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Abstract: Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art
performance in many machine learning tasks. The core principle of DL methods consists of training
composite architectures in an end-to-end fashion, where inputs are associated with outputs trained
to optimize an objective function. Because of their compositional nature, DL architectures naturally
exhibit several intermediate representations of the inputs, which belong to so-called latent spaces.
When treated individually, these intermediate representations are most of the time unconstrained
during the learning process, as it is unclear which properties should be favored. However, when
processing a batch of inputs concurrently, the corresponding set of intermediate representations
exhibit relations (what we call a geometry) on which desired properties can be sought. In this
work, we show that it is possible to introduce constraints on these latent geometries to address
various problems. In more detail, we propose to represent geometries by constructing similarity
graphs from the intermediate representations obtained when processing a batch of inputs. By
constraining these Latent Geometry Graphs (LGGs), we address the three following problems:
(i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii)
designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii)
robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between
consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the
proposed geometry-based methods in solving the considered problems.

Keywords: graph signal processing; deep learning; robustness; compression

1. Introduction

In recent years, Deep Learning (DL) methods have achieved state of the art perfor-
mance in a vast range of machine learning tasks, including image classification [1] and
multilingual automatic text translation [2]. A DL architecture is built by assembling ele-
mentary operators called layers [3], some of which contain trainable parameters. Due to
their compositional nature, DL architectures exhibit intermediate representations when
they process a given input. These intermediate representations lie in so-called latent spaces.

DL architectures are typically trained to minimize a loss function computed at their
output. This is performed using a variant of the stochastic gradient descent algorithm that
is backpropagated through the multiple layers to update the corresponding parameters.
To accelerate the training procedure, it is very common to process batches of inputs
concurrently. In such a case, a global criterion over the corresponding batch (e.g., the
average loss) is backpropagated.

The training procedure of DL architectures is thus performed in an end-to-end fashion.
This end-to-end characteristic of DL refers to the fact that intermediate representations are
unconstrained during training. This property has often been considered as an asset in the
literature [4] which presents DL as a way to replace “hand-crafted” features by automatic
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differentiation. As a matter of fact, using these hand-crafted features as intermediate repre-
sentations can cause sub-optimal solutions [5]. On the other hand, completely removing all
constraints on the intermediate representations can cause the learning procedure to exhibit
unwanted behavior, such as susceptibility to deviations of the inputs [6–8], or redundant
features [9,10].

In this work, we propose a new methodology aiming at enforcing desirable properties
on intermediate representations. Since training is organized into batches, we achieve this
goal by constraining what we call the latent geometry of data points within a batch. This
geometry refers to the relative position of data points within a specific batch, based on
their representation in a given layer. While there are many problems for which specific
intermediate layer properties are beneficial, in this work, we consider three examples.
First, we explore compression via knowledge distillation (KD) [9–12], where the goal is to
supervise the training procedure of a small DL architecture (called the student) with a
larger one (called the teacher). Second, we study the design of efficient embeddings for
classification [13,14], in which the aim is to train the DL architecture to be able to extract
features that are useful for classification (and could be used by different classifier) rather
than using classification accuracy as the sole performance metric. Finally, we develop
techniques to increase the robustness of DL architectures to deviations of their inputs [6–8].

To address the three above-mentioned problems, we introduce a common methodol-
ogy that exploits the latent geometries of a DL architecture. More precisely, we propose
to formalize latent geometries by defining similarity graphs. In these graphs, vertices are
data points in a batch and an edge weight between two vertices is a function of the relative
similarity between the corresponding intermediate representations at a given layer. We
call such a graph a latent geometry graph (LGG). In this paper, we show that intermediate
representations with desirable properties can be obtained by imposing constraints on their
corresponding LGGs. In the context of KD, similarity between teacher and student is
favored by minimizing the discrepancy between their respective LGGs. For efficient em-
bedding designs, we propose a LGG-based objective function that favors disentanglement
of the classes. Lastly, to improve robustness, we enforce smooth variations between LGGs
corresponding to pairs of consecutive layers at any stage, from input to output, in a given
architecture. Enforcing smooth variations between the LGGs of consecutive layers provides
some protection against noisy inputs, since small changes in the input are less likely to lead
to a sharp transition of the network’s decision.

This paper is structured as follows; we first discuss related work in Section 2. We then
introduce the proposed methodology in Section 3. Then, we present the three applications,
namely knowledge distillation, design of classification feature vectors, and robustness
improvements, in Section 4. Finally, we present a summary and a discussion on future
work in Section 5. A term glossary is available in Appendix A.

2. Related Work

As previously mentioned, in this work, we are interested in using graphs to ensure that
latent spaces of DL architectures have some desirable properties. The various approaches
we introduce in this paper are based on our previous contributions [8,10,14]. However, in
this paper, they are presented for the first time using a unified methodology and formalism.
While we deployed these ideas already in a few applications, by presenting them in a
unified form, our goal is to provide a broader perspective of these tools, as well as to
encourage their use for other problems.

In what follows, we introduce related work found in the literature. We start by
comparing our approach with others that also aim at enforcing properties on latent spaces.
Then, we discuss approaches that mix graphs and intermediate (or latent) representations
in DL architectures. Finally, we discuss methods related to the applications highlighted in
this work: (i) knowledge distillation, (ii) latent embeddings, and (iii) robustness.

