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Abstract: In the context of optimal transport (OT) methods, the subspace detour approach was
recently proposed by Muzellec and Cuturi. It consists of first finding an optimal plan between the
measures projected on a wisely chosen subspace and then completing it in a nearly optimal transport
plan on the whole space. The contribution of this paper is to extend this category of methods to
the Gromov–Wasserstein problem, which is a particular type of OT distance involving the specific
geometry of each distribution. After deriving the associated formalism and properties, we give an
experimental illustration on a shape matching problem. We also discuss a specific cost for which we
can show connections with the Knothe–Rosenblatt rearrangement.
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1. Introduction

Classical optimal transport (OT) has received lots of attention recently, in particular
in Machine Learning for tasks such as generative networks [1] or domain adaptation [2]
to name a few. It generally relies on the Wasserstein distance, which builds an optimal
coupling between distributions given a notion of distance between their samples. Yet, this
metric cannot be used directly whenever the distributions lie in different metric spaces and
lacks from potentially important properties, such as translation or rotation invariance of the
supports of the distributions, which can be useful when comparing shapes or meshes [3,4].
In order to alleviate those problems, custom solutions have been proposed, such as [5], in
which invariances are enforced by optimizing over some class of transformations, or [6], in
which distributions lying in different spaces are compared by optimizing over the Stiefel
manifold to project or embed one of the measures.

Apart from these works, another meaningful OT distance to tackle these problems
is the Gromov–Wasserstein (GW) distance, originally proposed in [3,7,8]. It is a dis-
tance between metric spaces and has several appealing properties such as geodesics or
invariances [8]. Yet, the price to be paid lies in its computational complexity, which requires
solving a nonconvex quadratic optimization problem with linear constraints. A recent
line of work tends to compute approximations or relaxations of the original problem in or-
der to spread its use in more data-intensive machine learning applications. For example,
Peyré et al. [9] rely on entropic regularization and Sinkhorn iterations [10], while recent
methods impose coupling with low-rank constraints [11] or rely on a sliced approach [12] or
on mini-batch estimators [13] to approximate the Gromov–Wasserstein distance. In Chowd-
hury et al. [4], the authors propose to partition the space and to solve the optimal transport
problem between a subset of points before finding a coupling between all the points.

In this work, we study the subspace detour approach for Gromov–Wasserstein. This
class of method was first proposed for the Wasserstein setting in Muzellec and Cuturi [14]
and consists of (1) projecting the measures onto a wisely chosen subspace and finding an
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optimal coupling between them (2) and then constructing a nearly optimal plan of the
measures on the whole space using disintegration (see Section 2.2). Our main contribution
is to generalize the subspace detours approach on different subspaces and to apply it for
the GW distance. We derive some useful properties as well as closed-form solutions of
this transport plan between Gaussians distributions. From a practical side, we provide
a novel closed-form expression of the one-dimensional GW problem that allows us to
efficiently compute the subspace detours transport plan when the subspaces are one-
dimensional. Illustrations of the method are given on a shape matching problem where
we show good results with a cheaper computational cost compared to other GW-based
methods. Interestingly enough, we also propose a separable quadratic cost for the GW
problem that can be related with a triangular coupling [15], hence bridging the gap with
Knothe–Rosenblatt (KR) rearrangements [16,17].

2. Background

In this section, we introduce all the necessary material to describe the subspace
detours approach for classical optimal transport and relate it to the Knothe–Rosenblatt
rearrangement. We show how to find couplings via the gluing lemma and measure
disintegration. Then, we introduce the Gromov–Wasserstein problem for which we will
derive the subspace detour in the next sections.

2.1. Classical Optimal Transport

Let µ, ν ∈ P(Rd) be two probability measures. The set of couplings between µ and ν
is defined as:

Π(µ, ν) = {γ ∈ P(Rd ×Rd)| π1
#γ = µ, π2

#γ = ν}

where π1 and π2 are the projections on the first and second coordinate (i.e., π1(x, y) = x),
respectively, and # is the push forward operator, defined such that:

∀A ∈ B(Rd), T#µ(A) = µ(T−1(A)).

2.1.1. Kantorovitch Problem

There exists several types of coupling between probability measures for which a
non-exhaustive list can be found in [18] (Chapter 1). Among them, the so called optimal
coupling is the minimizer of the following Kantorovitch problem:

inf
γ∈Π(µ,ν)

∫
c(x, y)dγ(x, y) (1)

with c being some cost function. The Kantorovitch problem (1) is known to admit a
solution when c is non-negative and lower semi-continuous [19] (Theorem 1.7). When
c(x, y) = ‖x− y‖2

2, it defines the so-called Wasserstein distance:

W2
2 (µ, ν) = inf

γ∈Π(µ,ν)

∫
‖x− y‖2

2 dγ(x, y). (2)

When the optimal coupling is of the form γ = (Id, T)#µ with T, some deterministic map
such that T#µ = ν, T is called the Monge map.

In one dimension, with µ atomless, the solution to (2) is a deterministic coupling of
the form [19] (Theorem 2.5):

T = F−1
ν ◦ Fµ (3)

where Fµ is the cumulative distribution function of µ, and F−1
ν is the quantile function of ν.

This map is also known as the increasing rearrangement map.
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2.1.2. Knothe–Rosenblatt Rearrangement

Another interesting coupling is the Knothe–Rosenblatt (KR) rearrangement, which
takes advantage of the increasing rearrangement in one dimension by iterating over
the dimension and using the disintegration of the measures. Concatenating all the in-
creasing rearrangements between the conditional probabilities, the KR rearrangement
produces a nondecreasing triangular map (i.e., T : Rd → Rd, for all x ∈ Rd, T(x) =
(T1(x1), . . . , Tj(x1, . . . , xj), . . . , Td(x)), and for all j, Tj is nondecreasing with respect to xj),
and a deterministic coupling (i.e., T#µ = ν) [18–20].

Carlier et al. [21] made a connection between this coupling and optimal transport by
showing that it can be obtained as the limit of optimal transport plans for a degenerated cost:

ct(x, y) =
d

∑
i=1

λi(t)(xi − yi)
2,

where for all i ∈ {1, . . . , d}, t > 0, λi(t) > 0, and for all i ≥ 2, λi(t)
λi−1(t)

−−→
t→0

0. This cost

can be recast as in [22] as ct(x, y) = (x− y)T At(x− y), where At = diag(λ1(t), . . . , λd(t)).
This formalizes into the following Theorem:

Theorem 1 ([19,21]). Let µ and ν be two absolutely continuous measures on Rd, with compact
supports. Let γt be an optimal transport plan for the cost ct, let TK be the Knothe–Rosenblatt map

between µ and ν, and γK = (Id× TK)#µ the associated transport plan. Then, we have γt
D−−→

t→0
γK.

Moreover, if γt are induced by transport maps Tt, then Tt converges in L2(µ) when t tends to zero
to the Knothe–Rosenblatt rearrangement.

2.2. Subspace Detours and Disintegration

Muzellec and Cuturi [14] proposed another OT problem by optimizing over the
couplings which share a measure on a subspace. More precisely, they defined subspace-
optimal plans for which the shared measure is the OT plan between projected measures.

Definition 1 (Subspace-Optimal Plans [14] Definition 1). Let µ, ν ∈ P2(Rd) and let E ⊂ Rd

be a k-dimensional subspace. Let γ∗E be an OT plan for the Wasserstein distance between µE = πE
# µ

and νE = πE
# ν (with πE as the orthogonal projection on E). Then, the set of E-optimal plans

between µ and ν is defined as ΠE(µ, ν) = {γ ∈ Π(µ, ν)| (πE, πE)#γ = γ∗E}.

In other words, the subspace OT plans are the transport plans of µ, ν that agree on
the subspace E with the optimal transport plan γ∗E on this subspace. To construct such
coupling γ ∈ Π(µ, ν), one can rely on the Gluing lemma [18] or use the disintegration of
the measure as described in the following section.

2.2.1. Disintegration

Let (Y,Y) and (Z,Z) be measurable spaces, and (X,X ) = (Y×Z,Y ⊗Z) the product
measurable space. Then, for µ ∈ P(X), we denote µY = πY

# µ and µZ = πZ
# µ as the

marginals, where πY (respectively πZ) is the projection on Y (respectively Z). Then, a family
(K(y, ·))y∈Y is a disintegration of µ if for all y ∈ Y, K(y, ·) is a measure on Z, for all A ∈ Z ,
K(·, A) is measurable and:

∀φ ∈ C(X),
∫

Y×Z
φ(y, z)dµ(y, z) =

∫
Y

∫
Z

φ(y, z)K(y, dz)dµY(y),

where C(X) is the set of continuous functions on X. We can note µ = µY ⊗ K. K is a
probability kernel if for all y ∈ Y, K(y, Z) = 1. The disintegration of a measure actually
corresponds to conditional laws in the context of probabilities. This concept will allow us
to obtain measures on the whole space from marginals on subspaces.
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In the case where X = Rd, which is our setting of interest, we have existence and
uniqueness of the disintegration (see Box 2.2 of [19] or Chapter 5 of [23] for the more
general case).

2.2.2. Coupling on the Whole Space

Let us note µE⊥ |E and νE⊥ |E as the disintegrated measures on the orthogonal spaces
(i.e., such that µ = µE ⊗ µE⊥ |E and ν = νE ⊗ νE⊥ |E (if we have densities, p(xE, xE⊥) =

pE(xE)pE⊥ |E(xE⊥ |xE).)). Then, to obtain a transport plan between the two originals mea-
sures on the whole space, we can look for another coupling between disintegrated mea-
sures µE⊥ |E and νE⊥ |E. In particular, two such couplings are proposed in [14], the Monge-
Independent (MI) plan:

πMI = γ∗E ⊗ (µE⊥ |E ⊗ νE⊥ |E)

where we take the independent coupling between µE⊥ |E(xE, ·) and νE⊥ |E(yE, ·) for γ∗E
almost every (xE, yE), and the Monge-Knothe (MK) plan:

πMK = γ∗E ⊗ γ∗E⊥ |E

where γ∗E⊥ |E
(
(xE, yE), ·

)
is an optimal plan between µE⊥ |E(xE, ·) and νE⊥ |E(yE, ·) for γ∗E

almost every (xE, yE). Muzellec and Cuturi [14] observed that MI is more adapted to noisy
environments since it only computes the OT plan of the subspace. MK is more suited for
applications where we want to prioritize some subspace but where all the directions still
contain relevant information [14].

