Silhouette Sijl given 

by: 

���� =  � ���(�)

�

���

 

where m is the number of points in Sijl. The mean value of all the Silhouette indices of all 

the points in a partition � ↔ � ∶ ��� … ��� … ��, is called Global Silhouette and it is given 

by the equation: 

���(�) =
∑ ����

�
���

�
 (11)

In the present work, we calculated the GS of the clustering obtained by using the 

median and the minimum of the similarity matrix as preference values, for comparing 

their quality and assessing the optimal one. 

3. Results 

3.1. Statistical Analysis 

Table 1 reported the demographic characteristics and the MMSE total and subscale 

scores of the three groups of participants, CTRL, PD and PSP patients, together with the 

results of the statistical analyses, included the pairwise post-hoc findings. The distribution 

of sex was not significantly different pairwise (p > 0.05). ANOVA revealed significant dif-

ferences in age only between CTRL and PSP, where the CTRL participants were younger 

than PSP patients. The education level of the CTRL participants was significantly higher 

than PD and PSP patients. 

The ANCOVA analysis, with age, sex and education level in covariates, showed dif-

ferences in the MMSE total score, where CTRL participants had higher values than PD 

and PSP, and PD had higher value than PSP patients.  

Regarding the MMSE subscales, only registration of three words (Reg), object naming 

(N) and praxis (P) were not different among groups. Figure 2 depicted the three radar 

plots of each group, CTRL (in green), PD (in purple) and PSP (in orange), representing the 

mean values of each MMSE subscale, while in gray and dotted lines the maximum value 

that each MMSE subscale could reach. PD patients showed cognitive impairment com-

pared to CTRL, in AC, Rec and SR. PSP patients had significant lower scores than the 
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CTRL participants in TO, OS, AC, Rec, W and D. In the comparison between PD and PSP 

patients, the first had significant higher scores than the second in W, CE and D.  

The parameters of the regression models for each MMSE subscale were reported in 

Appendix B. 

Table 1. Demographic and cognitive data of healthy controls (CTRL), Parkinson’s (PD) and Pro-

gressive Supranuclear Palsy (PSP) patients are reported as mean ± standard deviation. The mean 

and standard deviation of the residuals of the regression with age, sex and education as covari-

ates, are also reported in round brackets. 

 
CTRL 

(44) 

PD 

(49) 

PSP 

(48) 
p-Value Post-Hoc 

Age 62.6 ± 11.5 66.7 ± 9.38 70.1 ± 8.32 0.002 a CTRL < PSP b 

Female, n 25 22 22 N.S. c  

Education 12.5 ± 4.78 9.27 ± 4.74 7.38 ± 5.05 <0.001 a CTRL > PD b, PSP b 

Total 

MMSE 
29.2 ± 1.46 24.8 ± 5.08 20.8 ± 5.27 <0.001 d 

CTRL > PD e, PSP e; 

PD > PSP e 

TO 
4.93 ± 0.45 

(0.241 ± 0.57) 

4.49 ± 1.04 

(0.100 ± 1.010) 

3.85 ± 1.38 

(−0.321 ± 1.250) 
0.01 d CTRL > PSP e 

OS 
4.98 ± 0.15 

(0.31 ± 0.567) 

4.29 ± 1.15 

(−0.025 ± 0.992) 

3.81 ± 1.21 

(−0.259 ± 0.999) 
0.003 d CTRL > PSP e 

Reg 
3.00 ± 0 

(0.008 ± 0.084) 

2.98 ± 0.143 

(0.042 ± 0.142) 

2.85 ± 0.50 

(−0.050 ± 0.485) 
N.S.d N.A. 

AC 
4.80 ± 0.60 

(0.854 ± 0.846) 

3.14 ± 1.90 

(−0.167 ± 1.590) 

2.25 ± 1.77 

(−0.616 ± 1.690) 
<0.001 d CTRL > PD e, PSP e 

Rec 
2.98 ± 0.15 

(0.66 ± 0.39) 

1.96 ± 1.08 

(−0.165 ± 0.970) 

1.52 ± 0.9 

(−0.441 ± 1.010) 
<0.001 d CTRL > PD e, PSP e 

N 
1.98 ± 0.15 

(−0.02 ± 0.14) 

2.00 ± 0 

(0.030 ± 0.058) 

1.94 ± 0.32 

(−0.015 ± 0.303) 
N.S. d N.A. 

