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Abstract: Boosting of the ensemble learning model has made great progress, but most of the methods
are Boosting the single mode. For this reason, based on the simple multiclass enhancement framework
that uses local similarity as a weak learner, it is extended to multimodal multiclass enhancement
Boosting. First, based on the local similarity as a weak learner, the loss function is used to find the
basic loss, and the logarithmic data points are binarized. Then, we find the optimal local similarity
and find the corresponding loss. Compared with the basic loss, the smaller one is the best so far.
Second, the local similarity of the two points is calculated, and then the loss is calculated by the
local similarity of the two points. Finally, the text and image are retrieved from each other, and the
correct rate of text and image retrieval is obtained, respectively. The experimental results show that
the multimodal multi-class enhancement framework with local similarity as the weak learner is
evaluated on the standard data set and compared with other most advanced methods, showing the
experience proficiency of this method.

Keywords: multiclass boosting; local similarity; weak learning; loss function; retrieval accuracy

1. Introduction

With the rapid development of the Internet, more and more people are participating in
the Internet. People’s food, clothing, housing, and transportation are closely related to the
Internet. The Internet has also brought a lot of convenience to our lives. For example, many
things that are frequently used in daily life, such as online shopping, mobile phone posi-
tioning, search engines, etc., have been closely connected with our daily lives. Due to the
diversity of things, we are easily dazzled when doing online shopping, for example, and do
not know how to quickly choose what we want to buy. Over time different classification
techniques have emerged. The traditional classification technique is a separate text classifi-
cation, which uses the underlying characteristics of the text to show the characteristics of
things. Using the classifier to classify data is a better method than the traditional classifica-
tion method. Using local image features to generate a simple fuzzy classifier to distinguish
known categories from other categories [1] represents a new target classification method.
Boosting meta-learning is used to find the most representative local features. This method
improves the classification accuracy and greatly shortens the learning and testing time.
Additionally, by effectively combining a variety of deep neural networks for classification
and learning deep internal features from image data sets it can produce the most advanced
classification performance [2]. The combination of Boosting algorithm and neural network
can use weights to constrain the classification performance of the neural network, thereby
improving the performance of the classifier [3]. The Boosting method is not only used
for classification, but can also be applied to medicine. The Multi-instance Learning Boost
Algorithm (MIL-Boost) establishes a predictive model that can predict the deterioration
of insulin resistance early based on the TyG index [4]. This algorithm is widely used in
clinical decision support systems. According to the principle of Boosting, we can combine
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several weak learners, or find a suitable classifier. Multi-class Boosting classifier-MBC
adds a new multi-class constraint to the objective function [5], which can effectively mine
different types of features in a unified classification framework. In addition, Boosting
combined with weak learners, the number of enhanced iterations can be modeled as a
continuous hyperparameter, and fitted with standard techniques to obtain an effective
learning algorithm, which can be widely used in regression and classification [6]. AdaBoost,
as a representative of the Boosting algorithm, constructs a globally optimal combination of
weak classifiers on the basis of sample weights, which greatly improves the classification
performance [7]. Given training data, weak learning algorithms (such as decision trees)
can be trained to generate weak learners, and these weak learners only need to have better
accuracy than random guessing. Training with different training data can get different
weak learners. These weak learners act as members and make joint decisions. To obtain
information from different weak learners, AdaBoost solves the following two problems:
First, how to choose a group of weak learners with different advantages and disadvantages
so that they can make up for each other’s deficiencies. Second, how to combine the output
of weak learners to obtain better overall decision-making performance.

To solve the first problem, AdaBoost allows each newly added weak learners to reflect
some new patterns in the data. To achieve this, AdaBoost maintains a weight distribution
for each training sample. That is, there is a distribution corresponding to any sample,
which indicates the importance of this sample. When measuring the performance of weak
learners, AdaBoost considers the weight of each sample. A misclassified sample with a
larger weight will contribute a greater training error rate than a misclassified sample with
a smaller weight. To obtain a smaller weighted error rate, weak classifiers must focus more
on high-weight samples to ensure accurate predictions. By modifying the weight of the
sample, the weak learner can be guided to learn different parts of the training sample.
AdaBoost is divided into multiple rounds of training. In the first round of training, we
update the weight of the sample and train a weak learner so that the learner produces the
smallest weighted training error on the weight distribution. In the first round, all samples
have the same weight. In each subsequent round, we increase the weight of misclassified
samples and reduce the weight of accurately classified samples. In this way, we make each
round of weak learners focus more on samples that are difficult to be accurately classified
in the previous round.