This subspace detour approach can be of much interest following the popular assump-
tion that two distributions on Rd differ only in a low-dimensional subspace as in the Spiked
transport model [24]. However, it is still required to find the adequate subspace. Muzellec
and Cuturi [14] propose to either rely on a priori knowledge to select the subspace (by
using, e.g., a reference dataset and a principal component analysis) or to optimize over the
Stiefel manifold.

2.3. Gromov–Wasserstein

Formally, the Gromov–Wasserstein distance allows us to compare metric measure
spaces (mm-space), triplets (X, dX, µX) and (Y, dY, µY), where (X, dX) and (Y, dY) are
complete separable metric spaces and µX and µY are Borel probability measures on X and
Y [8], respectively, by computing:

GW(X, Y) = inf
γ∈Π(µX ,µY)

∫∫
L(dX(x, x′), dY(y, y′))dγ(x, y)dγ(x′, y′)

where L is some loss on R. It has actually been extended to other spaces by replacing the
distances by cost functions cX and cY, as, e.g., in [25]. Furthermore, it has many appealing
properties such as having invariances (which depend on the costs).

Vayer [26] notably studied this problem in the setting where X and Y are Euclidean
spaces, with L(x, y) = (x− y)2 and c(x, x′) = 〈x, x′〉 or c(x, x′) = ‖x− x′‖2

2. In particular,
let µ ∈ P(Rp) and ν ∈ P(Rq), and the inner-GW problem is defined as:

InnerGW(µ, ν) = inf
γ∈Π(µ,ν)

∫∫
(〈x, x′〉p − 〈y, y′〉q)2 dγ(x, y)dγ(x′, y′). (4)

For this problem, a closed form in one dimension can be found when one of the distributions
admits a density w.r.t. the Lebesgue measure:

Theorem 2 ([26] Theorem 4.2.4). Let µ, ν ∈ P(R), with µ being absolutely continuous with
respect to the Lebesgue measure. Let F↗µ (x) := Fµ(x) = µ(] −∞, x]) be the cumulative dis-
tribution function and F↘µ (x) = µ(]− x,+∞[) the anti-cumulative distribution function. Let
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Tasc(x) = F−1
ν (F↗µ (x)) and Tdesc(x) = F−1

ν (F↘µ (−x)). Then, an optimal solution of (4) is
achieved either by γ = (Id× Tasc)#µ or by γ = (Id× Tdesc)#µ.

3. Subspace Detours for GW

In this section, we propose to extend subspace detours from Muzellec and Cuturi [14]
with Gromov–Wasserstein costs. We show that we can even take subspaces of different
dimensions and still obtain a coupling on the whole space using the Independent or the
Monge–Knothe coupling. Then, we derive some properties analogously to Muzellec and
Cuturi [14], as well as some closed-form solutions between Gaussians. We also provide a
new closed-form expression of the inner-GW problem between one-dimensional discrete
distributions and provide an illustration on a shape-matching problem.

3.1. Motivations

First, we adapt the definition of subspace optimal plans for different subspaces. Indeed,
since the GW distance is adapted to distributions that have their own geometry, we argue
that if we project on the same subspace, then it is likely that the resulting coupling would
not be coherent with that of GW. To illustrate this point, we use as a source distribution
µ one moon of the two moons dataset and obtain a target ν by rotating µ by an angle
of π

2 (see Figure 1). As the GW with c(x, x′) = ‖x − x′‖2
2 is invariant with respect to

isometries, the optimal coupling is diagonal, as recovered on the left side of the figure.
However, when choosing one subspace to project both the source and target distributions,
we completely lose the optimal coupling between them. Nonetheless, by choosing one
subspace for each measure more wisely (using here the first component of the principal
component analysis (PCA) decomposition), we recover the diagonal coupling. This simple
illustration underlines that the choice of both subspaces is important. A way of choosing
the subspaces could be to project on the subspace containing the more information for each
dataset using, e.g., PCA independently on each distribution. Muzellec and Cuturi [14]
proposed to optimize the optimal transport cost with respect to an orthonormal matrix
with a projected gradient descent, which could be extended to an optimization over two
orthonormal matrices in our context.

Figure 1. From left to right: Data (moons); OT plan obtained with GW for c(x, x′) = ‖x− x′‖2
2; Data

projected on the first axis; OT plan obtained between the projected measures; Data projected on their
first PCA component; OT plan obtained between the the projected measures.

By allowing for different subspaces, we obtain the following definition of subspace
optimal plans:

Definition 2. Let µ ∈ P2(Rp), ν ∈ P2(Rq), E be a k-dimensional subspace of Rp and F a
k′-dimensional subspace of Rq. Let γ∗E×F be an optimal transport plan for GW between µE = πE

# µ

and νF = πF
# ν (with πE (resp. πF) the orthogonal projection on E (resp. F)). Then, the set of (E, F)-

optimal plans between µ and ν is defined as ΠE,F(µ, ν) = {γ ∈ Π(µ, ν)| (πE, πF)#γ = γ∗E×F}.

Analogously to Muzellec and Cuturi [14] (Section 2.2), we can obtain from γ∗E×F
a coupling on the whole space by either defining the Monge–Independent plan πMI =
γ∗E×F ⊗ (µE⊥ |E ⊗ νF⊥ |F) or the Monge–Knothe plan πMK = γ∗E×F ⊗ γ∗E⊥×F⊥ |E×F where OT
plans are taken with some OT cost, e.g., GW.
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3.2. Properties

Let E ⊂ Rp and F ⊂ Rq and denote:

GWE,F(µ, ν) = inf
γ∈ΠE,F(µ,ν)

∫∫
L(x, x′, y, y′)dγ(x, y)dγ(x′, y′) (5)

the Gromov–Wasserstein problem restricted to subspace optimal plans (2). In the following,
we show that Monge–Knothe couplings are optimal plans of this problem, which is a direct
transposition of Proposition 1 in [14].

Proposition 1. Let µ ∈ P(Rp) and ν ∈ P(Rq), E ⊂ Rp, F ⊂ Rq, πMK = γ∗E×F ⊗
γ∗E⊥×F⊥ |E×F, where γ∗E×F is an optimal coupling between µE and νF, and for γ∗E×F, almost every

(xE, yF), γ∗E⊥×F⊥ |E×F

(
(xE, yF), ·

)
is an optimal coupling between µE⊥ |E(xE, ·) and νF⊥ |F(yF, ·).

Then we have:
πMK ∈ argmin

γ∈ΠE,F(µ,ν)

∫∫
L(x, x′, y, y′)dγ(x, y)dγ(x′, y′).

Proof. Let γ ∈ ΠE,F(µ, ν), then:∫∫
L(x, x′, y, y′)dγ(x, y)dγ(x′, y′)

=
∫∫ ( ∫∫

L(x, x′, y, y′)γE⊥×F⊥ |E×F
(
(xE, yF), (dxE⊥ , dyF⊥)

)
γE⊥×F⊥ |E×F

(
(x′E, y′F), (dx′E⊥ , dy′F⊥)

))
dγ∗E×F(xE, yF)dγ∗E×F(x′E, y′F).

However, for γ∗E×F a.e. (xE, yF), (x′E, y′F),∫∫
L(x, x′, y, y′)γE⊥×F⊥ |E×F

(
(xE, yF), (dxE⊥ , dyF⊥ )

)
γE⊥×F⊥ |E×F

(
(x′E, y′F), (dx′E⊥ , dy′F⊥ )

)
≥
∫∫

L(x, x′, y, y′)γ∗E⊥×F⊥ |E×F

(
(xE, yF), (dxE⊥ , dyF⊥ )

)
γ∗E⊥×F⊥ |E×F

(
(x′E, y′F), (dx′E⊥ , dy′F⊥ )

)
by definition of the Monge–Knothe coupling. By integrating with respect to γ∗E×F, we obtain:∫∫

L(x, x′, y, y′)dγ(x, y)dγ(x′, y′) ≥
∫∫

L(x, x′, y, y′)dπMK(x, y)dπMK(x′, y′).

Therefore, πMK is optimal for subspace optimal plans.

The key properties of GW that we would like to keep are its invariances. We show in
two particular cases that we conserve them on the orthogonal spaces (since the measure on
E× F is fixed).

Proposition 2. Let µ ∈ P(Rp), ν ∈ P(Rq), E ⊂ Rp, F ⊂ Rq.
For L(x, x′, y, y′) =

(
‖x − x′‖2

2 − ‖y− y′‖2
2
)2 or L(x, x′, y, y′) =

(
〈x, x′〉p − 〈y, y′〉q

)2,
GWE,F (5) is invariant with respect to isometries of the form f = (IdE, fE⊥) (resp. g = (IdF, gF⊥))
with fE⊥ an isometry on E⊥ (resp. gF⊥ an isometry on F⊥) with respect to the corresponding cost
(c(x, x′) = ‖x− x′‖2

2 or c(x, x′) = 〈x, x′〉p).

Proof. We propose a sketch of the proof. The full proof can be found in Appendix A.1. Let
L(x, x′, y, y′) =

(
‖x− x′‖2

2 − ‖y− y′‖2
2
)2, let fE⊥ be an isometry w.r.t c(xE⊥ , x′E⊥) = ‖xE⊥ −

x′E⊥‖
2
2, and let f : Rp → Rp be defined as such for all x ∈ Rp, f (x) = (xE, fE⊥(xE⊥)).
By using Lemma 6 of [27], we show that ΠE,F( f#µ, ν) = {( f , Id)#γ|γ ∈ ΠE,F(µ, ν)}.

Hence, for all γ ∈ ΠE,F( f#µ, ν), there exists γ̃ ∈ ΠE,F(µ, ν) such that γ = ( f , Id)#γ̃.
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By disintegrating γ̃ with respect to γ∗E×F and using the properties of the pushforward, we
can show that:∫∫ (

‖x− x′‖2
2 − ‖y− y′‖2

2
)2 d( f , Id)#γ̃(x, y)d( f , Id)#γ̃(x′, y′)

=
∫∫ (

‖x− x′‖2
2 − ‖y− y′‖2

2
)2 dγ̃(x, y)dγ̃(x′, y′).