SR 
1.00 ± 0 

(0.10 ± 0.04) 

0.82 ± 0.39 

(−0.055 ± 0.403) 

0.81 ± 0.39 

(−0.038 ± 0.384) 
0.03 d CTRL > PD e 

P 
2.93 ± 0.45 

(−0.02 ± 0.43) 

2.98 ± 0.143 

(0.088 ± 0.163) 

2.77 ± 0.55 

(−0.074 ± 0.540) 
N.S.d N.A. 

W 
0.91 ± 0.30 

(0.16 ± 0.30) 

0.67 ± 0.47 

(0.065 ± 0.394) 

0.29 ± 0.46 

(−0.210 ± 0.465) 
<0.001 d 

CTRL > PSP e;  

PD > PSP e 

CE 

0.82 ± 0.40 

(−0.003 ± 

0.410) 

0.84 ± 0.37 

(0.123 ± 0.344) 

0.52 ± 0.50 

(−0.120 ± 0.454) 
0.01 d PD > PSP e 

D 
0.84 ± 0.37 

(0.111 ± 0.270) 

0.65 ± 0.48 

(0.083 ± 0.394) 

0.25 ± 0.44 

(−0.185 ± 0.421) 
<0.001 d 

CTRL > PSP e;  

PD > PSP e 
a ANOVA p-value, significant at p < 0.05. b Post-hoc of ANOVA corrected for multiple comparisons 

with Tukey’s, significant at p < 0.05. c Pairwise Chi-squared, significant at p < 0.05. d Analysis of 

covariance (ANCOVA) with age, sex and education in covariates, significant at p < 0.05. e Post-hoc 

of ANCOVA with age, sex and education in covariates, corrected for multiple comparisons with 

Tukey’s honest significant difference (HSD) test, significant at p < 0.05. Abbreviations: N.S. = not 

significant; N.A. = not applicable; CTRL = healthy control; PD = Parkinson’s disease patients; PSP= 

Progressive Supranuclear Palsy patients. 
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Figure 2. Radar plots of the mean of the eleven Mini Mental State Examination (MMSE) subscales 

per diagnosis: healthy controls (CTRL), Parkinson’s disease patients (PD) and Progressive 

Supranuclear Palsy patients (PSP). In gray and dotted lines the maximum value that each MMSE 

subscale could reach: Max(TO) = 5, Max(OS) = 5, Max(Reg) = 3, Max(AC) = 5, Max(Rec) = 3, 

Max(N) = 2, Max(SR) = 1, Max(P) = 3, Max(W) = 1, Max(CE) = 1, Max(D) = 1. Abbreviations: CTRL = 

healthy control; PD = Parkinson’s disease patients; PSP = Progressive Supranuclear Palsy patients; 

TO = temporal orientation; OS = orientation in space, Reg = registration of three words; AC = 

attention and calculation; Rec = recall of three words; N = object naming; SR = sentence repetition; 

P = praxis; W = writing a sentence; CE = reading a sentence and close your eyes; D = copy a 

drawing. 

3.2. Cluster Analysis 

We first applied our proposed algorithm separately on the MMSE scores of the 

healthy controls group, PD patients and PSP patients for investigating the natural 

structure of the intra-diagnostic cognitive profiles and then on the whole cohort of CTRL, 

PD and PSP participants. The comparison of the performance—calculated with the 

Silhouette index—of each clustering experiment by varying the preference value was 

reported in Table 2. 

Table 2. Performance—evaluated with the Silhouette index—of the proposed algorithm by 

varying the preference value of the affinity propagation (AP) clustering.  

 Median Preference Minimum Preference 

Group #Clusters Silhouette Index #Clusters Silhouette Index 

CTRL 8 0.302 1 N.A. 

PD 7 0.375 2 0.675 

PSP 6 0.387 2 0.677 

CTRL + PD + PSP 16 0.237 4 0.601 

Abbreviation: N.A. = not applicable; CTRL = healthy control; PD = Parkinson’s disease patients; 

PSP = Progressive Supranuclear Palsy patients. 

We found an overestimate of the number of clusters (8 clusters) and a poor Silhouette 

value (0.302) when the proposed algorithm was applied on the control group with the 

preference value equal to the median of the similarity matrix. In particular, the bigger 

cluster was comprised of 26 participants, three clusters were comprised of only 1 subject, 

two clusters were comprised of 3 subjects, one cluster comprised of 4 subjects and the last 

one was comprised of 5 subjects. 