Now that we have obtained a set of trained weak learners with different strengths and
weaknesses, how do we effectively combine them so that mutual advantages complement
each other to produce a more accurate overall prediction effect? Each weak learner is
trained with different weight distribution. We can see that different weak learners are
assigned different tasks, and each weak learner tries its best to complete the given task.
Intuitively, when we want to combine the judgments of each weak learner into the final
prediction result, if the weak learner performs well in the previous task, we will believe it
more, on the contrary, if the weak learner in the previous task performs poorly, we believe
it less. In other words, we will combine weak learners in a weighted manner, and assign
each weak learner a value indicating the degree of credibility. This value depends on
its performance in the assigned task. The better the performance, the greater the value,
and vice versa. AdaBoost training will eventually have two situations: one is that the
training error is reduced to zero. The other is that no matter how many times of training,
there will be no overfitting problem. Each subsequent weak classifier has an accuracy of
0.5. However, these are limited to the same mode. If you want to better apply it in real-life,
it is a more cross-modal retrieval application. Each source or form of information can be
called a mode. For example, people have a sense of touch, hearing, sight, and smell; the
medium of information includes voice; video; text; and a variety of sensors, such as radar,
infrared, and accelerometer. Each of the above can be called a mode.

The main method of cross-modal retrieval is to find the relationship between different
modes and map different modes to the same subspace, where we can measure the similarity
between different modes. Specifically, first, we have some training real columns, each
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instance is an image-text pair with a label; then, these real columns are divided into train
set and test set, there are unrelated image–text pairs in each set, but all have the same
category (that is, the training set and the test set do not have the same image–text pair,
but the category is the same); then, during training, we learn a common semantic space
from the train set; then, apply the common semantic space to the test set to generate a
common feature representation for the instances in the test set; finally, use the common
feature representation to compare The degree of similarity of the samples of the two modes
is thus matched. Eventually, stronger learners of each modal can generate semantic vectors
and apply logistic regression to obtain semantic vectors of images and texts. However,
when features have high dimensions and sparse values, logistic regression cannot work
effectively. Although image texts essentially represent the same set of semantic concepts,
their manifestations differ greatly due to the large differences between different data modes.
How to robustly represent the similarity between image and text and accurately measure
the similarity is a tricky problem.

To deal with this problem, the existing methods can be divided into two main cate-
gories according to the different ways of modeling the corresponding relationship between
image and text: one-to-one matching and many-to-many matching.

As shown in Figure 1A, we can see that it is a one-to-one matching method, usually
extracting global feature representations of images and texts, such as desks, chairs, com-
puters, illustrations, etc. In the picture, and then using the structure, the objective function
of transformation or canonical correlation analysis projects their features into a common
space, so that the distance between similar pairs of image texts in the space is close, that
is, the similarity is high. However, this matching method is only a rough measure of the
global similarity of image text and does not specifically consider which local content of the
image text is semantically similar. Therefore, in some tasks that require accurate similarity
measurement, such as fine-grained for cross-modal retrieval, the experimental accuracy is
often low. In Figure 1B, the many-to-many matching method is shown. The many-to-many
matching method is to try to extract multiple local instances from the image text, and then
measure the local similarity for multiple paired instances. Fusion results in global similarity.
We can see from the figure that there are many local instances extracted, but not all instances
extracted by these methods depict semantic concepts. In fact, most of the instances are
semantically meaningless and have nothing to do with the matching task. Only a few sig-
nificant semantic instances determine the degree of matching. Those redundant examples
can also be considered as noises that interfere with the matching process of a small number
of semantic examples and increase the number of model calculations. In addition, existing
methods usually need to explicitly use additional target detection algorithms or expensive
manual annotations in the instance extraction process.