Enforcing properties on latent spaces: A core goal of our work is to enforce desirable
properties on the latent spaces of DL architectures, more precisely (i) consistency with a
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teacher network, (ii) class disentangling, and (iii) smooth variation of geometries over the
architecture. In the literature, one can find two types of approaches to enforce properties
on latent spaces: (i) directly designing specific modules or architectures [15,16] and (ii)
modifying the training procedures [11,13]. The main advantage of the latter approaches is
that one is able to draw from the vast literature in DL architecture design [17,18] and use
an existing architecture instead of having to design a new one.

Our proposed unified methodology can be seen as an example of the second type
of approaches, with two main advantages over competing techniques. First, by using
relational information between the examples, instead of treating each one separately, we
extend the range of proposed solutions. For example, relational knowledge distillation
methods can be applied to any pair of teacher-student networks [9] as relational metrics are
dependent on the number of examples and not on the dimension of individual layers (see
more details in the next paragraphs). Second, by using graphs to represent the relational
information, we are able to to exploit the rich literature in graph signal processing [19] and
use it to reason about the properties we aim at enforcing on latent spaces. We discuss this
in more detail in Sections 4.1 and 4.3.

Latent space graphs: In the past few years, there has been a growing interest in
proposing deep neural network layers able to process graph-based inputs, also known as
graph neural networks. For example, works, such as Reference [20–23], show how one
can use convolutions defined in graph domains to improve performance of DL methods
dealing with graph signals as inputs. The proposed methodology differs from these works
in that it does not require inputs to be defined on an explicit graph. The graphs we consider
here (LGGs) are proxies to the latent data geometry of the intermediate representations.
Contrary to classical graph neural networks, the purpose of the proposed methodology is
to study latent representations using graphs, instead of processing graph supported inputs.
Some recent work can be viewed as following ideas similar to those introduced in this
paper, with applications in areas, such as knowledge distillation [24,25], robustness [15],
interpretability [26], and generalization [27]. Despite sharing a common methodology,
these works are not explicitly linked. This can be explained by the fact that they were
introduced independently around the same time and have different aims. We provide more
details about how they are connected with our proposed methodology in the following
paragraphs.

Knowledge distillation: Knowledge distillation is a DL compression method, where
the goal is to use the knowledge acquired on a pre-trained architecture, called teacher, to
train a smaller one, called student. Initial works on knowledge distillation considered
each input independently from the others, an approach known as Individual Knowledge
Distillation (IKD) [11,12,28]. As such, the student architecture mimics the intermediate
representations of the teacher for each input used for training. The main drawback of
IKD lies in the fact that it forces intermediate representations of the student to be of
the same dimensions of that of the teacher. To deploy IKD in broader contexts, authors
have proposed to disregard some of these intermediate representations [12] or to perform
some-kind of dimensionality reduction [28].

On the other hand, the method we propose in Section 4.1 is based on a recent paradigm
named Relational Knowledge Distillation (RKD) [9], which differs from IKD as it focuses
on the relationship between examples instead of their exact positions in latent spaces. RKD
has the advantage of leading to dimension-agnostic methods, such as the one described in
this work. By defining graphs, its main advantage lies in the fact relationships between
elements are considered relatively to each other.

Concurrently, other authors [24,25] have proposed methods similar to the one we
present here [10]. In Reference [24], unlike in our approach, dimensionality reduction
transformations are added to the intermediate representations, in an attempt to improve
the knowledge distillation. In Reference [25], LGGs are built using attention (similar to
Reference [29]). Among other differences, we show in Section 4.1 that constructing graphs
that only connect data points from distinct classes can significantly improve accuracy.
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Latent embeddings: In the context of classification, the most common DL setting is
to train the architecture end-to-end with an objective function that directly generates a
decision at the output. Instead, it can be beneficial to output representations well suited
to be processed by a simple classifier (e.g., logistic regression). This framework is called
feature extraction or latent embeddings, as the goal is to generate representations that are
easy to classify, but without directly enforcing the way they should be used for classification.
Such a framework is very interesting if the DL architecture is not going to be used solely
for classification but also for related tasks, such as person re-identification [13], transfer
learning [30], and multi-task learning [31].

Many authors have proposed ways to train deep feature extractors. One influential
example is Reference [13], where the authors use triplets to perform Deep Metric Learning.
In each triplet, the first element is the example to train, the second is a positive example
(e.g., same class) and the last is a negative one (e.g., different class). The aim is to result
in triplets where the first element is closer to the second than to the last. In contrast, our
method considers all connections between examples of different classes and can focus
solely on separation (making all the negatives far) instead of clustering (making all the
positives close), which we posit should lead to more robust embeddings in Section 4.2.

Other solutions for generating latent embeddings propose alternatives to the classical
arg max operator used to perform the decision at the output of a DL architecture. This can
be done either by changing the output so that it is based on error correcting codes [32] or is
smoothed, either explicitly [33] or by using the prior knowledge of another network [11].