On the contrary, the algorithm with the preference value equal to the minimum of 

the similarity matrix found only 1 cluster, thus comprising all the healthy control 

participants. The only exemplar’s demographic values and eleven MMSE scores (as a 

vector: [TO, OS, Reg, AC, Rec, N, SR, P, W, CE, D]) were: 

 Cluster #1 CTRL: male, age 62, education 16, MMSE subscales = [5, 5, 3, 5, 3, 2, 1, 3, 1, 

1, 1]; 
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Regarding the PD participants group, we found 7 clusters and a poor value of the 

Silhouette index (0.375) when the proposed algorithm was applied with the preference 

value equal to the median of the similarity matrix. In particular, the two biggest clusters 

were comprised of 13 and 11 PD participants, two clusters were comprised of 7 PD 

patients, one cluster was comprised of 6 PD patients, one cluster comprised of 3 PD 

patients and the last one was comprised of 2 PD patients. 

A significant improvement of the Silhouette index (0.675) and 2 clusters were found 

with the preference value equal to the minimum value of the similarity matrix. The 

exemplars’ demographic values and eleven MMSE subscale scores (as a vector: [TO, OS, 

Reg, AC, Rec, N, SR, P, W, CE, D]) were: 

 Cluster #1 PD: male, age 43, education 13, MMSE subscales = [5, 5, 3, 4, 3, 2, 1, 3, 1, 1, 

1]; 

 Cluster #2 PD: female, age 61, education 8, MMSE subscales = [5, 5, 3, 5, 3, 2, 1, 3, 1, 1, 

1]; 

The first cluster was comprised of 29 PD patients (13 females) with a mean age of 66.4 

± 10.7, a mean education level of 9.14 ± 4.98 and a total MMSE mean score of 22.3 ± 5.09 

(TO 4.14±, OS 3.97 ± 1.35, Reg 2.97 ± 0.19, AC 2.07 ± 1.71, Rec 1.62 ± 1.12, N 2 ± 0, SR 0.83 ± 

0.38, P 2.97 ± 0.19, W 0.55 ± 0.51, CE 0.72 ± 0.45, D 0.52 ± 0.51). The second cluster was 

comprised of 20 PD patients (9 females) with a mean age of 67.3 ± 7.09, a mean education 

level of 9.45 ± 4.50 and a total MMSE mean score of 28.4 ± 1.79 (TO 50±, OS 4.75 ± 0.55, Reg 

3 ± 0, AC 4.70 ± 0.73, Rec 2.45 ± 0.83, N 2 ± 0, SR 0.80 ± 0.41, P 3 ± 0, W 0.85 ± 0.37, CE 1 ± 0, 

D 0.85 ± 0.37). See Figure 3 for the radar plots of the mean values of MMSE subscales of 

each of the two clusters of PD patients found. The statistical analyses showed that the age, 

distribution of sex and education level were not significantly different between the two 

clusters of PD patients (p > 0.05). The ANCOVA, with age, sex and education level in 

covariates, showed that the total MMSE score, TO, OS, AC, Rec, W, CE and D were 

significantly different between the two clusters (p < 0.001). 

 

Figure 3. Radar plots of the mean of the eleven MMSE subscales per cluster of Parkinson’s disease 

(PD) patients. In gray and dotted lines the maximum value that each MMSE subscale could reach: 

Max(TO) = 5, Max(OS) = 5, Max(Reg) = 3, Max(AC) = 5, Max(Rec) = 3, Max(N) = 2, Max(SR) = 1, 

Max(P) = 3, Max(W) = 1, Max(CE) = 1, Max(D) = 1. Abbreviations: TO = temporal orientation; OS = 

orientation in space, Reg = registration of three words; AC = attention and calculation; Rec = recall 

of three words; N = object naming; SR = sentence repetition; P = praxis; W = writing a sentence; CE 

= reading a sentence and close your eyes; D = copy a drawing. 
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The number of clusters found on PSP patients‘ data was 6 and the Silhouette index 

was low (0.387) when the preference value was equal to the median of the similarity 

matrix. In particular, we found 2 bigger clusters with 15 and 11 PSP participants, 2 clusters 

were comprised of 8 PSP patients, 1 cluster was comprised of 5 PSP patients and 1 cluster 

comprised of 1 PSP patient. 