Finally, by taking the infimum with respect to γ̃ ∈ ΠE,F(µ, ν), we find:

GWE,F( f#µ, ν) = GWE,F(µ, ν).

3.3. Closed-Form between Gaussians

We can also derive explicit formulas between Gaussians in particular cases. Let
q ≤ p, µ = N (mµ, Σ) ∈ P(Rp), ν = N (mν, Λ) ∈ P(Rq) two Gaussian measures with
Σ = PµDµPT

µ and Λ = PνDνPT
ν . As previously, let E ⊂ Rp and F ⊂ Rq be k and k′

dimensional subspaces, respectively. Following Muzellec and Cuturi [14], we repre-
sent Σ in an orthonormal basis of E ⊕ E⊥ and Λ in an orthonormal basis of F ⊕ F⊥,

i.e., Σ =

(
ΣE ΣEE⊥

ΣE⊥E ΣE⊥

)
. Now, let us denote the following:

Σ/ΣE = ΣE⊥ − ΣT
EE⊥Σ−1

E ΣEE⊥

as the Schur complement of Σ with respect to ΣE. We know that the conditionals of Gaus-
sians are Gaussians and that their covariances are the Schur complements (see, e.g., [28,29]).

For L(x, x′, y, y′) =
(
‖x − x′‖2

2 − ‖y − y′‖2
2
)2, we have for now no certainty that

the optimal transport plan is Gaussian. Let Np+q denote the set of Gaussians in Rp+q.
By restricting the minimization problem to Gaussian couplings, i.e., by solving:

GGW(µ, ν) = inf
γ∈Π(µ,ν)∩Np+q

∫∫ (
‖x− x′‖2

2 − ‖y− y′‖2
2
)2 dγ(x, y)dγ(x′, y′), (6)

Salmona et al. [30] showed that there is a solution γ∗ = (Id, T)#µ ∈ Π(µ, ν) with µ =
N (mµ, Σ), ν = N (mν, Λ) and

∀x ∈ Rd, T(x) = mν + Pν APT
µ (x−mµ) (7)

where A =
(

ĨqD
1
2
ν (D(q)

µ )−
1
2 0q,p−q

)
∈ Rq×p, and Ĩq is of the form diag

(
(±1)i≤q

)
.

By combining the results of Muzellec and Cuturi [14] and Salmona et al. [30], we
obtain the following closed-form for Monge–Knothe couplings:

Proposition 3. Suppose p ≥ q and k = k′. For the Gaussian-restricted GW problem (6), a Monge–
Knothe transport map between µ = N (mµ, Σ) ∈ P(Rp) and ν = N (mν, Λ) ∈ P(Rq) is, for all
x ∈ Rp, TMK(x) = mν + B(x−mµ) where:

B =

(
TE,F 0

C TE⊥ ,F⊥ |E,F

)
with TE,F being an optimal transport map between N (0E, ΣE) and N (0F, ΛF) (of the form (7)),
TE⊥ ,F⊥ |E,F an optimal transport map betweenN (0E⊥ , Σ/ΣE) andN (0F⊥ , Λ/ΛF), and C satisfies:

C = (ΛF⊥F(T
T
E,F)

−1 − TE⊥ ,F⊥ |E,FΣE⊥E)Σ
−1
E .

Proof. See Appendix A.2.1.
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Suppose that k ≥ k′, mµ = 0, and mν = 0 and let TE,F be an optimal transport map
between µE and νF (of the form (7)). We can derive a formula for the Monge–Independent
coupling for the inner-GW problem and the Gaussian restricted GW problem.

Proposition 4. πMI = N (0p+q, Γ) where Γ =

(
Σ C

CT Λ

)
with

C = (VEΣE + VE⊥ΣE⊥E)T
T
E,F(V

T
F + Λ−1

F ΛT
F⊥FVT

F⊥)

where TE,F is an optimal transport map, either for the inner-GW problem or the Gaussian re-
stricted problem.

Proof. See Appendix A.2.2.

3.4. Computation of Inner-GW between One-Dimensional Empirical Measures

In practice, computing the Gromov–Wasserstein distance from samples of the distribu-
tions is costly. From a computational point of view, the subspace detour approach provides
an interesting method with better computational complexity when choosing 1D subspaces.
Moreover, we have the intuition than the GW problem between measures lying on smaller
dimensional subspaces has a better sample complexity than between the original measures,
as it is the case for the Wasserstein distance [31,32].

Below, we show that when both E and F are one-dimensional subspaces, then the
resulting GW problem between the projected measures can be solved in linear time. This
will rely on a new closed-form expression of the GW problem in 1D. Vayer et al. [12]
provided a closed-form for GW with c(x, x′) = ‖x− x′‖2

2 in one dimension between discrete
measures containing the same number of points and with uniform weights. However,
in our framework, the 1D projection of E, F may not have uniform weights, and we also
would like to be able to compare distributions with different numbers of points. We provide
in the next proposition a closed-form expression for the inner-GW problem between any
unidimensional discrete probability distributions:

Proposition 5. Consider Σn = {a ∈ Rn
+, ∑n

i=1 ai = 1} the n probability simplex. For a vector
a ∈ Rn, we denote a− as the vector with values sorted decreasingly, i.e., a−1 ≥ · · · ≥ a−n .
Let µ = ∑n

i=1 aiδxi , ν = ∑m
j=1 bjδyj ∈ P(R) × P(R) with a, b ∈ Σn × Σm. Suppose that

x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ ym. Consider the problem:

min
γ∈Π(a,b)

∑
ijkl

(xixk − yjyl)
2γijγkl (8)

Then, there exists γ ∈ {NW(a, b), NW(a−, b)} such that γ is an optimal solution of (8) where
NW is the North-West corner rule defined in Algorithm 1. As a corollary, an optimal solution
of (8) can be found in O(n + m).

Algorithm 1 North-West corner rule NW(a, b)

a ∈ Σn, b ∈ Σm
while i <= n, j <= m do

γij = min{ai, bj}
ai = ai − γij
bj = bj − γij
If ai = 0, i = i + 1, if bj = 0, j = j + 1

end while
return γ ∈ Π(a, b)
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Proof. Let γ ∈ Π(a, b). Then:

∑
ijkl

(xixk − yjyl)
2γijγkl = ∑

ijkl
(xixk)

2γijγkl + ∑
ijkl

(yjyl)
2γijγkl − 2 ∑

ijkl
xixkyjylγijγkl

However, ∑ijkl(xixk)
2γijγkl = ∑ik(xixk)

2aiak, and ∑ijkl(yjyl)
2γijγkl = ∑jl(yjyl)

2bjbl , so
this does not depend on γ. Moreover 2 ∑ijkl xixkyjylγijγkl = 2(∑ij xiyjγij)

2. Hence, the
problem (8) is equivalent to maxγ∈Π(a,b)(∑ij xiyjγij)

2 (in terms of the OT plan), which is
also equivalent to solving maxγ∈Π(a,b) |∑ij xiyjγij| or equivalently:

max
γ∈Π(a,b)

±1 ∑
ij

xiyjγij (9)

We have two cases to consider: If ±1 = 1, we have to solve −minγ∈Π(a,b) ∑ij(−xi)yjγij.
Since the points are sorted, the matrix cij = −xiyj satisfies the Monge property [33]:

∀(i, j) ∈ {1, . . . , n− 1} × {1, . . . , m− 1}, ci,j + ci+1,j+1 ≤ ci+1,j + ci,j+1 (10)

To see this, check that:

(−xi)yj + (−xi+1)yj+1 − (−xi+1)yj − (−xi)yj+1

= (−xi)(yj − yj+1) + (−xi+1)(yj+1 − yj) = (yj − yj+1)(xi+1 − xi) ≤ 0
(11)

In this case, the North-West corner rule NW(a, b) defined in Alg. 1 is known to produce
an optimal solution to the linear problem (9) [33]. If ± = −1, then changing xi to −xi
concludes.

We emphasize that this result is novel and generalizes [12] in the sense that the
distributions do not need to have uniform weights and the same number of points. I
addition, Theorem 2 is not directly applicable to this setting since it requires having
absolutely regular distributions, which is not the case here. Both results are, however,
related, as the solution obtained by using the NW corner rule on the sorted samples is the
same as that obtained by considering the coupling obtained from the quantile functions.
The previous result could also be used to define tractable alternatives to GW in the same
manner as the Sliced Gromov–Wasserstein [12].

3.5. Illustrations

We use the Python Optimal Transport (POT) library [34] to compute the different
optimal transport problems involved in this illustration. We are interested here in solving a
3D mesh registration problem, which is a natural application of Gromov–Wasserstein [3]
since it enjoys invariances with respect to isometries such as permutations and can also
naturally exploit the topology of the meshes. For this purpose, we selected two base meshes
from the FAUST dataset [35], which provides ground truth correspondences between shapes.
The information available from those meshes are geometrical (6890 vertices positions)
and topological (mesh connectivity). These two meshes are represented, along with the
visual results of the registration, in Figure 2. In order to visually depict the quality of the
assignment induced by the transport map, we propagate through it a color code of the
source vertices toward their associated counterpart vertices in the target mesh. Both the
original color-coded source and the associated target ground truth are available on the
first line of the illustration. To compute our method, we simply use as a natural subspace
for both meshes the algebraic connectivity of the mesh’s topological information, also
known as the Fiedler vector [36] (eigenvector associated to the second smallest eigenvalue
of the un-normalized Laplacian matrix). Fiedler vectors are computed in practice using
NetworkX [37] but could also be obtained by using power methods [38]. Reduced to a 1D
optimal transport problem (8), we used the Proposition 5 to compute the optimal coupling
in O(n + m). Consequently, the computation time is very low (∼ 5 s. on a standard laptop),
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and the associated matching is very good, with more than 98% of correct assignments. We
qualitatively compare this result to Gromov–Wasserstein mappings induced by different
cost functions, in the second line of Figure 2: adjacency [39], weighted adjacency (weights
are given by distances between vertices), heat kernel (derived from the un-normalized
Laplacian) [40], and, finally, geodesic distances over the meshes. On average, computing
the Gromov–Wasserstein mapping using POT took around 10 min of time. Both methods
based on adjacency fail to recover a meaningful mapping. Heat kernel allows us to map
continuous areas of the source mesh but fails in recovering a global structure. Finally,
the geodesic distance gives a much more coherent mapping but has inverted left and right
of the human figure. Notably, a significant extra computation time was induced by the
computation of the geodesic distances (∼ 1 h/mesh using the NetworkX [37] shortest path
procedure). As a conclusion, and despite the simplification of the original problem, our
method performs best with a speed-up of two-orders of magnitude.