Robustness of DL architectures: In this work, we are interested in improving the
robustness of DL architectures. We define robustness as the ability of the network to
correctly classify inputs even if they are subject to small perturbations. These perturbations
may be adversarial (designed exactly to force misclassification) [34] or incidental (due to
external factors, such as hardware defects or weather artifacts) [7]. The method we present
in Section 4.3 is able to increase the robustness of the architecture in both cases. Multiple
works in the literature aim to improve the robustness of DL architectures following two
main approaches: (i) training set augmentation [35] and (ii) improved training procedure.
Our contribution can be seen as an example of the latter approaches, but can be combined
with augmentation-based methods, leading to an increase of performance compared to
using the techniques separately [8].

A similar idea was proposed in Reference [15], where the authors exploit graph
convolutional layers in order to improve robustness of DL architectures applied to non-
graph domains. Their approach can be described as denoising the (test) input by using the
training data. This differs from the method we propose in Section 4.3, which focuses on
generating a smooth network function. As such, the proposed method is more general as it
is less dependent on the training set.

3. Methodology

In this section, we first introduce basic concepts from DL and graph signal processing
(Sections 3.1 and 3.2) and then our proposed methodology (Section 3.3).

3.1. Deep Learning

We start by introducing basic deep learning (DL) concepts, referring the reader to
Reference [3] for a more in-depth overview. A DL architecture is an assembly of layers that
can be mathematically described as a function f , often referred to as the “network function”
in the literature, that associates an input tensor x with an output tensor ŷ = f (x). This
function is characterized by a large number of trainable parameters θ. In the literature,
many different approaches have been proposed to assemble layers to obtain such network
functions [17]. While layers are the basic unit, it is also common to describe architectures
in terms of a series of blocks, where a block is typically a small set of connected layers.
This block representation allows us to encapsulate non-sequential behaviors, such as the
residual connections of residual networks (Resnets) [17], so that, even though layers are
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connected in a more complex way, the blocks remain sequential, and the network function
can be represented as a series of cascading operations:

f = f `max ◦ f `max−1 ◦ · · · ◦ f ` ◦ · · · ◦ f 1, (1)

where each function f ` can represent a layer, or a block comprising several layers, depend-
ing on the underlying DL architecture. Thus, each block is associated with a subfunction
f `. For example, in the context of Resnets [17], the architecture is composed of blocks as
depicted in Figure 1.

Input: x

Embedding layer

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Global pooling

Classification layer

Output: ŷ = f (x)

Figure 1. Simplified depiction of a residual network (Resnet) with eight residual blocks.

A very important concept for the remainder of this work is that of intermediate
representations, which are the basis for the LGGs (defined in Section 3.3) and corresponding
applications (Section 4).

Definition 1 (Intermediate representation). We call intermediate representation of an input x
the output it generates at an intermediate layer or block. Starting from Equation (1), and denoting
F` = f ` ◦ · · · ◦ f 1, we define the intermediate representation at depth ` for x as x` , F`(x). Or,
said otherwise, x` is the representation of x in the latent space at depth `.

Initially, the parameters θ of f are typically drawn at random. They are then optimized
during the training phase so that f achieves a desirable performance for the problem under
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consideration. The dimension of the output of f depends on the task. In the context
of classification, it is common to design the network function such that the output has
a dimension equal to the number of classes in the classification problem. In this case,
for a given input, each coordinate of this final layer output is used as an estimate of the
likelihood that the input belongs to the corresponding class. A network function correctly
maps an input to its class if the output of the network function, ŷ, is close to the target
vector of the correct class y.

Definition 2 (Target vector). Each sample of the training set is associated with a target vector of
dimension C, where C is the total number of classes. Thus, the target vector of a sample of class c is
the binary vector containing 1 at coordinate c and 0 at all other coordinates.

In this work, we also introduce the notion of label indicator vector, which it is impor-
tant to differentiate from that of target vector. The label indicator vector is defined on a
batch of data points, instead of individually for each sample, as follows:

Definition 3 (Label indicator vector). Consider a batch of B data points. The label indicator
vector vc of class c for this batch is the binary vector containing 1 at coordinate i if and only if the
i-th element of the batch is of class c, and 0 otherwise.

The purpose of a classification problem is to obtain a network function f that outputs
the correct class decision for any valid input x. In practice, it is often the case that the
set of valid inputs D is not finite, and yet we are only given a “small” number of pairs
(x, y), where y is the output associated with x. The set of these pairs is called the dataset D.
During the training phase, the parameters are tuned using D and an objective function L
that measures the discrepancy between the outputs of the network function and expected
target indicator vectors, i.e., the discrepancy between ŷ = f (x) and y. It is common to
decompose the function f into a feature extractor F and a classifier C as follows: f = C ◦ F .
In a classification task, the objective function is calculated over the outputs of the classifier
and the gradients are backpropagated to generate a good feature extractor. Alternatively,
to ensure that good latent embeddings are produced, one can first optimize the feature
extractor part of the architecture to optimize the features and then a classifier can be
trained based on the resulting features (which remain fixed or not) [13,14]. We introduce
an objective function designed for efficient latent embedding training in Section 4.2.