Figure 1. Correspondence between image and text. (A) One to one; (B) One to many; (C) Many
to many.
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Considering this situation, we propose a multimodal multi-class enhancement frame-
work that uses local similarity as a weak learner. As shown in Figure 1C, its classification
accuracy is improved compared to the previous method. To verify the effectiveness of the
proposed local similarity as a weak learner multimodal multi-class enhancement frame-
work, we tested the experimental performance of the framework. Moreover, compared with
the current best method on two co-opened multimodal databases (Wiki and NUS-WIDE),
showing good experimental results.

Our contributions mainly include the following.

1. On the basis of a simple multi-class enhancement framework using local similarity as
a weak learner, it is extended to a multimodal multi-class enhancement framework.
It can better analyze multi-modal semantic information, so as to obtain better cross-
mode retrieval performance.

2. In the selection of weak learners, a suitable weak learner can be selected in each
iteration. Specifically, each mode is transformed into a minimization optimization
problem. Moreover, the algorithm provides corresponding formula derivation and
theoretical analysis.

3. We conducted a large number of data experiments on the Wiki and NUS-WIDE
datasets to verify the performance of the Boosting algorithm. Furthermore, com-
pared with several latest methods. Experimental results show that our method has
significant advantages for cross-mode retrieval.

The rest of the paper is arranged as follows, and the related work is introduced in
Section 2. In Section 3, we introduced our framework and introduced the algorithm flow
chart. In Section 4, we did a convergence experiment. It shows that continuously reducing
losses will only improve the decision boundary without overfitting the data. The com-
prehensive experiment is shown in Section 5, and the final conclusion is summarized in
Section 6.

2. Related Work

Among the classifiers, the Boosting method is one of the better methods. It is a general
and effective method to generate strong learners by combining weak learners. AdaBoost [8]
is such a method, which uses gradient descent to minimize the classification risk caused
by exponential loss, and then select the if learner and its contribution coefficient for each
iteration. Given training data and weak learners can be trained to generate different weak
learners, and finally by combining weak learners, a classification model that is perfectly
classified in the sample is generated. Weak learners generally use supervised machine
learning algorithms, such as decision trees and support vector machines. Combining
supervised machine learning algorithms with the boosting process can improve predic-
tion efficiency [9]. The AdaBoost-CNN method integrates AdaBoost and Convolutional
Neural Network (CNN), which can process large imbalanced data sets with high preci-
sion [10]. Supervised learning is for data that have been labeled. For incompletely labeled
data, a semisupervised learning method [11] is required. This method can extract useful
information from incompletely labeled data .

In addition, AdaBoost-Cost [12] also combines multiple weak learners into a strong
learner, but the requirements for weak learners are not high, and weaker weak learners can
also meet the requirements. These are all single mode or two types of modes. Obviously,
there are many defects in more than a dozen lives. For example, the computational complex-
ity has not dropped too much; it is difficult to meet people’s needs in terms of classification
accuracy. Therefore, people began to study multimodal and multi-classification methods,
but multimodal and multi-classification methods are more complicated and difficult to
implement. TangentBoost [13] studied the design of a robust classifier, which can effectively
deal with the typical noise data set and outlier data set in computer vision, and uses the
probabilistic heuristic view of classifier design to identify such losses. A set of necessary
conditions. Using these conditions, a new enhancement algorithm is obtained. Experiments
using data from computer vision problems such as scene classification, target tracking,
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and multi-instance learning show that TangentBoost is always better than the previous
enhancement algorithm. REBEL [14] is a simple and accurate multi-class enhancement
method. This method is quick to train and has less data. A new type of weak learner called
local similarity is proposed. This framework can prove to minimize the training error of any
data set at an exponential rate. Experiments were conducted on various synthetic and real
data sets, which proved that there is a consistent tendency to avoid overfitting, but it is only
used on a single mode and shows good results. Mobile robots and self-driving cars rely
on multimodal sensor devices to perceive and understand the surrounding environment.
In addition to accurate spatial perception, a comprehensive semantic understanding of
the environment is essential for efficient and safe operation. A new deep neural network
structure, LilaNet [15], is used for point-by-point, multi-category semantic annotation
of semi-dense lidar data. An automatic process of large-scale cross-modal training data
generation called automatic labeling is proposed to improve the performance of semantic
labeling while keeping the workload of manual labeling low.