Figure 2. Three-dimensional mesh registration. (First row) source and target meshes, color code of
the source, ground truth color code on the target, result of subspace detour using Fiedler vectors as
subspace. (Second row) After recalling the expected ground truth for ease of comparison, we present
results of different Gromov–Wasserstein mappings obtained with metrics based on adjacency, heat
kernel, and geodesic distances.
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4. Triangular Coupling as Limit of Optimal Transport Plans for Quadratic Cost

Another interesting property derived in Muzellec and Cuturi [14] of the Monge–
Knothe coupling is that it can be obtained as the limit of classic optimal transport plans,
similar to Theorem 1, using a separable cost of the form:

ct(x, y) = (x− y)T Pt(x− y)

with Pt = VEVT
E + tVE⊥VT

E⊥ and (VE, VE⊥) as an orthonormal basis of Rp.
However, this property is not valid for the classical Gromov–Wasserstein cost (e.g.,

L(x, x′, y, y′) = (dX(x, x′)2 − dY(y, y′)2)2 or L(x, x′, y, y′) = (〈x, x′〉p − 〈y, y′〉q)2) as the
cost is not separable. Motivated by this question, we ask ourselves in the following if we
can derive a quadratic optimal transport cost for which we would have this property.

Formally, we derive a new quadratic optimal transport problem using the Hadamard
product. We show that this problem is well-defined and that it has interesting properties
such as invariance with respect to axis. We also show that it can be related to a triangular
coupling in a similar fashion than the classical optimal transport problem with the Knothe–
Rosenblatt rearrangement.

4.1. Construction of the Hadamard–Wasserstein Problem

In this part, we define the “Hadamard–Wasserstein” problem between µ ∈ P(Rd)
and ν ∈ P(Rd) as:

HW2(µ, ν) = inf
γ∈Π(µ,ν)

∫∫
‖x� x′ − y� y′‖2

2 dγ(x, y)dγ(x′, y′), (12)

where � is the Hadamard product (element-wise product). This problem is different
than the Gromov–Wasserstein problem in the sense that we do not compare intradistance
anymore bur rather the Hadamard products between vectors of the two spaces (in the same
fashion as the classical Wasserstein distance). Hence, we need the two measures to belong
in the same Euclidean space. Let us note L as the cost defined as:

∀x, x′, y, y′ ∈ Rd, L(x, x′, y, y′) =
d

∑
k=1

(xkx′k − yky′k)
2 = ‖x� x′ − y� y′‖2

2. (13)

We observe that it coincides with the inner-GW (4) loss in one dimension. Therefore,
by Theorem 2, we know that we have a closed-form solution in 1D.

4.2. Properties

First, we derive some useful properties of (12) which are usual for the regular Gromov–
Wasserstein problem. Formally, we show that the problem is well defined and that it is a
pseudometric with invariances with respect to axes.

Proposition 6. Let µ, ν ∈ P(Rd).

1. The problem (12) always admits a minimizer.
2. HW is a pseudometric (i.e., it is symmetric, non-negative, HW(µ, µ) = 0, and it satisfies

the triangle inequality).
3. HW is invariant to reflection with respect to axes.

Proof. Let µ, ν ∈ P(Rd),

1. (x, x′) 7→ x� x′ is a continuous map, therefore, L is less semi-continuous. Hence, by ap-
plying Lemma 2.2.1 of [26], we observe that γ 7→

∫∫
L(x, x′, y, y′)dγ(x, y)dγ(x′, y′) is

less semi-continuous for the weak convergence of measures.
Now, as Π(µ, ν) is a compact set (see the proof of Theorem 1.7 in [19] for the Polish
space case and of Theorem 1.4 for the compact metric space) and γ 7→

∫∫
Ldγdγ is
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less semi-continuous for the weak convergence, we can apply the Weierstrass theorem
(Memo 2.2.1 in [26]), which states that (12) always admits a minimizer.

2. See Theorem 16 in [25].
3. For invariances, we first look at the properties that must be satisfied by T in order to

have: ∀x, x′, f (x, x′) = f (T(x), T(x′)) where f : (x, x′) 7→ x� x′.
We find that ∀x ∈ Rd, ∀1 ≤ i ≤ d, |[T(x)]i| = |xi| because, denoting (ei)

d
i=1 as the

canonical basis, we have:
x� ei = T(x)� T(ei),

which implies that:
xi = [T(x)]i[T(ei)]i.

However, f (ei, ei) = f (T(ei), T(ei)) implies [T(ei)]
2
i = 1, and therefore:

|[T(x)]i| = |xi|.

If we take for T the reflection with respect to axis, then it satisfies f (x, x′) = f (T(x), T(x′))
well. Moreover, it is a good equivalence relation, and therefore, we have a distance on
the quotient space.

HW loses some properties compared to GW. Indeed, it is only invariant with respect
to axes, and it can only compare measures lying in the same Euclidean space in order for
the distance to be well defined. Nonetheless, we show in the following that we can derive
some links with triangular couplings in the same way as the Wasserstein distance with KR.

Indeed, the cost L (13) is separable and reduces to the inner-GW loss in 1D, for which
we have a closed-form solution. We can therefore define a degenerated version of it:

∀x, x′, y, y′ ∈ Rd, Lt(x, x′, y, y′) =
d

∑
k=1

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2

= (x� x′ − y� y′)T At(x� x′ − y� y′)

(14)

with At = diag(1, λ
(1)
t , λ

(1)
t λ

(2)
t , . . . , ∏d−1

i=1 λ
(i)
t ), such as for all t > 0, and for all i ∈

{1, . . . , d − 1}, λ
(i)
t > 0, and λ

(i)
t −−→

t→0
0. We denote HW t the problem (12) with the

degenerated cost (14). Therefore, we will be able to decompose the objective as:∫∫
Lt(x, x′, y, y′)dγ(x, y)dγ(x′, y′)

=
∫∫

(x1x′1 − y1y′1)
2 dγ(x, y)dγ(x′, y′)

+
∫∫ d

∑
k=2

(
k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγ(x, y)dγ(x′, y′)

and to use the same induction reasoning as [21].
Then, we can define a triangular coupling different from the Knothe–Rosenblatt

rearrangement in the sense that each map will not be nondecreasing. Indeed, following
Theorem 2, the solution of each 1D problem:

argmin
γ∈Π(µ,ν)

∫∫
(xx′ − yy′)2 dγ(x, y)dγ(x′, y′)
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is either (Id × Tasc)#µ or (Id × Tdesc)#µ. Hence, at each step k ≥ 1, if we disintegrate
the joint law of the k first variables as µ1:k = µ1:k−1 ⊗ µk|1:k−1, the optimal transport map
T(·|x1, . . . , xk−1) will be the solution of:

argmin
T∈{Tasc,Tdesc}

∫∫ (
xkx′k − T(xk)T(x′k)

)2
µk|1:k−1(dxk | x1:k−1)µ

k|1:k−1(dx′k | x′1:k−1).

We now state the main theorem, where we show that the limit of the OT plans obtained
with the degenerated cost will be the triangular coupling we just defined.

Theorem 3. Let µ and ν be two absolutely continuous measures onRd such that
∫
‖x‖4

2 µ(dx) < +∞,∫
‖y‖4

2 ν(dy) < +∞ and with compact support. Let γt be an optimal transport plan for HW t,
let TK be the alternate Knothe–Rosenblatt map between µ and ν as defined in the last paragraph,

and let γK = (Id× TK)#µ be the associated transport plan. Then, we have γt
D−−→

t→0
γK. Moreover,

if γt are induced by transport maps Tt, then Tt
L2(µ)−−−→
t→0

TK.

Proof. See Appendix B.2.

However, we cannot extend this Theorem to the subspace detour approach. Indeed,
by choosing At = VEVT

E + tVE⊥VT
E⊥ with (VE, VE⊥) an orthonormal basis of Rd, then

we project x � x′ − y � y′ on E (respectively on E⊥), which is generally different from
xE � x′E − yE � y′E (respectively xE⊥ � x′E⊥ − yE⊥ � y′E⊥ ).

4.3. Solving Hadamard–Wasserstein in the Discrete Setting

In this part, we derive formulas to solve numerically HW (12). Let x1, . . . , xn ∈ Rd,
y1, . . . , ym ∈ Rd, α ∈ Σn, β ∈ Σm, p = ∑n

i=1 αiδxi and q = ∑m
j=1 β jδyj two discrete measures

in Rd. The Hadamard Wasserstein problem (12) becomes in the discrete setting:

HW2(p, q) = inf
γ∈Π(p,q)

∑
i,j

∑
k,`
‖xi � xk − yj � y`‖2

2 γi,jγk,`

= inf
γ∈Π(p,q)

E(γ)

with E(γ) = ∑i,j ∑k,` ‖xi � xk − yj � y`‖2
2 γi,jγk,`. As denoted in [9], if we note:

Li,j,k,` = ‖xi � xk − yj � y`‖2
2,

then we have:
E(γ) = 〈L ⊗ γ, γ〉,

where ⊗ is defined as:
L⊗ γ =

(
∑
k,`
Li,j,k,`γk,`

)
i,j
∈ Rn×m.

We show in the next proposition a decomposition of L ⊗ γ, which allows us to
compute this tensor product more efficiently.

Proposition 7. Let γ ∈ Π(p, q) = {M ∈ (R+)n×m, M1m = p, MT
1n = q}, where

1n = (1, . . . , 1)T ∈ Rn. Let us note X = (xi � xk)i,k ∈ Rn×n×d, Y = (yj � y`)j,` ∈ Rm×m×d,
X(2) = (‖Xi,k‖2

2)i,k ∈ Rn×n, Y(2) = (‖Yj,l‖2
2)j,l ∈ Rm×m, and ∀t ∈ {1, . . . , d}, Xt =

(Xi,k,t)i,k ∈ Rn×n and Yt = (Yj,`,t)j,` ∈ Rm×m. Then:

L⊗ γ = X(2)p1T
m + 1nqT(Y(2))T − 2

d

∑
t=1

XtγYT
t .
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Proof. First, we can start by writing:

Li,j,k,` = ‖xi � xk − yj � y`‖2
2

= ‖Xi,k −Yj,`‖2
2

= ‖Xi,k‖2
2 + ‖Yj,`‖2

2 − 2〈Xi,k, Yj,`〉

= [X(2)]i,k + [Y(2)]j,` − 2〈Xi,k, Yj,`〉.