We found an improvement of the Silhouette index (0.677) and a total of 2 clusters 

when the preference value was equal to the minimum of the similarity matrix. The 

exemplars’ demographic values and eleven MMSE subscale scores (as a vector: [TO, OS, 

Reg, AC, Rec, N, SR, P, W, CE, D]) were: 

 Cluster #1 PSP: male, age 57, education 17, MMSE subscales = [5, 5, 3, 2, 1, 2, 1, 3, 0, 

1, 0]; 

 Cluster #2 PSP: male, age 78, education 13, MMSE subscales = [5, 5, 3, 5, 2, 2, 1, 3, 0, 

1, 0]; 

The first cluster was comprised of 26 PSP patients (12 females) with a mean age of 

70.3 ± 8.17, a mean education level of 6.88 ± 4.71 and a total MMSE mean score of 17.4 ± 

4.31 (TO 3.19 ± 1.52, OS 3.27 ± 1.28, Reg 2.77 ± 0.65, AC 0.96 ± 0.77, Rec 1.23 ± 0.95, N 1.88 

± 0.43, SR 0.73 ± 0.45, P 2.69 ± 0.62, W 0.19 ± 0.40, CE 0.46 ± 0.51, D 0.15 ± 0.37). The second 

cluster was comprised of 22 PSP patients (10 females) with a mean age of 70.0 ± 8.69, a 

mean education level of 7.95 ± 5.47 and a total MMSE mean score of 24.9 ± 2.88 (TO 4.64 ± 

0.59, OS 4.45 ± 0.74, Reg 2.95 ± 0.21, AC 3.77 ± 1.34, Rec 1.86 ± 071, N 2 ± 0, SR 0.91 ± 0.29, 

P 2.86 ± 0.47, W 0.41 ± 0.50, CE 0.59 ± 0.50, D 0.36 ± 0.49). See Figure 4 for the radar plots 

of the mean values of MMSE subscales of each of the two clusters of PSP patients found. 

The statistical analyses revealed that the age, distribution of sex and education level were 

not significantly different between the two clusters of PSP patients (p > 0.05). The 

ANCOVA, with age, sex and education level in covariates, showed that the total MMSE 

score, TO, OS, AC and Rec were significantly different between the two clusters (p < 0.001). 

 

Figure 4. Radar plots of the mean of the eleven MMSE subscales per cluster of Progressive 

Supranuclear Palsy (PSP) patients. In gray and dotted lines the maximum value that each MMSE 

subscale could reach: Max(TO) = 5, Max(OS) = 5, Max(Reg) = 3, Max(AC) = 5, Max(Rec) = 3, 

Max(N) = 2, Max(SR) = 1, Max(P) = 3, Max(W) = 1, Max(CE) = 1, Max(D) = 1. Abbreviations: TO = 

temporal orientation; OS = orientation in space, Reg = registration of three words; AC = attention 

and calculation; Rec = recall of three words; N = object naming; SR = sentence repetition; P = praxis; 

W = writing a sentence; CE = reading a sentence and close your eyes; D = copy a drawing. 

Lastly, we applied our algorithm on the whole cohort of CTRL, PD and PSP patients 

for investigating the inter-diagnostic cognitive profiles. We found a huge number of 
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clusters (16) and a poor Silhouette index (0.237) when the preference value was equal to 

the median of the similarity matrix. The Silhouette index was better (0.601), and we found 

4 clusters when the preference value was the minimum of the similarity matrix. The 

exemplars’ demographic values and eleven MMSE subscale scores (as a vector: [TO, OS, 

Reg, AC, Rec, N, SR, P, W, CE, D]) were:  

 Cluster #1: CTRL, female, age 59, education 16, MMSE subscales = [5, 5, 3, 5, 3, 2, 1, 3, 

1, 1, 1]; 

 Cluster #2: PD, female, age 61, education 8, MMSE subscales = [5, 5, 3, 5, 3, 2, 1, 3, 1, 

1, 1];  

 Cluster #3: PD, female, age 70, education 5, MMSE subscales = [1, 2, 3, 1, 1, 2, 1, 3, 0, 

0, 0]; 

 Cluster #4: PSP, male, age 78, education 8, MMSE subscales = [4, 4, 3, 1, 1, 2, 1, 3, 0, 1, 

0]. 