A direct optimization method for training multi-class boosting [16] is a high-accuracy
predictor formed by Boosting combined with a set of weak classifiers with general accuracy.
Compared with binary advancing classification, multi-class advancing is more valued.
It proposes a new multi-type boost formula. Different from the previous multi-boosting
algorithm that decomposes the multi-boosting problem into multiple independent binary
boosting problems, it is a direct optimization method for training multiple types of boost-
ing. In addition, by explicitly deriving the dual relationship of the original optimization
problem, a completely revised boosting is designed using column generation technology
in convex optimization. In each iteration, the weights of all weak classifiers are updated.
Moreover, compared with the latest multi-class improvement, the recognition accuracy
has been improved to a certain extent. MCBoost [17] proposed a new framework based on
multi-dimensional codeword matrix and predictor, which minimizes risk through gradient
descent in multi-dimensional function space, with one based on coordinate descent and
one based on gradient descent. Both methods are very good multi-class enhancement
methods. MMBoosting [18] is a multimodal multi-class enhancement framework that
can simultaneously capture the semantic information within the modal and the semantic
correlation between the modals, and using multi-class exponential functions and logis-
tic loss function, it obtained two new versions of MMBoost, namely, MMBoost_exp [18]
and MMBoost_log [18], which have made great contributions to the cross-modal retrieval
enhancement method.

Although considerable progress has been made in the multimodal and multi-class
enhancement method, the classification accuracy is not very high. Therefore, from the
above development, we need to find a suitable weak learner to replace the existing. Some
weak learners can improve the accuracy of multi-classification. Although there are many
weak learners, we choose local similarity as the weak learner. The reason is that during
each iteration, a suitable weak learner can be selected. In the next section, we mainly
introduce the framework we constructed.

3. Our Framework

We define some of our symbols, introduce our enhancement framework, and describe
our training process. x represents a scalar, and the bold x represents a vector, where
x ≡ [x1, x2, ...], the logical expression 1 ∈ {0, 1}, the inner product expression is 〈x, v〉,
element-wise multiplication product is x� v. In a multi-class classification setting, a data
point is represented as a feature vector x and is associated with a class label y. Each point
is composed of d features. We use local similarity as a weak learner, because it supports
binary weak learners [19], and its mathematical expression is simple (a closed solution that
minimizes loss), and it has a strong empirical performance. To find the optimal predictor
of different modes [20], construct a target risk function based on experiments:

[R[ f , u] = 2
〈√

ST
f � SF

f , 1
〉
+ 2
〈√

ST
u � SF

u , 1
〉
+ λJ( f , u)] (1)
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The first part and the second part are training loss functions of images and text,
respectively, and the third part represents the model complexity, and the optimal local
similarity is that the loss function and model complexity are minimized at the same time.
The problem is to find the minimum value of the objective function. Local similarity returns
a vector value output H:

[H(x) ≡
T

∑
t=1

ft(x)at] (2)

The average misclassification error ε can be expressed as

ε ≡ 1
N

N

∑
n=1

1(F(xn 6= yn)) (3)

Local similarity uses an exponential function to cap the average training misclassifica-
tion error:

[ε ≤ L ≡ 1
2N

N

∑
n=1
〈exp[yn �H(Xn), 1]〉] (4)

where yn ≡ 1− 2δyn , because it is an additive model [21], the parameters of the previous
training are fixed. Each iteration is equivalent to jointly optimizing a new weak learner
f and the accumulation vector a. Therefore, the training loss at iteration I + 1 can be
expressed for

LI+1 ≡ L f ≡
〈

ST
f , exp[−a]

〉
+
〈

SF
f , exp[a]

〉
(5)

where f is a given weak learner, and ST
f and SF

f are the sum of the classification weights [22]
of right and wrong classification, respectively. In this form, it is easy to get the optimal
accumulation vector a∗:

[a∗ =
1
2
(In[ST

f ]− In[ST
f ])] (6)

The training loss [23] can be optimized as

L∗f = 2
〈√

ST
f � SF

f , 1
〉

(7)

3.1. Calculation of Local Similarity of Two Points

The traditional decision tree compares a single feature with a threshold and outputs
+1 or −1. However, our weak learner (Local similarity) uses similarity measures [24] to
compare points in the input space. Due to its simplicity and effectiveness, we use the
negative squared Euclidean distance −