Usually, the objective function is a loss function. It is minimized over a subset of the
dataset that we call “training set” (Dtrain). The reason to select a subset of D to train the DL
architecture is that it is hard to predict the generalization ability of the trained function f .
Generalization usually refers to the ability of f to predict the correct output for inputs x
not in Dtrain. A simple way to evaluate generalization consists of counting the proportion
of elements in D−Dtrain that are correctly classified using f . Obviously, this measure of
generalization is not ideal, in the sense that it only checks generalization inside D. This is
why it is possible for a network that seems to generalize well to have trouble to classify
inputs that are subject to deviations. In this case, it is said that the DL architecture is not
robust. We delve into more details on robustness in Section 4.3

In summary, a network function is initialized at random. Parameters are then tuned
using a variant of the stochastic gradient descent algorithm on a dataset Dtrain, and finally,
training performance is evaluated on a validation set. Problematically, the best performance
of DL architectures strongly depends on the total number of parameters they contain [36].
In particular, it has been hypothesized that this dependence comes from the difficulty of
finding a good gradient trajectory when the parameter space dimension is small [37]. A
common way to circumvent this problem is to rely on knowledge distillation, where a
network with a large number of parameters is used to supervise the training of a smaller
one. We introduce a graph-based method for knowledge distillation in Section 4.1.
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3.2. Graph Signal Processing

As mentioned in the introduction, graphs are ubiquitous objects to represent relation-
ships (called edges) between elements in a countable set (called vertices). In this section,
we introduce the framework of Graph Signal Processing (GSP) which is central to our
proposed methodology. Let us first formally define graphs:

Definition 4 (graph). A graph G is a tuple of sets 〈V,E〉, such that:

1. The finite set V is composed of vertices v1, v2, . . . .
2. The set E is composed of pairs of vertices of the form (vi,vj) called edges.

It is common to represent the set E using an edge-indicator symmetric adjacency
matrix A ∈ R|V|×|V|. Note that, in this work, we consider only undirected graphs corre-
sponding to symmetric A (i.e., (vi, vj) ∈ E ⇔ (vj, vi) ∈ E). In some cases, it is useful to
consider (edge-)weighted graphs. In that case, the adjacency matrix can take values other
than 0 or 1.

We can use A to define the diagonal degree matrix D of the graph as:

Di,j =

 ∑
j′∈V
Ai,j′ if i = j

0 otherwise
. (2)

In the context of GSP, we consider not only graphs but also graph signals. A graph
signal is typically defined as a vector s. In this work, we often consider a set of signals
S jointly. We group the signals in a matrix S ∈ R|V|×|S|, where each of the columns is an
individual graph signal s. An important notion in the remaining of this work is that of
graph signal variation.

Definition 5 (Graph signal variation). The total variation σ of a set of graph signals represented
by S is:

σ = tr(S>LS), (3)

where L = D−A is the combinatorial Laplacian of the graph G that supports S, and tr is the trace
function. We can also rewrite σ as:

σ = tr(S>LS) = ∑
i,j∈V
Ai,j ∑

s∈S
(si − sj)

2 , (4)

where si represents the signal s defined on vertex vi. As such, the variation of a signal increases
when vertices connected by edges with large weights have very different values.

3.3. Proposed Methodology

In this section, we describe how to construct and exploit latent geometry graphs
(LGGs) and illustrate the key ideas with a toy example. Given a batch X, each LGG vertex
corresponds to a sample in X, and each edge weight measures similarity between the
corresponding data points. More specifically, LGGs are constructed as follows:

1. Generate a symmetric square matrixA ∈ R|V|×|V| using a similarity measure between
intermediate representations, at a given depth `, of data points in X. In this work, we
choose the cosine similarity when data is non-negative, and an RBF similarity kernel
based on the L2 distance otherwise.

2. Threshold A so that each vertex is connected only to its k-nearest neighbors.
3. Symmetrize the resulting thresholded matrix: two vertices i and j are connected with

edge weights wij = wji as long one of the nodes was a k nearest neighbor of the other.

4. (Optional) Normalize A using its degree diagonal matrix D: Â = D−
1
2AD−

1
2 .

Given the LGG associated to some intermediate representation, we are able to quantify
how well this representation matches the classification task under consideration by using
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the concept of label variation, a measure of graph signal variation for a signal formed as a
concatenation of all label indicator vectors:

Definition 6 (Label variation). Consider a similarity graph for a given batch X (obtained from
some intermediate layer), represented by an adjacency matrix A, and define a label indicator matrix
V obtained by concatenating label indicator vectors vc of each class. Label variation is defined as:

σ = tr
(

V>LV
)
= ∑

c
∑
i,j

vc
i 6=vc

j︸ ︷︷ ︸
sum over inputs of distinct classes

Ai,j . (5)

Remark 1. Label variation has the advantage of being independent of the choice of labels for each
class, which can be verified by noticing that for any permutation matrix P, it holds that:

tr
(
(VP)>LVP

)
= tr

(
P>V>LVP

)
= tr

(
V>LVPP>

)
= tr

(
V>LV

)
= σ. (6)

If the graph is well suited for classification, then most nodes will have immediate
neighbors in the same class. Indeed, label variation is 0 if and only if data points that
belong to distinct classes are not connected in the graph. Therefore, smaller label variation
is indicative of an easier classification task (well separated classes).