We cannot directly apply proposition 1 from [9] (as the third term is a scalar product),
but by performing the same type of computation, we obtain:

L⊗ γ = A + B + C

with

Ai,j = ∑
k,`
[X(2)]i,kγk,` = ∑

k
[X(2)]i,k ∑

`

γk,` = ∑
k
[X(2)]i,k[γ1m]k,1 = [X(2)γ1m]i,1 = [X(2)p]i,1

Bi,j = ∑
k,`
[Y(2)]j,`γk,` = ∑

`

[Y(2)]j,` ∑
k

γk,` = ∑
`

[Y(2)]j,`[γ
T
1n]`,1 = [Y(2)γT

1n]j,1 = [Y(2)q]j,1

and

Ci,j = −2 ∑
k,`
〈Xi,k, Yj,`〉γk,` = −2 ∑

k,`

d

∑
t=1

Xi,k,tYj,`,tγk,`

= −2
d

∑
t=1

∑
k
[Xt]i,k ∑

`

[Yt]j,`γ
T
`,k

= −2
d

∑
t=1

∑
k
[Xt]i,k[Ytγ

T ]j,k

= −2
d

∑
t=1

[Xt(Ytγ
T)T ]i,j.

Finally, we have:

L⊗ γ = X(2)p1T
m + 1nqT(Y(2))T − 2

d

∑
t=1

XtγYT
t .

From this decomposition, we can compute the tensor product L⊗ γ with a complexity
of O(d(n2m + m2n)) using only multiplications of matrices (instead of O(dn2m2) for a
naive computation).

Remark 1. For the degenerated cost function (14), we just need to replace X and Y by X̃t = A
1
2
t X

and Ỹt = A
1
2
t Y in the previous proposition.

To solve this problem numerically, we can use the conditional gradient algorithm
(Algorithm 2 in [41]). This algorithm only requires to compute the gradient:

∇E(γ) = 2(A + B + C) = 2(L⊗ γ)

at each step and a classical OT problem. This algorithm is more efficient than solving
the quadratic problem directly. Moreover, while it is a non-convex problem, it actually
converges to a local stationary point [42].

On Figure 3, we generated 30 points of 2 Gaussian distributions, and computed the
optimal coupling ofHW t for several t. These points have the same uniform weight. We plot
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the couplings between the points on the second row, and between the projected points on
their first coordinate on the first row. Note that for discrete points, the Knothe–Rosenblatt
coupling amounts to sorting the points with respect to the first coordinate if there is no
ambiguity (i.e., x(1)1 < · · · < x(1)n ) as it comes back to perform the optimal transport in one
dimension [43] (Remark 2.28). For our cost, the optimal coupling in 1D can either be the
increasing or the decreasing rearrangement. We observe on the first row of Figure 3 that
the optimal coupling when t is close to 0 corresponds to the decreasing rearrangement,
which corresponds well to the alternate Knothe–Rosenblatt map we defined in Section 4.2.
It underlines the results provided in Theorem 3.

Figure 3. Degenerated coupling. On the first row, the points are projected on their first coordinate
and we plot the optimal coupling. On the second row, we plot the optimal coupling between the
original points.

5. Discussion

We proposed in this work to extend the subspace detour approach to different sub-
spaces, and to other optimal transport costs such as Gromov–Wasserstein. Being able to
project on different subspaces can be useful when the data are not aligned and do not share
the same axes of interest, as well as when we are working between different metric spaces
as it is the case, for example, with graphs. However, a question that arises is how to choose
these subspaces. Since the method is mostly interesting when we choose one-dimensional
subspaces, we proposed to use a PCA and to project on the first directions for data embed-
ded in Euclidean spaces. For more complicated data such as graphs, we projected onto
the Fiedler vector and obtained good results in an efficient way on a 3D mesh registration
problem. More generally, Muzellec and Cuturi [14] proposed to perform a gradient descent
on the loss with respect to orthonormal matrices. This approach is non-convex and is
only guaranteed to converge to a local minimum. Designing such an algorithm, which
would minimize alternatively between two transformations in the Stiefel manifold, is left
for future works.

The subspace detour approach for transport problem is meaningful whenever one can
identify subspaces that gather most of the information from the original distributions, while
making the estimate more robust and with a better sample complexity as far as dimensions
are lower. On the computational complexity side, and when we have only access to
discrete data, the subspace detour approach brings better computational complexity solely
when the subspaces are chosen as one dimensional. Indeed, otherwise, we have the same
complexity for solving the subspace detour and solving the OT problem directly (since
the complexity only depends on the number of samples). In this case, the 1D projection
often gives distinct values for all the samples (for continuous valued data) and hence the
Monge–Knothe coupling is exactly the coupling in 1D. As such, information is lost on
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the orthogonal spaces. It can be artificially recovered by quantizing the 1D values (as
experimented in practice in [14]), but the added value is not clear and deserves broader
studies. If given absolutely continuous distributions wrt. the Lebesgue measure, however,
this limit does not exist but comes with the extra cost of being able to compute efficiently
the projected measure onto the subspace, which might require discretization of the space
and is therefore not practical in high dimensions.

We also proposed a new quadratic cost HW that we call Hadamard–Wasserstein,
which allows us to define a degenerated cost for which the optimal transport plan converges
to a triangular coupling. However, this cost loses many properties compared to W2 or GW,
for which we are inclined to use these problems. Indeed, whileHW is a quadratic cost, it
uses a Euclidean norm between the Hadamard product of vectors and requires the two
spaces to be the same (in order to have the distance well defined). A work around in the
case X = Rp and Y = Rq with p ≤ q would be to “lift” the vectors in Rp into vectors in Rq

with padding as it is proposed in [12] or to project the vectors in Rq on Rp as in [6]. Yet, for
some applications where only the distance/similarity matrices are available, a different
strategy still needs to be found. Another concern is the limited invariance properties (only
with respect to axial symmetry symmetry in our case). Nevertheless, we expect that such a
cost can be of interest in cases where invariance to symmetry is a desired property, such as
in [44].

Author Contributions: Methodology, C.B., N.C., T.V., F.S., and L.D.; software, C.B. and N.C.; writing—
original draft, C.B., N.C., T.V., F.S., and L.D. All authors have read and agreed to the published version
of the manuscript.

Funding: This research wad funded by project DynaLearn from Labex CominLabs and Région
Bretagne ARED DLearnMe. N.C. acknowledges fundings from the ANR OTTOPIA AI chair (ANR-
20-CHIA-0030). T.V. was supported in part by the AllegroAssai ANR project (ANR-19-CHIA-0009)
and by the ACADEMICS grant of the IDEXLYON, project of the Université de Lyon, PIA operated by
ANR-16-IDEX-0005.

Data Availability Statement: The FAUST dataset might be found at http://faust.is.tue.mpg.de
(accessed in 1 September 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

OT Optimal Transport
GW Gromov–Wasserstein
KR Knothe–Rosenblatt
MI Monge–Independent
MK Monge–Knothe
PCA Principal Component Analysis
POT Python Optimal Transport

Appendix A. Subspace Detours

Appendix A.1. Proofs

Proof of Proposition 2. We first deal with L(x, x′, y, y′) =
(
‖x − x′‖2

2 − ‖y− y′‖2
2
)2. Let

fE⊥ be an isometry w.r.t c(xE⊥ , x′E⊥) = ‖xE⊥ − x′E⊥‖
2
2, and let f : Rp → Rp be defined such

as for all x ∈ Rp, f (x) = (xE, fE⊥(xE⊥)).

http://faust.is.tue.mpg.de
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From Lemma 6 of Paty and Cuturi [27], we know that Π( f#µ, ν) = {( f , Id)#γ| γ ∈
Π(µ, ν)}. We can rewrite:

ΠE,F( f#µ, ν) = {γ ∈ Π( f#µ, ν)|(πE, πF)#γ = γ∗E×F}
= {( f , Id)#γ|γ ∈ Π(µ, ν), (πE, πF)#( f , Id)#γ = γ∗E×F}
= {( f , Id)#γ|γ ∈ Π(µ, ν), (πE, πF)#γ = γ∗E×F}
= {( f , Id)#γ|γ ∈ ΠE,F(µ, ν)}

using f = (IdE, fE⊥), πE ◦ f = IdE and (πE, πF)#( f , Id)#γ = (πE, πF)#γ.
Now, for all γ ∈ ΠE,F( f#µ, ν), there exists γ̃ ∈ ΠE,F(µ, ν) such that γ = ( f , Id)#γ̃, and

we can disintegrate γ̃ with respect to γ∗E×F:

γ̃ = γ∗E×F ⊗ K

with K a probability kernel on (E× F,B(E⊥)⊗B(F⊥)).
For γ∗E×F almost every (xE, yF), (x′E, y′F), we have:∫∫ (

‖xE − x′E‖2
2 + ‖xE⊥ − x′E⊥‖

2
2 − ‖yF − y′F‖2

2 − ‖yF⊥ − y′F⊥‖
2
2
)2

( fE⊥ , Id)#K((xE, yF), (dxE⊥ , dyF⊥))( fE⊥ , Id)#K((x′E, y′F), (dx′E⊥ , dy′F⊥))

=
∫∫ (

‖xE − x′E‖2
2 + ‖ fE⊥(xE⊥)− fE⊥(x′E⊥)‖

2
2 − ‖yF − y′F‖2

2 − ‖yF⊥ − y′F⊥‖
2
2
)2

K((xE, yF), (dxE⊥ , dyF⊥))K((x′E, y′F), (dx′E⊥ , dy′F⊥))

=
∫∫ (

‖xE − x′E‖2
2 + ‖xE⊥ − x′E⊥‖

2
2 − ‖yF − y′F‖2

2 − ‖yF⊥ − y′F⊥‖
2
2
)2

K((xE, yF), (dxE⊥ , dyF⊥))K((x′E, y′F), (dx′E⊥ , dy′F⊥))

using in the last line that ‖ fE⊥(xE⊥)− fE⊥(x′E⊥)‖2 = ‖xE⊥ − x′E⊥‖2 since fE⊥ is an isometry.
By integrating with respect to γ∗E×F, we obtain:∫∫ ( ∫∫ (

‖x− x′‖2
2 − ‖y− y′‖2

2
)2

( fE⊥ , Id)#K((xE, yF), (dxE⊥ , dyF⊥))( fE⊥ , Id)#K((x′E, y′F), (dx′E⊥ , dy′F⊥))
)

dγ∗E×F(xE, yF)dγ∗E×F(x′E, y′F)

=
∫∫ (

‖x− x′‖2
2 − ‖y− y′‖2

2
)2 dγ̃(x, y)dγ̃(x′, y′).