∥∥xi − xj
∥∥2 as the similarity measure between xi and

xj. For the local similarity of two points, at a given xi and xj, if xi and xj are more similar,
the input space is positive, and it has the largest absolute effect near xi and xj. Therefore,
the two local similarities are

[ fij(x) ≡
〈d, x−m〉

4‖d‖4 + ‖x−m‖4 ] (8)

where d ≡ 1
2 [xi − xj], m ≡ 1

2 [xi + xj] There are two modes of local similarity: single point
and two points. The single point mode allows any single data point to be isolated, ensuring
a basic reduction in loss [25]. However, it essentially leads to pure memory of the training
data; imitating the nearest neighbor classifier. By providing the edge style function, the two-
point mode increases the ability to better generalize. The combination of these two modes
makes it flexible to handle a wide range of classification problems [26]. In addition, in any
mode, the function of local similarity is easy to explain, that is, which of these fixed training
points is more similar to a given query point.
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3.2. Find the Appropriate Local Similarity

Assuming a data set with N samples, there are about N2 possible local similarities,
the following algorithm flowchart can effectively select the appropriate local similarity.

The purpose of the algorithm shown in Figure 2 is to select the appropriate local
similarity, that is, to learn a set of predictors, so that the algorithm can mine the semantic
information within the modal and the semantic correlation between the modal. Moreover,
to make the optimization problem simple, we learn each predictor in turn [27]. First, we
load the bimodal data set, initialize the inter-modal parameters, the parameters of the multi-
class weak learner, and the number of iterations. The data set parameters include image
set, text set and semantic vocabulary, and each semantic class is coded with a different
unit vector, thereby representing the data point as a corresponding feature vector. At the
beginning of the iteration, the predictors for images and text are initialized. Then, learn
each predictor in turn, update the obtained image and text predictor to the latest predictor,
increase the number of iterations by 1, and continue to execute the iterative loop until the
loop condition is not satisfied. The learning of weak learners is mainly divided into the
following steps:

(1) For the selection of the image weak learner, Formula (5) is used to calculate the basic
loss L1 of the weak learner f1.

(2) Because each non-negative feature value is related to an independent feature vector,
let vn be the eigenvector corresponding to the nth eigenvalue λ, and define f as the
row vector of the element f (xn). Therefore, f can be decomposed into

[f = 〈f, v1〉v1 +
N

∑
n=2
〈f, vn〉vn] (9)

From the above formula, the feature vector v1 can be calculated, and all points are
labeled according to their binarization class label bn.

(3) Find the optimal local similarity fi, that is, the point xi that is closer to the threshold
τ, and all the points that meet the conditions i is marked as +1, and the other points
are marked as −1. Then, calculate the loss of fi by Formula (8). Compared with fi,
the one with smaller loss is regarded as the best so far.

(4) Find the point xj that is most similar to xj, which can be obtained by the following formula,

[xj = arg min
bj=−bi

{
∥∥xi − xj

∥∥2}] (10)

(5) Use the two-point local similarity fij to calculate the loss. If its performance exceeds
the previous best, store the new learner and update the best loss so far.

(6) Find all points that are sufficiently similar to xj and remove them from the rest of the
current iteration. In our implementation, we removed all xn:

[ fij(xn) ≤ fij(xj)/2] (11)

If all points are deleted, return the best local similarity so far; otherwise, re-find the
point xj that is most similar to xi. After completing this step, ensure that the best local
similarity [28] so far can be sufficient. For the selection of weak learner for text, an analogy
to the selection of weak learner for the above image can be obtained.
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Figure 2. Algorithm flow chart.

4. Convergence Experiment

In this section, we will demonstrate that the continuous reduction in loss will only
improve the decision boundary without overfitting the data. To better visualize and intu-
itively understand what the classifier is doing, we generated a two-dimensional synthetic
data set. The synthetic data set is artificially synthesized through the method of clustering.
Both numpy and scikit-learn provide the function of random data generation; here, we use
makegaussian_quantiles, a subfunction of scikitlearn, to generate grouped multidimen-
sional normal distribution data. The parameters are set as follows. The number of samples
generated in the first group is 200, and the number of samples generated in the second
group is 300. The other parameters of the two samples are the same, the feature mean is 3
and the covariance coefficient is 2, which generates a 2-dimensional normal distribution,
the generated data is divided into 3 groups according to quantiles, then the randomly
generated samples and the corresponding categories of the samples are connected to the
arrays. The 500 points of data obtained are divided, 2/3 as the training set, and 1/3 as the
test set. The statistical characteristics of the synthetic data set are shown in Table 1 below.