3.3.1. Toy Example

In this example, we visualize the relation between the classification task and the
geometries represented by the graphs. To do so, we construct three similarity graphs
for a very small subset (20 images from 4 classes are used, i.e., 5 images per class) of
the CIFAR-10 (Appendix B) Dtrain, one defined on the image space (i.e., computing the
similarity between the 3072 dimensions of the raw input images) and two using the latent
space representations of an architecture trained on the dataset. Such representations come
from an intermediate layer (32,768 dimensions) and the penultimate layer (512 dimensions).
What we expect to see qualitatively is that the classes will be easier to separate as we go
deeper in the considered architecture, which should be reflected by the label variation score:
the penultimate layer should yield the smallest label variation. We depict this example in
Figure 2. Note that data points are placed in the 2D space using Laplacian eigenmaps [38].
As expected, we can qualitatively see the difference in separation from the image space to
the latent spaces. We are also able to measure quantitatively how difficult it is to separate
the classes using the label variation, which is lowest for the penultimate layer. For more
details on how this example was generated, we refer the reader to Appendix C.

3.3.2. Dimensionality and LGGs

A key asset of the proposed methodology is that the number of vertices in the graph
is independent of the dimension of the intermediate representations it was built from. As
such, it is possible to compare graphs built from latent spaces with various dimensions,
as illustrated in Figure 2. Being agnostic to dimension will be a key ingredient in the
applications described in the following section. It is important to note that, while the
number of vertices is independent of the dimension of intermediate representations, edge
weights are a function of a similarity in the considered latent space, which can have very
different meanings depending on the underlying dimensions.
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(a) Input σ : 0.48 (b) Middle σ : 0.17 (c) Penultimate σ : 0.05

Figure 2. Graph representation example of 20 examples from CIFAR-10, from the input space (left) to
the penultimate layer of the network (right). The different vertex colors represent the classes of the
data points. To help the visualization, we only depict the edges that are important for the variation
measure (i.e., edges between elements of distinct classes). Note how there are many more edges at
the input (a) and how the number of edges decrease as we go deeper in the architecture (b,c).

In the context of DL architectures, a common choice of similarity measure is that
of cosine. Interestingly, cosine similarity is well defined only for nonnegative data (as
typically processed by a ReLU function) and bounded between 0 and 1. When data can be
negative, we use a Gaussian kernel applied to the Euclidean distance instead. The problem
remains that cosine or Euclidean similarities suffers from the curse of dimensionality. In an
effort to reduce the influence of dimension when comparing LGGs obtained from latent
spaces with distinct dimensions, in our experiments, we make use of graph normalization,
as defined in step 4 of LGG construction. We also provide a discussion on the complexity
of graph similarity computation in Appendix D. Note that a more in-depth analysis and
understanding of the influence of dimension on graph construction is a promising direction
for future work, as improving the graph construction could benefit all applications covered
in this work.

4. Applications

We now show how LGGs can be used in three specific applications: (i) knowledge
distillation, (ii) latent embeddings, and (iii) robustness. Details on the dataset used can be
found in Appendix B.

4.1. Knowledge Distillation

First, we consider the case of knowledge distillation (KD). The goal of KD is to use
the knowledge acquired by a pre-trained DL architecture that we call teacher T to train a
second architecture called student S. KD is normally performed in compression scenarios
where the goal is to obtain an architecture S that is less computationally expensive than
T while maintaining good enough generalization. In order to do so, KD approaches aim
at making both networks consistent in their decisions. Consistency is usually achieved
by minimizing a measure of discrepancy between the networks intermediate and/or final
representations.

More formally, we can define the objective function of the student networks trained
with knowledge distillation as:

L = Ltask + λKD · LKD , (7)

where Ltask is typically the same loss that was used to train the teacher (e.g., cross-entropy),
LKD is the distillation loss, and λKD is a scaling parameter to control the importance of the
distillation with respect to that of the task.

Recall that Individual Knowledge Distillation (IKD) requires intermediate representa-
tions of T and S to be of the same dimensions. In order to avoid this drawback, Relational



Algorithms 2021, 14, 39 10 of 16

Knowledge Distillation (RKD) has been recently proposed [9,24,25]. Indeed, the method we
introduce in this section is inspired by Reference [9], where the authors propose to compare
the distance obtained between the intermediate representations of a pair of data points
in the teacher with the corresponding distance for the student. The goal then becomes
to minimize the variation between these two distances. Interestingly, distances can be
compared even if the corresponding intermediate representations do not have the same
dimension. However, we point out that forcing (absolute) distances to be similar is not
necessarily desirable. As a matter of fact, it would be sufficient to consider distances
relatively to other pairs of data points. For example: consider a case where in the teacher
latent space the distance between points A and B is 0.5, and the distance between points A
and C is 0.25. Instead of forcing the student to have the same distances, as well (0.5 and
0.25), we could just ensure that the AC distance is half of the AB distance.

In this section, we introduce a method that focuses on distilling the learnt latent
topologies that we represent by LGGs. This can be seen as distilling the relative distances
between samples, differently from the previously presented RKD-D, which distills absolute
distances. The framework we consider, that we named Graph Knowledge Distillation
(GKD) in Reference [10], consists of reducing the discrepancy between LGGs constructed
in T and S.

Proposed approach (GKD): Let us consider a layer in the teacher architecture, and the
corresponding one in the student architecture. Considering a batch of inputs, we propose
to build the corresponding graphs GT and GS capturing their geometries as described in
Section 3.3.