(A1)

Now, we show that γ = ( f , Id)#γ̃ = γ∗E×F ⊗ ( fE⊥ , Id)#K. Let φ be some bounded
measurable function on Rp ×Rq:∫

φ(x, y)dγ(x, y) =
∫

φ(x, y)d(( f , Id)#γ̃(x, y))

=
∫

φ( f (x), y)dγ̃(x, y)

=
∫∫

φ( f (x), y)K
(
(xE, yF), (dxE⊥ , dyF⊥)

)
dγ∗E×F(xE, yF)

=
∫∫

φ((xE, fE⊥(xE⊥)), y)K
(
(xE, yF), (dxE⊥ , dyF⊥)

)
dγ∗E×F(xE, yF)

=
∫∫

φ(x, y)( fE⊥ , Id)#K
(
(xE, yF), (dxE⊥ , dyF⊥)

)
dγ∗E×F(xE, yF).
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Hence, we can rewrite (A1) as:∫∫ (
‖x− x′‖2

2 − ‖y− y′‖2
2
)2 d( f , Id)#γ̃(x, y)d( f , Id)#γ̃(x′, y′)

=
∫∫ (

‖x− x′‖2
2 − ‖y− y′‖2

2
)2 dγ̃(x, y)dγ̃(x′, y′).

Now, by taking the infimum with respect to γ̃ ∈ ΠE,F(µ, ν), we find:

GWE,F( f#µ, ν) = GWE,F(µ, ν).

For the inner product case, we can do the same proof for linear isometries on E⊥.

Appendix A.2. Closed-Form between Gaussians

Let q ≤ p, µ = N (mµ, Σ) ∈ P(Rp), and ν = N (mν, Λ) ∈ P(Rq) be two Gaussian
measures with Σ = PµDµPT

µ and Λ = PνDνPT
ν .

Let E ⊂ Rp be a subspace of dimension k and F ⊂ Rq a subspace of dimension k′.
We represent Σ in an orthonormal basis of E⊕ E⊥ and Λ in an orthonormal basis

of F ⊕ F⊥, i.e., Σ =

(
ΣE ΣEE⊥

ΣE⊥E ΣE⊥

)
. We denote Σ/ΣE = ΣE⊥ − ΣT

EE⊥Σ−1
E ΣEE⊥ as the

Schur complement of Σ with respect to ΣE. We know that the conditionals of Gaussians
are Gaussians and of covariance, the Schur complement (see e.g., Rasmussen [28] or
Von Mises [29]).

Appendix A.2.1. Quadratic GW Problem

For GW with c(x, x′) = ‖x− x′‖2
2, we have for now no guarantee that there exists an

optimal coupling which is a transport map. Salmona et al. [30] proposed to restrict the
problem to the set of Gaussian couplings π(µ, ν) ∩Np+q where Np+q denotes the set of
Gaussians in Rp+q. In that case, the problem becomes:

GGW(µ, ν) = inf
γ∈Π(µ,ν)∩Np+q

∫∫ (
‖x− x′‖2

2 − ‖y− y′‖2
2
)2dγ(x, y)dγ(x′, y′). (A2)

In that case, they showed that an optimal solution is of the form T(x) = mν +

Pν APT
µ (x−mµ) with A =

(
ĨqD

1
2
ν (D(q)

µ )−
1
2 0q,p−q

)
and Ĩq of the form diag

(
(±1)i≤q

)
.

Since the problem is translation invariant, we can always solve the problem between
the centered measures.

In the following, we suppose that k = k′. Let us denote TE,F as the optimal transport map
for (A2) between N (0, ΣE) and N (0, ΛF). According to Theorem 4.1 in Salmona et al. [30],
such a solution exists and is of the form (7). We also denote TE⊥ ,F⊥ as the optimal transport
map betweenN (0, Σ/ΣE) andN (0, Λ/ΛF) (which is well defined since we assumed p ≥ q
and hence p− k ≥ q− k′ since k = k′).

We know that the Monge–Knothe transport map will be a linear map TMK(x) = Bx
with B a block triangular matrix of the form:

B =

(
TE,F 0k′ ,p−k

C TE⊥ ,F⊥

)
∈ Rq×p,

with C ∈ R(q−k′)×k and such that BΣBT = Λ (to have well a transport map between µ
and ν).

Actually,

BΣBT =

(
TE,FΣETT

E,F TE,FΣECT + TE,FΣEE⊥TT
E⊥ ,F⊥

(CΣE + TE⊥ ,F⊥ΣE⊥E)T
T
E,F (CΣE + TE⊥ ,F⊥ΣE⊥E)C

T + (CΣEE⊥ + TE⊥ ,F⊥ΣE⊥)T
T
E⊥ ,F⊥

)
.
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First, we have well TE,FΣETT
E,F = ΛF, as TE,F is a transport map between µE and νF.

Then:

BΣBT = Λ ⇐⇒


TE,FΣETT

E,F = ΛF

TE,FΣECT + TE,FΣEE⊥TT
E⊥ ,F⊥ = ΛFF⊥

(CΣE + TE⊥ ,F⊥ΣE⊥E)T
T
E,F = ΛF⊥F

(CΣE + TE⊥ ,F⊥ΣE⊥E)C
T + (CΣEE⊥ + TE⊥ ,F⊥ΣE⊥)T

T
E⊥ ,F⊥ = ΛF⊥ .

We have:

(CΣE + TE⊥ ,F⊥ΣE⊥E)T
T
E,F = ΛF⊥F ⇐⇒ CΣETT

E,F = ΛF⊥F − TE⊥ ,F⊥ΣE⊥ETT
E,F.

As k = k′, ΣETT
E,F ∈ Rk×k and is invertible (as ΣE and ΛF are positive definite and

TE,F = PµE AE,FPνF with AE,F =
(

ĨkD
1
1
νF D−

1
2

µE

)
with positive values on the diagonals. Hence,

we have:
C = (ΛF⊥F(T

T
E,F)

−1 − TE⊥ ,F⊥ΣE⊥E)Σ
−1
E .

Now, we still have to check the last two equations. First:

TE,FΣECT + TE,FΣEE⊥TT
E⊥ ,F⊥ = TE,FΣEΣ−1

E T−1
E,FΛT

F⊥F − TE,FΣEΣ−1
E ΣT

E⊥ETT
E⊥ ,F⊥ + TE,FΣEE⊥TT

E⊥ ,F⊥

= ΛFF⊥ .

For the last equation:

(CΣE + TE⊥ ,F⊥ΣE⊥E)C
T + (CΣEE⊥ + TE⊥ ,F⊥ΣE⊥ )T

T
E⊥ ,F⊥

= (ΛF⊥F(T
T
E,F)

−1 − TE⊥ ,F⊥ΣE⊥E + TE⊥ ,F⊥ΣE⊥E)Σ
−1
E (T−1

E,FΛT
F⊥F − ΣT

E⊥ETT
E⊥ ,F⊥ )

+ ΛF⊥F(T
T
E,F)

−1Σ−1
E ΣEE⊥TT

E⊥ ,F⊥ − TE⊥ ,F⊥ΣE⊥EΣ−1
E ΣEE⊥TT

E⊥ ,F⊥ + TE⊥ ,F⊥ΣE⊥TT
E⊥ ,F⊥

= ΛF⊥F(T
T
E,F)

−1Σ−1
E T−1

E,FΛT
F⊥F −ΛF⊥F(T

T
E,F)

−1Σ−1
E ΣT

E⊥ETT
E⊥ ,F⊥ − TE⊥ ,F⊥ΣE⊥EΣ−1

E T−1
E,FΛT

F⊥F

+ TE⊥ ,F⊥ΣE⊥EΣ−1
E ΣT

E⊥ETT
E⊥ ,F⊥ + TE⊥ ,F⊥ΣE⊥EΣ−1

E T−1
E,FΛT

F⊥F − TE⊥ ,F⊥ΣE⊥EΣ−1
E ΣT

E⊥ETT
E⊥F⊥

+ ΛF⊥F(T
T
E,F)

−1Σ−1
E ΣEE⊥TT

E⊥ ,F⊥ − TE⊥ ,F⊥ΣE⊥EΣ−1
E ΣT

E⊥ETT
E⊥ ,F⊥ + TE⊥ ,F⊥ΣE⊥TT

E⊥ ,F⊥

= ΛF⊥F(T
T
E,F)

−1Σ−1
E T−1

E,FΛT
F⊥F − TE⊥ ,F⊥ΣE⊥EΣ−1

E ΣT
E⊥ETT

E⊥ ,F⊥ + TE⊥ ,F⊥ΣE⊥TT
E⊥ ,F⊥

Now, using that (TT
E,F)

−1Σ−1
E T−1

E,F = (TE,FΣETT
E,F)

−1 = Λ−1
F and ΣE⊥ − ΣE⊥EΣ−1

E ΣT
E⊥E =

Σ/ΣE, we have:

(CΣE + TE⊥ ,F⊥ΣE⊥E)C
T + (CΣEE⊥ + TE⊥ ,F⊥ΣE⊥)T

T
E⊥ ,F⊥

= ΛF⊥FΛ−1
F ΛT

F⊥F + TE⊥ ,F⊥(ΣE⊥ − ΣE⊥EΣ−1
E ΣT

E⊥E)T
T
E⊥ ,F⊥

= ΛF⊥FΛ−1
F ΛT

F⊥F + Λ/ΛF

= ΛF⊥

Then, πMK is of the form (Id, TMK)#µ with:

TMK(x) = mν + B(x−mµ).