Table 1. The summary of Synthetic datasets.

Dataset Size Training Set Testing Set Classes

Synthetic dataset 500 333 167 3

To make the annotation clear and simplified, we abbreviate the local similarity as LS,
and the convergence results are shown in Figure 3.

Figure 3a shows the training loss and training error of the classifier. Perform 500 itera-
tions of training with the test error, and the final loss is 0.1355. Although the number of
training is not sufficient, we can see intuitively that as the training error decreases, the test
error and loss show a downward trend. Figure 3b performs 1000 iterations on the training
loss, training error, and test error of the classifier, and the final loss is 0.0338. Figure 3c
performs 1500 iterations on the training loss, training error, and test error of the classifier,
and the final loss is 0.0137. Figure 3d performs 2000 iterations on the training loss, training
error, and test error of the classifier, and the final loss is 0.0063. From the above four
generalization experiments, we can see that even if the training error is reduced to zero,
the test error will not increase. Our framework is in the case of different iteration times,
when the training loss is in a downward trend, the test error is also such a downward
trend, and as the number of training increases, when the error drops to zero, the test error
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increases. The closer it is to zero, but not zero, it shows the authenticity of our experiment.
In the actual test experiment, the error is certain. In all cases, the classification boundary is
suitable for the training data, rather than overfitting, that is, each point is isolated. This can
be observed more strictly from the training curve. As the number of iterations increases,
the test error is quite stable when it reaches a minimum.

Figure 3. Training results of 500, 1000, 1500, and 2000 iterations, respectively, on a synthetic data set
of 500 points.

5. Data Experiment

In this section, we will conduct extensive experiments on real data sets containing
image modes and text modes, and compare the proposed local similarity framework
with several existing unimodal cross-modal retrievals. The enhanced methods [29] are
compared, where the query and retrieval objects come from different modes.

5.1. Experimental Settings

The benchmark dataset [30] contains two datasets: Wiki and NUS-WIDE. The Wiki
dataset contains 2866 multimodal documents, all of which are image–text pairs combined
from Wikipedia articles. For each document, the 128-dimensional codebook vector rep-
resents the underlying features of the image, and the LDA probability distribution of
10 topics represents the underlying features of the text. The data set is divided into a
training set of 2173 documents and a test set of 693 documents. In the NUS-WIDE dataset,
each example contains an image and its corresponding text label, and is associated with
one or more labels from 81 semantic categories. We randomly selected 25,000 multimodal
examples. For each example, a 500-dimensional feature vector and a 1000-dimensional label
codebook vector were provided to represent images and text. We selected 5000 multimodal
examples as the training set and 1250 multimodal examples as the test set. The statistical
characteristics of the two data sets are shown in Table 2 below.

Table 2. The summary of Wiki and NUS-WIDE datasets.

Dataset Size Training Set Testing Set Classes

Wiki 1866 2173 693 10
NUS-WIDE 25,000 5000 1250 10

Then, we used MAP to evaluate the performance of the experimental results. MAP
is a standard numerical metric for evaluating cross-mode retrieval performance. That is,
the average value of AP; we need to calculate AP first, and then average it. The larger the
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MAP value, the better the performance. Given a query and a set of w retrieval examples,
the average accuracy is as below.

Where Precision (i) is the Precision value, and E is the number of relevant examples
in the search. In the experiment, the value of w is set to 50 or the number of all retrieved
samples, that is, w = 50 or w = all. From the above formula, MAP is obtained by averaging
all the queried AP values. In addition, the Precision–Recall (PR) curve is also shown.
For the experimental data of text and images, we use posterior probability to achieve the
combination of the two. We obtain a strong predictor on the training set, then we use the
learned predictor to obtain the semantic vector of the examples in the test set, and finally
we use the centered normalized correlation [31] to sort the retrieved samples. It is worth
noting that the query set and retrieval set are both test sets. Due to the randomness
of data segmentation, we run the evaluation method 10 times and report the average
result. In our local similarity framework, there is an important parameter that controls the
impact of different risks on the objective function. In the learning process, our algorithm
adopts a suitable optimization strategy, that is, alternate gradient descent of each mode to
learn semantic information within and between modes. If the matching condition is too
large, the optimization algorithm tends to reduce the cross-modal risk, thereby ignoring
the semantic information of each modal. Then, use the above parameter settings in the
next experiment.