During training, we propose to use the following loss in Equation (7):

LGKD = Ld(GT ,GS) , (8)

where Ld is the Frobenius norm between the adjacency matrices. Note that, for graphs,
many more distances exist and could be used instead of the Frobenius one. We have chosen
the Frobenius norm for its simplicity, ease of use in current DL frameworks and to facilitate
comparisons with RKD-D. In practice, many such additive terms can be added, one per pair
of layers to match in teacher and student architectures. Note that the layers chosen to form
a pair do not have to come from the same depth in their respective architectures, allowing
for students and teachers to have different depths. Let us point out that the dimensions of
latent spaces in T and S are likely to be very different. As such, the LGGs are susceptible to
be hard to compare directly. This is why we make use of graph normalization (as described
in step 4 of LGG graph construction), where similarities are considered relatively to each
other. Despite not being ideal, graph normalization allows us to obtain considerable gains
in accuracy, as illustrated in the following experiments.

The GKD loss measures the discrepancy between the adjacency matrices of teacher and
student LGGs. In this way, the geometry of the intermediate representations of the student
will be enforced to converge to that of the teacher (which is already fixed). Our intuition is
that since the teacher network is expected to generalize well to the test, mimicking its latent
geometry should allow for better generalization of the student network, as well. Moreover,
since we use normalized LGGs, the similarities are considered relative to each other (so
that each vertex on the graph has the same “connection strength”), contrary to initial works
in RKD [9], where each distance is taken in its absolute value, and, thus, one sample can
eclipse all the others (e.g., being too far away from the others).

Experiments: To illustrate the gains we can achieve using GKD, we ran the following
experiment. Starting from a WideResNet28-1 [39] teacher architecture with many param-
eters, for which an error rate of 7.27% is achieved on CIFAR-10, we first train a student
without KD, called baseline, containing roughly 4 times less parameters. The resulting
error rate is 10.37%. We then compared RKD and GKD. Results in Table 1 show that GKD
doubles the gains of RKD over the baseline.
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Table 1. Error rate comparison on CIFAR-10 for knowledge distillation (KD) methods.

Method Error Gain Relative Size

Teacher 7.27% — 100%

Baseline (student without KD) 10.34% — 27%

RKD-D [9] 10.05% 0.29% 27%

GKD (Ours) [10] 9.71% 0.63% 27%

More details and experiments can be found in Reference [10], where it is shown
that the gains can be explained by the fact the GKD student presents decisions that are
more consistent with the teacher than the RKD student. In addition, other experiments in
Reference [10] suggest that simple modifications to graph construction (e.g., connecting
only data points of distinct classes) can improve even further the gains reported in Table 1.

4.2. Latent Embeddings

We now present an objective function that consists of minimizing the label variation
on the output of the considered DL architecture. The goal of our objective function is
to train the DL architecture to be a good feature extractor for classification, as the LGGs
generated by the features will have a very small label variation. This idea was originally
proposed in Reference [14].

Methodology: Let us consider the representations obtained at the output of a DL
architecture. We build the corresponding LGG G as described in Section 3.3. Then, we
propose to use the label variation on this LGG as the objective function to train the network.
By definition, minimizing the label variation leads to maximizing the distances between
outputs of different classes. Compared to the classic cross entropy loss, we observe that
label variation as an objective function does not suffer from the same drawbacks, notably:
the proposed criterion does not need to force the output dimension to match the number
of classes, it can result in distinct clusters in the output domain for a same class (as it only
deals with distances between examples from different classes, which can be seen as a form
of negative sampling), and it can leverage the initial distribution of representations at the
output of the network function.

Experiments: To evaluate the performance of label variation as an objective function,
we perform experiments with the CIFAR-10 dataset [40] and using ResNet18 [17] as our
DL architecture. In Table 2, we report the performance of the deep architectures trained
with the proposed loss compared with cross-entropy. We also report the relative Mean
Corruption Error (MCE), which is a standard measure of robustness towards corruptions
of the inputs over the CIFAR-10 corruption benchmark [7], where smaller values of MCE
are better. We observe that label variation is a viable alternative to cross-entropy in terms of
raw test accuracy, as well as that it leads to significantly better robustness. More details and
experiments can be found in Reference [14], where we particularly show how the initial
distribution of data points is preserved throughout the learning process (We also make this
result available in Appendix E) .

Table 2. Comparison between the cross-entropy and label variation functions. Best results are
presented in bold font.

Cost Function Clean Test Error Relative MCE

Cross-entropy 5.06% 100
Label Variation (ours) [14] 5.63% 90.33

4.3. Improving DL Robustness

In this section, we propose to use label variation as a regularizer applied at each
layer of the considered architecture during training. We initially introduced this idea in
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Reference [10]. As it is not desirable to enforce a small label variation at early layers in
the architecture, the core idea is to ensure a smooth evolution on label variation from an
intermediate representation to the next one in the processing flow.

Recall that networks are typically trained with the objective of yielding zero error for
the training set. If error on the training set is (approximately) zero, then any two examples
with different labels can be separated by the network, even if these examples are very close to
each other in the original domain. This means that the network function can create significant
deformations of the space (i.e., small distances in the original domain map to larger distances in
the final layers) and explains how an adversarial attack with small changes to the input can
lead to changing the output decision given by the network. When we enforce smooth evolution
of label smoothness, we precisely prevent such sudden deformations of space.