Cluster #1 was comprised of 68 participants (33 females), Cluster #2 of 30 (14 females), 

Cluster #3 of 8 (5 females) and Cluster #4 of 34 (17 females). Figure 5 depicted the 

distribution of each of the four cluster in terms of the number of CTRL participants, PD 

and PSP patients. 

 

Figure 5. Distribution of diagnoses among the four clusters found by affinity propagation. Cluster #1 

consisted of 32 CTRL, 19 PD and 17 PSP. Cluster #2 consisted of 12 CTRL, 10 PD and 8 PSP. Cluster 

#3 consisted of 2 PD and 6 PSP. Cluster #4 consisted of 17 PD and 17 PSP. Abbreviations: CTRL = 

healthy control; PD = Parkinson’s disease patients; PSP = Progressive Supranuclear Palsy patients. 

The demographic and cognitive characteristics of each cluster were shown in Table 

3, together with the results of statistical analyses and pairwise post-hoc results. The four 

clusters did not differ in the sex distribution, while Cluster #1 was younger and with the 

highest level of education than the other three clusters and comprised the highest number 

of CTRL (32). Moreover, Cluster #3 and #4 did not include any CTRL participant, but only 

PD and PSP patients. 

Only two MMSE subscales were not different among clusters, which is object naming 

(N) and the praxis (P). Cluster #3 had the lowest MMSE total score and the worst scores 

in all the MMSE subscales—except for the two above mentioned equal among clusters 

(Figure 6 for the radar plots of the four clusters). In particular, Cluster #3 had lower scores 

than Cluster #1 and Cluster #2 in TO, OS, AC, Rec, SR, W, CE and D and lower scores than 

Cluster #4 in TO, OS, SR and CE. Clusters #1 and #2 showed preserved cognitive functions 
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in most MMSE subscales, although Cluster #2 had significant slightly higher scores than 

Cluster #1 in TO, OS, Reg, AC and CE.  

Table 3. Demographic and cognitive data of the four clusters found by affinity propagation. The 

mean and standard deviation of the residuals of the regression with age, sex and education as 

covariates, are also reported in round brackets. 

 
Cluster #1 

(68) 

Cluster #2 

(30) 

Cluster #3 

(8) 

Cluster #4 

(34) 
p-Value Post-Hoc 

Age 62.4 ± 10.1 71.3 ± 9.94 70.4 ± 7.93 69.8 ± 7.64 <0.001 a 1 < 2,4 b 

Female, n 33 14 5 17 N.S. c N.A. 

Education 12.1 ± 5.23 6.60 ± 3.23 5.5 ± 2.67 8.59 ± 4.99 <0.001 a 1 > 2,3,4 e 

Total MMSE 27.3 ± 3.93 27.7 ± 1.95 12.6 ± 2.92 20.1 ± 3.57 <0.001 d 

1 > 3,4 e 

2 > 1,3,4 e 

4 > 3 e 

TO 
4.68 ± 0.74 

(0.026 ± 0.565) 

4.9 ± 0.55 

(0.800 ± 0.550) 

1.25 ± 1.04 

(−2.800 ± 0.842) 

4.18 ± 0.97 

(−0.099 ± 0.888) 
<0.001 d 

1 > 3 e 

2 > 1,3,4 e 

4 > 3 e 

OS 
4.71 ± 0.69 

(0.067 ± 0.472) 

4.83 ± 0.46 

(0.856 ± 0.487) 

2 ± 0.76 

(−1.85 ± 0.43) 

3.74 ± 1.24 

(−0.454 ± 1.02) 
<0.001 d 

1 > 3,4 e 

2 > 1,3,4 e 

4 > 3 e 

Reg 
2.93 ± 0.39 

(−0.056 ± 0.372) 

3 ± 0 

(0.108 ± 0.040) 

2.75 ± 0.46 

(−0.139 ± 0.472) 

2.97 ± 0.17 

(0.049 ± 0.162) 
0.016 d 2 > 1 e 

AC 
4.21 ± 1.33 

(0.345 ± 0.636) 

4.60 ± 0.72 

(1.89 ± 0.619) 

0.50 ± 0.76 

(−2.06 ± 1.11) 

1.21 ± 0.99 

(−1.88 ± 0.767) 
<0.001 d 

1 > 3,4 e 

2 > 1,3,4 e 

Rec 
2.59 ± 0.69 

(0.3 ± 0.637) 