Appendix A.2.2. Closed-Form between Gaussians for Monge–Independent

Suppose is k ≥ k′ in order to be able to define the OT map between µE and νF.
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For the Monge–Independent plan, πMI = γ∗E×F ⊗ (µE⊥ |E ⊗ νF⊥ |F), let (X, Y) ∼ πMI.
We know that πMI is a degenerate Gaussian with a covariance of the form:

Cov(X, Y) =
(

Cov(X) C
CT Cov(Y)

)
where Cov(X) = Σ and Cov(Y) = Λ. Moreover, we know that C is of the form:(

Cov(XE, YF) Cov(XE, YF⊥)
Cov(XE⊥ , YF) Cov(XE⊥ , YF⊥)

)
.

Let us assume that mµ = mν = 0, then:

Cov(XE, YF) = Cov(XE, TE,FXE) = E[XEXT
E ]T

T
E,F = ΣETT

E,F,

Cov(XE, YF⊥) = E[XEYT
F⊥ ]

= E[E[XEYT
F⊥ |XE, YF]]

= E[XEE[YT
F⊥ |YF]]

since YF = TE,FXE, XE is σ(YF)-measurable. Now, using the equation (A.6) from Ras-
mussen [28], we have:

E[YF⊥ |YF] = ΛF⊥FΛ−1
F YF

= ΛF⊥FΛ−1
F TE,FXE

and
E[XE⊥ |XE] = ΣE⊥EΣ−1

E XE.

Hence:
Cov(XE, YF⊥) = E[XEE[YT

F⊥ |YF]]

= E[XEXT
E ]T

T
E,FΛ−1

F ΛT
F⊥F

= ΣETT
E,FΛ−1

F ΛT
F⊥F.

We also have:

Cov(XE⊥ , YF) = E[XE⊥XT
E TT

E,F] = ΣE⊥ETT
E,F,

and
Cov(XE⊥ , YF⊥) = E[XE⊥YT

F⊥ ]

= E[E[XE⊥YT
F⊥ |XE, YF]]

= E[E[XE⊥ |XE]E[YT
F⊥ |YF]] by independence

= E[ΣE⊥EΣ−1
E XEXT

E TT
E,FΛ−1

F ΛT
F⊥F]

= ΣE⊥ETT
E,FΛ−1

F ΛT
F⊥F.

Finally, we find:

C =

(
ΣETT

E,F ΣETT
E,FΛ−1

F ΛT
F⊥F

ΣE⊥ETT
E,F ΣE⊥ETT

E,FΛ−1
F ΛT

F⊥F

)
.

By taking orthogonal bases (VE, VE⊥) and (VF, VF⊥), we can put it in a more compact
way, such as in Proposition 4 in Muzellec and Cuturi [14]:

C = (VEΣE + VE⊥ΣE⊥E)T
T
E,F(V

T
F + Λ−1

F ΛT
F⊥FVT

F⊥).

To check it, just expand the terms and see that CE,F = VECVT
F .
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Appendix B. Knothe–Rosenblatt

Appendix B.1. Properties of (12)

Proposition A1. In a slightly more general setting, let X0 = X1 = Rd, functions f0, f1 from
Rd×Rd to Rd, and measures µ0 ∈ P(X0), µ1 ∈ P(X1). Then, the familyXt = (X0×X1, ft, γ∗)
defines a geodesic between X0 and X1, where γ∗ is the optimal coupling of HW between µ0 and
µ1, and

ft((x0, x′0), (x1, x′1)) = (1− t) f0(x0, x′0) + t f1(x1, x′1).

Proof. See Theorem 3.1 in [8].

Appendix B.2. Proof of Theorem 3

We first recall a useful theorem.

Theorem A1 (Theorem 2.8 in Billingsley [45]). Let Ω = X × Y be a separable space, and let
P, Pn ∈ P(Ω) with marginals PX (respectively Pn,X) and PY (respectively Pn,Y). Then, Pn,X ⊗
Pn,Y

D−→ P if and only if Pn,X
D−→ PX , Pn,Y

D−→ PY and P = PX ⊗ PY.

Proof of Theorem 3. The following proof is mainly inspired by the proof of Theorem 1
in [21] (Theorem 2.1), [22] (Theorem 3.1.6) and [19] (Theorem 2.23).

Let µ, ν ∈ P(Rd), absolutely continuous, with finite fourth moments and compact
supports. We recall the problemHW t:

HW2
t (µ, ν) = inf

γ∈Π(µ,ν)

∫∫ d

∑
k=1

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγt(x, y)dγt(x′, y′),

with ∀t > 0, ∀i ∈ {1, . . . , d− 1}, λ
(i)
t > 0 and λ

(i)
t −−→t→0

0.

First, let us denote γt the optimal coupling forHW t for all t > 0. We want to show that

γt
D−−→

t→0
γK with γK = (Id× TK)#µ and TK our alternate Knothe-Rosenblatt rearrangement.

Let γ ∈ Π(µ, ν) such that γt
D−−→

t→0
γ (true up to subsequence as {µ} and {ν} are tight in

P(X) and P(Y) if X and Y are polish space, therefore, by [18] (Lemma 4.4), Π(µ, ν) is
a tight set, and we can apply the Prokhorov theorem [19] (Box 1.4) on (γt)t and extract
a subsequence)).

Part 1:

First, let us notice that:

HW2
t (µ, ν) =

∫∫ d

∑
k=1

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγt(x, y)dγt(x′, y′)

=
∫∫

(x1x′1 − y1y′1)
2 dγt(x, y)dγt(x′, y′)

+
∫∫ d

∑
k=2

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγt(x, y)dγt(x′, y′).



Algorithms 2021, 14, 366 22 of 29

Moreover, as γt is the optimal coupling between µ and ν, and γK ∈ Π(µ, ν),

HW2
t (µ, ν) ≤

∫∫ d

∑
k=1

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγK(x, y)dγK(x′, y′)

=
∫∫

(x1x′1 − y1y′1)
2 dγK(x, y)dγK(x′, y′)

+
∫∫ d

∑
k=2

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγK(x, y)dγK(x′, y′).

In our case, we have γt
D−−→

t→0
γ, thus, by Theorem A1, we have γt ⊗ γt

D−−→
t→0

γ⊗ γ.

Using the fact that ∀i, λ
(i)
t −−→t→0

0 (and Lemma 1.8 of Santambrogio [19], since we are on

compact support, we can bound the cost (which is continuous) by its max), we obtain the
following inequality∫∫

(x1x′1 − y1y′1)
2 dγ(x, y)dγ(x′, y′) ≤

∫∫
(x1x′1 − y1y′1)

2 dγK(x, y)dγK(x′, y′).

By denoting γ1 and γ1
K the marginals on the first variables, we can use the projection

π1(x, y) = (x1, y1), such as γ1 = π1
#γ and γ1

K = π1
#γK. Hence, we get∫∫

(x1x′1 − y1y′1)
2 dγ1(x1, y1)dγ1(x′1, y′1) ≤

∫∫
(x1x′1 − y1y′1)

2 dγ1
K(x1, y1)dγ1

K(x′1, y′1).

However, γ1
K was constructed in order to be the unique optimal map for this cost (ei-

ther Tasc or Tdesc according to theorem [26] (Theorem 4.2.4)). Thus, we can deduce that
γ1 = (Id× T1

K)#µ1 = γ1
K.

Part 2:

We know that for any t > 0, γt and γK share the same marginals. Thus, as previously,
π1

#γt should have a cost worse than π1
#γK, which translates to∫∫

(x1x′1 − y1y′1)
2 dγ1

K(x1, y1)dγ1
K(x′1, y′1) =

∫∫
(x1x′1 − y1y′1)

2 dγ1(x1, y1)dγ1(x′1, y′1)

≤
∫∫

(x1x′1 − y1y′1)
2 dγ1

t (x1, y1)dγ1
t (x′1, y′1).

Therefore, we have the following inequality,

∫∫
(x1x′1 − y1y′1)

2 dγ1(x, y)dγ1(x′, y′) +
∫∫ d

∑
k=2

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγt(x, y)dγt(x′, y′)

≤ HW2
t (µ, ν)

≤
∫∫

(x1x′1 − y1y′1)
2 dγ1(x, y)dγ1(x′, y′)

+
∫∫ d

∑
k=2

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγK(x, y)dγK(x′, y′).
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We can substract the first term and factorize by λ
(1)
t > 0,

∫∫ d

∑
k=2

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγt(x, y)dγt(x′, y′)

= λ
(1)
t

( ∫∫
(x2x′2 − y2y′2)

2 dγt(x, y)dγt(x′, y′)

+
∫∫ d

∑
k=3

( k−1

∏
i=2

λ
(i)
t

)
(xkx′k − yky′k)

2 dγt(x, y)dγt(x′, y′)
)

≤ λ
(1)
t

( ∫∫
(x2x′2 − y2y′2)

2 dγK(x, y)dγK(x′, y′)

+
∫∫ d

∑
k=3

( k−1

∏
i=2

λ
(i)
t

)
(xkx′k − yky′k)

2 dγK(x, y)dγK(x′, y′)
)

.

By dividing by λ
(1)
t and by taking the limit t→ 0 as in the first part, we get∫∫

(x2x′2 − y2y′2)
2 dγ(x, y)dγ(x′, y′) ≤

∫∫
(x2x′2 − y2y′2)

2 dγK(x, y)dγK(x′, y′). (A3)

Now, the 2 terms depend only on (x2, y2) and (x′2, y′2). We will project on the two first
coordinates, i.e., let π1,2(x, y) = ((x1, x2), (y1, y2)) and γ1,2 = π1,2

# γ, γ1,2
K = π1,2

# γK. Using

the disintegration of measures, we know that there exist kernels γ2|1 and γ
2|1
K such that

γ1,2 = γ1 ⊗ γ2|1 and γ1,2
K = γ1

K ⊗ γ
2|1
K , where

∀A ∈ B(X×Y), µ⊗ K(A) =
∫∫

1A(x, y)K(x, dy)µ(dx).