Methodology: Formally, denote ` the depth of an intermediate representation in the
architecture. Let us consider a batch of inputs, and let us build the corresponding LGG G`
as described in Section 3.3. The proposed regularizer can be expressed as:

Lreg = ∑
`

|σ`+1 − σ`| , (9)

where σ` is the label variation on G`. This proposed regularizer is then added to the
objective function (loss) with a scaling hyperparameter γ.

Experiments: In order to stress the ability of the proposed regularizer in improving
robustness, we consider a ResNet18 that we trained on CIFAR-10. We consider multiple
settings. In the first one, we add adversarial noise to inputs [34] and compare the obtained
accuracy. In the second one, we consider agnostic corruptions (i.e., corruptions that do not
depend on the network function) and report the relative MCE [7]. Results are presented
in Table 3. The proposed regularizer performs better than the raw baseline and existing
alternatives in the literature [6]. More details can be found in Reference [8].

Table 3. Comparison of different methods on their clean error rate and robustness. Best results are
presented in bold font.

Metric Error Rate Relative MCE

Method Clean Adversarial Attack [34] Corruptions [7]

Baseline 11.1% 66.3% 100
Parseval [6] 10.3% 55.0% 104.4

Label variation regularizer (ours) [8] 13.2% 49.5% 97.6

5. Conclusions

In this work, we introduced a methodology to represent latent space geometries using
similarity graphs (i.e., LGG). We demonstrated the interest of such a formalism for three different
problems: (i) knowledge distillation, (ii) latent embeddings, and (iii) robustness. With the
ubiquity of graphs in representing relations between data elements, and the growing literature
on Graph Signal Processing, we believe that the proposed formalism could be applied to many
more problems and domains, including predicting generalization, improving performance in
data-thrifty settings, and helping understanding how decisions are taken in a DL architecture.

Note that the proposed methodologies use straightforward techniques to build LGGs; thus,
they could be enriched with more principled approaches [41,42]. Another area of interest would
be to build upon Reference [15] and see what improvements may arise from the use of graph
convolutional networks in domains that are not typically supported by graphs.
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Appendix A. Glossary

• DL: Deep Learning
• GSP: Graph Signal Processing.
• LGG: Latent Geometry Graphs
• KD: Knowledge Distillation
• IKD: Individual Knowledge Distillation
• RKD: Relative Knowledge Distillation
• GKD: Graph Knowledge Distillation
• MCE: Mean Corruption Error

Appendix B. CIFAR-10 Dataset

CIFAR-10 is a tiny (32× 32 pixels) image dataset extracted from the 80 million tiny
images dataset [43]. The 10 after the dataset names specify the number of classes of the
problem. CIFAR-10 is composed of 60,000 images, with 50,000 images being on the training
set (5000 per class), and 10,000 images on the test set (1000 per class for CIFAR-10).

Appendix C. Details on the Creation of the Illustrative Example

We first sample images from the training set of CIFAR-10. We sample five images
per class from four distinct classes. We then input these 20 images on a Resnet18 trained
on CIFAR-10 and keep the intermediate representations from the output of block 4 (that
we call middle) and the global pooling (that we call penultimate). We refer the reader to
Figure 1 for a visual description of where these blocks are placed in the overall architecture.

With these representations in hand (images, middle and penultimate), we can now
use the framework described in Section 3.3 to generate LGGs. We use a k of 5 to ensure that
each vertex will have at least one connection with a vertex from another class. Finally, we
normalize the label variation so that 1 is the highest value possible (all connections between
data points of different classes is equal to 1), and 0 is the lowest one (no connections
between elements of different classes).

Appendix D. Complexity of Graph Similarity Computation

In order to generate our graphs, we have to generate a symmetric square matrix based
on a similarity measure (see Section 3.3). The computation of such similarity measure
increases quadratically with the size of the graph. Formally, denoting V the set of ver-
tices and x ∈ Rd a latent sample, the complexity of computing such similarity matrix is:
(O(|V|2d)).

In the knowledge distillation application (Section 4.1) and the latent embedding
application (Section 4.2), the computation cost is similar to the other methods in the
literature as they also apply similarity metrics [9,13].

In the case of the regularizer introduced to improve robustness (Section 4.3), a similar-
ity matrix has to be computed for each layer of the architecture. To illustrate the effect of
our label variation regularizer on the training time, we compare the training time with two
other methods using the same network and hyperparameters: Parseval [6] and projected
gradient descent (PGD) adversarial training [35]. The results are presented in Table A1,
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taken from our work on regularization [8]. Training time for the label variation regularizer
was 1.7×, which was required when not using any regularization. While this increase in
training time is greater than for the Parseval method (which required 1.17× the training
time), it is still in an acceptable range when compared with other works in the literature,
such as PGD, which led to a 7.7× increase in training time.

Table A1. Comparison of the total time that it takes to train different robustness methods.