2.50 ± 0.73 

(0.021 ± 0.18) 

1.13 ± 0.83 

(−0.775 ± 0.993) 

1.09 ± 0.93 

(−0.937 ± 0.889) 
<0.001 d 

1 > 3,4 e 

2 > 3,4 e 

N 
2 ± 0 

(0.007 ± 0.050) 

1.97 ± 0.183 

(0.056 ± 0.302) 

1.75 ± 0.71 

(−0.173 ± 0.675) 

1.97 ± 0.17 

(0.008 ± 0.16) 
N.S. d N.A. 

SR 
0.89 ± 0.31 

(0.005 ± 0.300) 

0.9 ± 0.30 

(0.072 ± 0.532) 

0.50 ± 0.53 

(−0.337 ± 0.535) 

0.88 ± 0.33 

(0.019 ± 0.331) 
0.025 d 3 < 1,2,4 e 

P 
2.94 ± 0.29 

(−0.007 ± 0.268) 

2.90 ± 0.55 

(0.201 ± 0.484) 

2.50 ± 0.76 

(−0.312 ± 0.748) 

2.88 ± 0.41 

(0.024 ± 0.416) 
N.S.d N.A. 

W 
0.74 ± 0.41 

(0.061 ± 0.316) 

0.67 ± 0.479 

(0.218 ± 0.38) 

0.12 ± 0.35 

(−0.333 ± 0.386) 

0.32 ± 0.47 

(−0.22 ± 0.437) 
<0.001 d 

1 > 3,4 e 

2 > 3,4 e 

CE 
0.76 ± 0.43 

(−0.039 ± 0.376) 

0.83 ± 0.379 

(0.178 ± 0.45) 

0 ± 0 

(−0.605 ± 0.075) 

0.71 ± 0.46 

(0.029 ± 0.418) 
<0.001 d 

1 > 3 e 

2 > 1,3 e 

4 > 3 e 

D 
0.79 ± 0.41 

(0.070 ± 0.297) 

0.57 ± 0.50 

(0.178 ± 0.450) 

0 ± 0 

(−0.358 ± 0.212) 

0.26 ± 0.45 

(−0.213 ± 0.402) 
<0.001 d 

1 > 3,4 e 

2 > 3,4 e 
a ANOVA p-value, significant at p < 0.05. b Post-hoc of ANOVA corrected for multiple comparisons 

with Tukey’s, significant at p < 0.05. c Pairwise Chi-squared, significant at p < 0.05. d ANCOVA 

with age, sex and education in covariates, significant at p < 0.05. e Post-Hoc of ANCOVA with age, 

sex and education in covariates, corrected for multiple comparisons with Tukey’s HSD test, 

significant at p < 0.05. Abbreviation: N.S. = not significant; N.A. = not applicable; CTRL = healthy 

control; PD = Parkinson’s disease patients; PSP = Progressive Supranuclear Palsy patients; TO = 

temporal orientation; OS = orientation in space, Reg = registration of three words; AC = attention 

and calculation; Rec = recall of three words; N = object naming; SR = sentence repetition; P = praxis; 

W = writing a sentence; CE = reading a sentence and close your eyes; D = copy a drawing. 



Algorithms 2021, 14, 49 14 of 23 
 

 

Figure 6. Radar plots of the mean of the eleven MMSE subscales per cluster. In gray and dotted 

lines the maximum value that each MMSE subscale could reach: Max(TO) = 5, Max(OS) = 5, 

Max(Reg) = 3, Max(AC) = 5, Max(Rec) = 3, Max(N) = 2, Max(SR) = 1, Max(P) = 3, Max(W) = 1, 

Max(CE) = 1, Max(D) = 1. Abbreviations: TO = temporal orientation; OS = orientation in space, Reg 

= registration of three words; AC = attention and calculation; Rec = recall of three words; N = object 

naming; SR = sentence repetition; P = praxis; W = writing a sentence; CE = reading a sentence and 

close your eyes; D = copy a drawing. 