5.2. Experiments on the Wiki Dataset

Figure 4 shows the cross-modal retrieval performance of our proposed local similarity
and comparison method on the Wiki dataset, including the mapping value [32] of the text
retrieval image and its average value. From the figure below, we can intuitively see that
the method we propose is always better than the comparison method in terms of retrieval
results. The purpose of semantic information within a modal is to reflect the distinctive
abstraction of each modal, and the focus of semantic association between modals is to
maintain consistency between different models, so combining them is beneficial to improve
retrieval performance. On the other hand, by complementing the corresponding modal
semantic associations, the intra-modal semantic vector of low-quality object mapping can
be enhanced.

Figure 4. Performance comparison on the Wiki dataset.

For a more detailed analysis, the corresponding PR curves are shown in Figures 5 and 6.
From the PR curve, we can see that in these two tasks, our proposed method once again
surpasses similar methods, which is consistent with the results in Figure 4. Specifically,
this improvement is substantial and occurs at most levels of memory, meaning better
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accuracy and generalization capabilities. The accuracy curve can reflect the influence of the
number of search objects on the search accuracy. Obviously, the accuracy curve of local
similarity is always higher than the compared method, which means that when the number
of retrieved objects is equal, more related objects can be returned. The experiment on the
Wiki dataset. For text and image queries, the MAP scores of different methods are shown
in Figure 4, and the corresponding curves are drawn in Figures 5 and 6. From the figure,
we can see that the performance of our algorithm is better than the comparison method.

Figure 5. Precision–recall curves for text retrieval images.

Figure 6. Precision–recall curves for image retrieval text.

5.3. Experiments on the NUS-WIDE Dataset

Figure 7 shows the performance comparison of several state-of-the-art multimodal
methods on the NUS-WIDE data set. From the figure, we can see that in terms of perfor-
mance, MCBoost and MMBoost_exp have a certain performance improvement, but com-
pared with them our method, Local Similarity (LS) has better performance.
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Figure 7. Performance comparison on the NUS-WIDE dataset.

To deal with out-of-sample data, we randomly select for text and image queries,
the corresponding curves of MAP scores for different methods are shown in Figures 8 and 9.
From the figure, we can see that the performance of our local similarity algorithm (LS) is still
better than the comparison method. This is consistent with the Wiki dataset. Specifically,
when w = all, our algorithm has an average MAP score of 0.328, which is about 4.5% higher
than MMBoost_log. The above experiments show that the local similarity framework has
certain advantages due to the combination of semantic information within modes and
semantic associations between modes.

Figure 8. Precision–recall curves for text retrieval images.

Figure 9. Precision–recall curves for image retrieval text.
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6. Conclusions

So far, we have mainly focused on designing a multimodal multi-class enhancement
framework for cross-modal retrieval, which utilizes a simple weak learner called local
similarity. To achieve mutual retrieval of text and images, these learners have a clear
and easy-to-understand function to test the similarity between query points and some
predefined samples. In the selection of weak learners [33], a suitable weak learner can be
selected for each iteration, and the use of a simple multi-type enhancement framework
with local similarity as a weak learner in multimodality is realized. We have proved that
the framework adheres to the theoretical guarantee that the training loss is minimized at an
exponential speed and the training error is due to the upper limit of the loss [34]. Finally,
we compared our method with several other state-of-the-art methods, and there is a certain
improvement in most data sets. We compared the current best method on two co-opened
multimodal databases (Wiki and NUS-WIDE). We can see that our method has steadily
improved performance on different data sets.

In the future, we will work on the following two aspects: First, promote semisuper-
vised or unsupervised learning methods to improve recognition accuracy. Second, find a
more suitable weak learner, to improve the accuracy of the forecast.
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