Network Time per Epoch Time to Train the Network Normalized Time per Epoch

Baseline 47.4 s 79 min 1.00

Parseval [6] 55.3 s 92 min 1.17

Label variation regularizer (ours) [8] 81 s 135 min 1.71

PGD [35] 369 s 615 min 7.78

Appendix E. Comparison of Embedding Evolution between Label Variation and Cross
Entropy

We depict in Figure A1 a comparison between the evolution of the 2D-embeddings
obtained by the label variation and the cross-entropy losses when training on the CIFAR-10
dataset. Note that the label variation method allows us to directly train 2D-embeddings,
while we had to add a bottleneck layer of the same dimension to the architecture using
cross entropy. The figure shows that training examples are better clustered at the end of the
training process when using the proposed loss (as compared with using the cross-entropy
loss) and that the final embedding is closer to the initial one for the label variation loss. As
a matter of fact, label variation is built on top of the initial distribution of data points at the
output of the network, whereas cross-entropy forces the output to converge to arbitrarily
chosen anchor points (target vector) in that output space. More details on this experiment
are available in Reference [14].
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Figure A1. Two-dimensional-Embeddings of the CIFAR-10 training set on a DNN learned using the label variation loss (top
row) and the cross-entropy loss (bottom row). Both networks have the same architecture and hyperparameters.

References
1. Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946.
2. Edunov, S.; Ott, M.; Auli, M.; Grangier, D. Understanding back-translation at scale. arXiv 2018, arXiv:1808.09381.
3. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
4. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.
5. LeCun, Y. The Power and Limits of Deep Learning. Res.-Technol. Manag. 2018, 61, 22–27, doi:10.1080/08956308.2018.1516928.
6. Cisse, M.; Bojanowski, P.; Grave, E.; Dauphin, Y.; Usunier, N. Parseval networks: Improving robustness to adversarial examples.

In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.

https://doi.org/10.1080/08956308.2018.1516928


Algorithms 2021, 14, 39 15 of 16

7. Hendrycks, D.; Dietterich, T. Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. In Proceed-
ings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

8. Lassance, C.; Gripon, V.; Ortega, A. Laplacian Networks: Bounding Indicator Function Smoothness for Neural Networks
Robustness. In Proceedings of the APSIPA Transactions on Signal and Information Processing, 8 January 2021, to appear.

9. Park, W.; Kim, D.; Lu, Y.; Cho, M. Relational Knowledge Distillation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3967–3976.

10. Lassance, C.; Bontonou, M.; Hacene, G.B.; Gripon, V.; Tang, J.; Ortega, A. Deep geometric knowledge distillation with graphs.
In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 4–8 May 2020; pp. 8484–8488.

11. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. In Proceedings of the Neural Information
Processing Systems 2014 Deep Learning Workshop, Montreal, QC, Canada, 8–13 December 2014.

12. Koratana, A.; Kang, D.; Bailis, P.; Zaharia, M. LIT: Learned intermediate representation training for model compression.
In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 3509–3518.

13. Hermans, A.; Beyer, L.; Leibe, B. In defense of the triplet loss for person re-identification. arXiv 2017, arXiv:1703.07737.
14. Bontonou, M.; Lassance, C.; Hacene, G.B.; Gripon, V.; Tang, J.; Ortega, A. Introducing Graph Smoothness Loss for Training Deep

Learning Architectures. In Proceedings of the 2019 IEEE Data Science Workshop (DSW), Minneapolis, MN, USA, 2–5 June 2019;
pp. 160–164.

15. Svoboda, J.; Masci, J.; Monti, F.; Bronstein, M.; Guibas, L. PeerNets: Exploiting Peer Wisdom Against Adversarial Attacks.
In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

16. Qian, H.; Wegman, M.N. L2-Nonexpansive Neural Networks. In Proceedings of the International Conference on Learning
Representations, New Orleans, LA, USA, 6–9 May 2019.

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

18. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of
the Advances in neural information processing systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105.

19. Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 2013, 30, 83–98.

20. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
21. Vialatte, J.C. On Convolution of Graph Signals and Deep Learning on Graph Domains. Ph.D. Thesis, IMT Atlantique, Nantes,

France, 2018.
22. Gama, F.; Isufi, E.; Leus, G.; Ribeiro, A. Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph Neural

Networks. IEEE Signal Process. Mag. 2020, 37, 128–138, doi:10.1109/MSP.2020.3016143.
23. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural

Networks Learn. Syst. 2020, doi:10.1109/TNNLS.2020.2978386.
24. Liu, Y.; Cao, J.; Li, B.; Yuan, C.; Hu, W.; Li, Y.; Duan, Y. Knowledge Distillation via Instance Relationship Graph. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 7096–7104.
25. Lee, S.; Song, B. Graph-based knowledge distillation by multi-head attention network. arXiv 2019, arXiv:1907.02226.
26. Anirudh, R.; Bremer, P.; Sridhar, R.; Thiagarajan, J. Influential Sample Selection: A Graph Signal Processing Approach; Technical

Report; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 2017.
27. Gripon, V.; Ortega, A.; Girault, B. An Inside Look at Deep Neural Networks using Graph Signal Processing. In Proceedings of

the ITA, San Diego, CA, USA, 11–16 February 2018.
28. Romero, A.; Ballas, N.; Kahou, S.E.; Chassang, A.; Gatta, C.; Bengio, Y. Fitnets: Hints for thin deep nets. In Proceedings of the

International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.
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