4. Discussion 

In the present study, we proposed a novel method for discovering the natural 

structure of cognitive impairment in Parkinsonisms patients according to the eleven 

MMSE subscale scores. Our application of the affinity propagation clustering algorithm 

on the regression residuals revealed the presence of four clusters, where two clusters (#1 

and #2) showed almost intact cognitive performance, one cluster (#4) had a moderate 

cognitive impairment, and the last cluster (#3) had a more extensive cognitive deficit. An 

important finding of our work was the existence of variable levels of cognitive impairment 

in PD and PSP patients, showing an intra- and inter-diagnostic heterogeneity of their 

cognitive profiles, never investigated accurately before now with an advanced 

unsupervised learning technique. 

Clustering was widely applied in the neuropsychology realm [10] and a variety of 

algorithms was used [8,9] for exploring for example, the cognitive dysfunction in Bipolar 

and Major Depression [11,13] or affective and psychotic disorder [12,14]. Interestingly, the 

findings of several works [11–15] showed distinct neurocognitive clusters independent 

from the diagnosis, as we found in our cohort of PD and PSP patients. Similarly to our 

results, Cotrena et al. [11] and Lewandowski et al. [14] found one neuropsychological 

intact subgroup (Cluster #2 in our case), one to three “intermediate” clusters (Clusters #1 
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and #4 in our case) and one cluster with a significant cognitive deficit (Cluster #3 of the 

present study), by applying both the Ward’s linkage with squared Euclidean distance. 

Cluster analysis with the Ward’s method was also used by Phillips et al. [16], which found 

heterogeneous patterns in the neurocognitive profile of early-onset Alzheimer’s patients, 

as indeed we found in our cohort of Parkinsonisms patients. 

Although a plethora of works [18–24] investigated the heterogeneity among PD 

patients studying both motor and non-motor symptoms with clustering approaches, no 

one before us, explored the MMSE subscale scores, and moreover, no previous work 

studied the cognitive patterns of PSP patients with an unsupervised learning 

methodology. Indeed, a very recent work by our research group [36] already highlighted 

the importance of the machine learning for the evaluation of the neuropsychological and 

cognitive profile of PD and PSP subtypes, which could present overlapping cognitive 

deficits. 

It is worth of noting that, as far as we know, only one previous work applied 

clustering on the MMSE subscales [15]. In particular, Kim et al. [15] used a two-step cluster 

analysis, comprised of a first phase consisting in pre-clustering and a second phase of a 

modified hierarchical agglomerative clustering [15] on the Korean version of the MMSE. 

The findings of Kim et al. [15] showed that the cluster analysis of the MMSE could be 

considered a reliable screening tool for the cognitive impairment of the neurodegenerative 

diseases, especially when complex neuropsychological batteries are not feasible. 

Differently from Kim et al. [15], we did not include in the cluster analysis the age and 

education levels, but we treated age, gender and education levels as confounding 

variables, for taking into account only the influence of the diagnosis on the cognitive 

profile of the participants. In particular, we calculated the residuals of each MMSE 

subscale by applying a multiple linear regression with the method ordinary least squares. 

The application of cluster analysis on regression residuals was previously performed by 

Phillips et al. [16], which used the Ward’s method for investigating the heterogeneity of 

early-onset Alzheimer’s disease patients. However, it has been showed that the 

application of traditional clustering methods, such as K-means [25], K-median and Ward’s 

[5], could not be suitable for every kind of data [8,49]. More in detail, it has been suggested 

to privilege the use of AP algorithm in presence of sparse similarity matrix [28], as it could 

be occurred in the cluster analysis of regression residuals of MMSE subscales, which are 

discrete variables with a limited range of values (0–5). 

Another strength of the AP algorithm relies in the automatic detection of the cluster 

centers [28,29], the exemplars, which are in our case actual participants. In particular, we 

found that: one healthy control participant was representative of Cluster #1, the group 

with almost intact cognitive profile; one PD patient relatively young and with high 

education level was the center of Cluster #2, the group with the most intact cognitive 

profile; one PD patient, elder and with low education level, was the exemplar of Cluster 

#3, the most cognitively impaired group, specifically in TO, OS, AC, Rec, SR, W, CE and 

D; one PSP patient, elder but with high education level, was the representative participant 

of Cluster #4, the ensemble with a moderate cognitive deficit. Such an automatic detection 

of cluster centers by the AP algorithm represents a valuable tool for the exploratory 

analysis of neuropsychological patterns when no a priori knowledge exists, and a full 

data-driven investigation is needed [8]. Moreover, the identification of actual participants 

as representatives of the clusters could provide to the neuropsychologists a more accurate 

understanding of the natural structure of the collected data. 

As further novel contribution, our work compared the findings of the cluster analysis 

by varying the preference value of the AP algorithm as the median and the minimum 

value of the similarity matrix. Interestingly, we corroborated the literature [8,46] by 

finding that the use of the median dramatically overestimated the number of clusters, 

besides by obtaining poor performance as calculated with the Silhouette index [47,50].  

The present study had two main limitations. The first is related to the specification 

of the similarity matrix calculated as the negative squared Euclidean distance. Indeed, we 
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did not provide any insight whether the use of different distance metrics could provide 

different findings. The second limitation of the present work is the absence of the tuning 

of the damping factor, which could have indeed provided, as in the case of the first 

limitation, different results. 

Further work needs to be done on a larger cohort of participants to assess whether 

our algorithm shows reliability and stability. Furthermore, future studies should include 

a more extensive battery of neuropsychological tests to confirm or not the heterogeneity 

of the cognitive profiles in PD and PSP patients. 

In conclusion, we proposed a novel approach of unsupervised learning based on the 

application of AP clustering algorithm on the regression residuals of MMSE subscale 

scores for the exploration of the patterns of cognitive impairment of Parkinson’s disease 

and Progressive Supranuclear Palsy patients. Our findings revealed an intra- and inter-

diagnostic heterogeneity never investigated before now among Parkinsonisms. The 

proposed unsupervised learning method could represent a new promising tool aimed at 

supporting the neuropsychologists in understanding the natural structure of MMSE 

performance in the neurodegenerative diseases. 
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Appendix A 

Implementation of the proposed algorithm written in python 3 language. 

 



Algorithms 2021, 14, 49 18 of 23 
 

 



Algorithms 2021, 14, 49 19 of 23 
 

 



Algorithms 2021, 14, 49 20 of 23 
 

 



Algorithms 2021, 14, 49 21 of 23 
 

 

Appendix B 

Table A1. Results of the multiple linear regression with the method ordinary least squares (ols) by 

accounting for the influence of age, sex and education years on the eleven MMSE subscales of the 

whole cohort comprising of CTRL, PD and PSP participants. The parameters are the R squared, 

the F value, the intercept 0, the coefficients of age, sex and education years, (1, 2, 3) as well as 

the p-value. 

 R2 F 
Intercept 

(0, p-Value) 

Age 

(1, p-Value) 

Sex 

(2, p-Value) 

Education 

(3, p-Value) 

TO 0.193 10.8 4.9218, <0.001 −0.0162, 0.104 −0.1011, 0.563 0.0739, <0.001 

OS 0.309 20.3 4.0724, <0.001 −0.0142, 0.110 0.1743, 0.264 0.0983, <0.001 

Reg 0.074 3.6 3.0925, <0.001 −0.0029, 0.331 −0.0489, 0.344 0.0118, 0.039 

AC 0.312 20.6 3.6018, 0.004 −0.0267, 0.080 −0.0646, 0.809 0.1675, <0.001 

Rec 0.114 5.8 2.9579, <0.001 −0.0159, 0.092 −0.1284, 0.437 0.0426, 0.020 

N 0.083 4.1 1.7130, <0.001 0.0010, 0.598 0.0586, 0.085 0.0106, 0.005 

SR 0.022 1 0.7640, 0.004 0.0007, 0.821 −0.0240, 0.674 0.0098, 0.119 

P 0.071 3.4 3.1548, <0.001 −0.0069, 0.089 0.0584, 0.410 0.0111, 0.153 

W 0.252 15.3 1.2908, <0.001 −0.0125, 0.003 −0.0789, 0.278 0.0283, <0.001 

CE 0.150 8 0.9553, 0.004 −0.0054, 0.183 −0.0788, 0.270 0.0253, 0.010 

D 0.379 27.7 1.3470, <0.001 −0.0180, <0.001 0.0741, 0.271 0.0321, <0.001 

Abbreviation: CTRL = healthy control; PD = Parkinson’s disease patients; PSP = Progressive 

Supranuclear Palsy patients; TO = temporal orientation; OS = orientation in space, Reg = 

registration of three words; AC = attention and calculation; Rec = recall of three words; N = object 

naming; SR = sentence repetition; P = praxis; W = writing a sentence; CE = reading a sentence and 

close your eyes; D = copy a drawing. 
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