We can rewrite the previous Equation (A3) as∫∫
(x2x′2 − y2y′2)

2 dγ(x, y)dγ(x′, y′)

=
∫∫∫∫

(x2x′2 − y2y′2)
2 γ2|1((x1, y1), (dx2, dy2))γ

2|1((x′1, y′1), (dx′2, dy′2))

dγ1(x1, y1)dγ1(x′1, y′1)

≤
∫∫∫∫

(x2x′2 − y2y′2)
2 γ

2|1
K ((x1, y1), (dx2, dy2))γ

2|1
K ((x′1, y′1), (dx′2, dy′2))

dγ1
K(x1, y1)dγ1

K(x′1, y′1).

(A4)

Now, we will assume at first that the marginals of γ2|1((x1, y1), ·) are well µ2|1(x1, ·)
and ν2|1(y1, ·). Then, by definition of γ

2|1
K , as it is optimal for the GW cost with inner

products, we have for all (x1, y1), (x′1, y′1),∫∫
(x2x′2 − y2y′2)

2 γ
2|1
K ((x1, y1), (dx2, dy2))γ

2|1
K ((x′1, y′1), (dx′2, dy′2))

≤
∫∫

(x2x′2 − y2y′2)
2 γ2|1((x1, y1), (dx2, dy2))γ

2|1((x′1, y′1), (dx′2, dy′2)).
(A5)



Algorithms 2021, 14, 366 24 of 29

Moreover, we know from the first part that γ1 = γ1
K, then by integrating with respect to

(x1, y1) and (x′1, y′1), we have∫∫∫∫
(x2x′2 − y2y′2)

2 γ
2|1
K ((x1, y1), (dx2, dy2))γ

2|1
K ((x′1, y′1), (dx′2, dy′2))

dγ1(x1, y1)dγ1(x′1, y′1)

≤
∫∫∫∫

(x2x′2 − y2y′2)
2 γ2|1((x1, y1), (dx2, dy2))γ

2|1((x′1, y′1), (dx′2, dy′2))

dγ1(x1, y1)dγ1(x′1, y′1).

(A6)

By (A4) and (A6), we deduce that we have an equality and we get∫∫ ( ∫∫
(x2x′2 − y2y′2)

2 γ2|1((x1, y1), (dx2, dy2))γ
2|1((x′1, y′1), (dx′2, dy′2))

−
∫∫

(x2x′2 − y2y′2)
2 γ

2|1
K ((x1, y1), (dx2, dy2))γ

2|1
K ((x′1, y′1), (dx′2, dy′2))

)
dγ1(x1, y1)dγ1(x′1, y′1) = 0.

(A7)

However, we know by (A5) that the middle part of (A7) is nonnegative, thus we have for
γ1-a.e. (x1, y1), (x′1, y′1),∫∫

(x2x′2 − y2y′2)
2 γ

2|1
K ((x1, y1), (dx2, dy2))γ

2|1
K ((x′1, y′1), (dx′2, dy′2))

=
∫∫

(x2x′2 − y2y′2)
2 γ2|1((x1, y1), (dx2, dy2))γ

2|1((x′1, y′1), (dx′2, dy′2)).

From that, we can conclude as in the first part that γ2|1 = γ
2|1
K (by unicity of the optimal

map). And thus γ1,2 = γ1,2
K .

Now, we still have to show that the marginals of γ2|1((x1, y1), ·) and γ2,1
K ((x1, y1), ·)

are well the same, i.e., µ2|1(x1, ·) and ν2|1(y1, ·). Let φ and ψ be continuous functions, then
we have to show that for γ1-a.e. (x1, y1), we have{∫

φ(x2)γ
2|1((x1, y1), (dx2, dy2)) =

∫
φ(x2)µ

2|1(x1, dx2)∫
ψ(y2)γ

2|1((x1, y1), (dx2, dy2)) =
∫

ψ(y2)ν
2|1(y1, dy2).

As we want to prove it for γ1-a.e. (x1, y1), it is sufficient to prove that for all continuous
function ξ, 

∫∫
ξ(x1, y1)φ(x2)γ

2|1((x1, y1), (dx2, dy2))dγ1(x1, y1)

=
∫∫

ξ(x1, y1)φ(x2)µ
2|1(x1, dx2)dγ1(x1, y1)∫∫

ξ(x1, y1)ψ(y2)γ
2|1((x1, y1), (dx2, dy2))dγ1(x1, y1)

=
∫∫

ξ(x1, y1)ψ(y2)ν
2|1(y1, dy2)dγ1(x1, y1).

First, we can use the projections πx(x, y) = x and πy(x, y) = y. Moreover, we know
that γ1 = (Id× T1

K)#µ1. The alternate Knothe–Rosenblatt rearrangement is, as the usual
one, bijective (because µ and ν are absolutely continuous), and thus, as we suppose that
ν satisfies the same hypothesis than µ, we also have γ1 = ((T1

K)
−1, Id)#ν1. Let us note

T̃1
K = (T1

K)
−1. Then, the equalities that we want to show are:

∫∫
ξ(x1, T1

K(x1))φ(x2)γ
2|1
x ((x1, T1

K(x1)), dx2)dµ1(x1)

=
∫∫

ξ(x1, T1
K(x1))φ(x2)µ

2|1(x1, dx2)dµ1(x1)∫∫
ξ(T̃1

K(y1), y1)ψ(y2)γ
2|1
y ((T̃1

K(y1), y1), dy2)dν1(y1)

=
∫∫

ξ(T̃1
K(y1), y1)ψ(y2)ν

2|1(y1, dy2)dν1(y1).
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In addition, we have indeed∫∫
ξ(x1, T1

K(x1))φ(x2)γ
2|1
x ((x1, T1

K(x1)), dx2)dµ1(x1)

=
∫∫

ξ(x1, T1
K(x1))φ(x2)dγ1,2((x1, x2), (y1, y2))

=
∫∫

ξ(x1, T1
K(x1))φ(x2)dγ1,2

x (x1, x2)

=
∫∫

ξ(x1, T1
K(x1))φ(x2)µ

2|1(x1, dx2)dµ1(x1).

We can do the same for the ν part by symmetry.

Part 3:

Now, we can proceed the same way by induction. Let ` ∈ {2, . . . , d} and suppose that
the result is true in dimension `− 1 (i.e., γ1:`−1 = π1:`−1

# γ = γ1:`−1
K ).

For this part of the proof, we rely on [19] (Theorem 2.23). We can build a measure
γt

K ∈ P(Rd ×Rd) such that: 
πx

# γt
K = µ

π
y
#γt

K = ν

π1:`−1
# γt

K = ηt,`

(A8)

where ηt,` is the optimal transport plan between µ` = π1:`−1
# µ and ν` = π1:`−1

# ν for
the objective: ∫∫ `−1

∑
k=1

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγ(x, y)dγ(x′, y′).

By induction hypothesis, we have ηt,`
D−−→

t→0
π1:`−1

# γK. To build such a measure, we can first

disintegrate µ and ν: {
µ = µ1:`−1 ⊗ µ`:d|1:`−1

ν = ν1:`−1 ⊗ ν`:d|1:`−1,

then we pick the Knothe transport γ
`:d|1:`−1
K between µ`:d|1:`−1 and ν`:d|1:`−1. Thus, by tak-

ing γT
K = ηt,` ⊗ γ

`:d|1:`−1
K , γT

K satisfies the conditions well (A8).
Hence, we have:

∫∫ `−1

∑
k=1

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγt
K(x, y)dγt

K(x′, y′)

=
∫∫ `−1

∑
k=1

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dηt,`(x1:`−1, y1:`−1)dηt,`(x′1:`−1, y′1:`−1)

≤
∫∫ `−1

∑
k=1

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγt(x, y)dγt(x′, y′),
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and therefore: ∫∫ `−1

∑
k=1

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγt
K(x, y)dγt

K(x′, y′)

+
∫∫ d

∑
k=`

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγt(x, y)dγt(x′, y′)

≤ HW2
t (µ, ν)

≤
∫∫ `−1

∑
k=1

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγt
K(x, y)dγt

K(x′, y′)

+
∫∫ d

∑
k=`

( k−1

∏
i=1

λ
(i)
t

)
(xkx′k − yky′k)

2 dγt
K(x, y)dγt

K(x′, y′).

As before, by subtracting the first term, dividing by ∏`−1
i=1 λ

(i)
t and taking the limit,

we obtain:∫∫
(x`x′` − y`y′`)

2dγt(x, y)dγt(x′, y′) ≤
∫∫

(x`x′` − y`y′`)
2dγt

K(x, y)dγt
K(x′, y′).

For the right hand side, using that γt
K = ηt,` ⊗ γ

`:d|1:`−1
K , we have:∫∫

(x`x′` − y`y′`)
2dγt

K(x, y)dγt
K(x′, y′)

=
∫∫∫∫

(x`x′` − y`y′`)
2 γ

`:d|1:`−1
K ((x1:`−1, y1:`−1), (dx`:d, dy`:d))

γ
`:d|1:`−1
K ((x′1:`−1, y′1:`−1), (dx′`:d, dy′`:d))dηt,`(x1:`−1, y1:`−1)dηt,`(x′1:`−1, y′1:`−1)

=
∫∫∫∫

(x`x′` − y`y′`)
2 γ

`|1:`−1
K ((x1:`−1, y1:`−1), (dx`, dy`))

γ
`|1:`−1
K ((x′1:`−1, y′1:`−1), (dx′`, dy′`))dηt,`(x1:`−1, y1:`−1)dηt,`(x′1:`−1, y′1:`−1).

Let us note for ηt,` almost every (x1:`−1, y1:`−1), (x′1:`−1, y′1:`−1)

GW(µ`|1:`−1, ν`|1:`−1)

=
∫∫

(x`x′` − y`y′`)
2γ

`|1:`−1
K ((x1:`−1, y1:`−1), (dx`, dy`))γ

`|1:`−1
K ((x′1:`−1, y′1:`−1), (dx′`, dy′`)),

then ∫∫
(x`x′` − y`y′`)

2dγt
K(x, y)dγt

K(x′, y′)

=
∫∫

GW(µ`|1:`−1, ν`|1:`−1)dηt,`(x1:`−1, y1:`−1)dηt,`(x′1:`−1, y′1:`−1).

By Theorem A1, we have ηt,` ⊗ ηt,`
D−−→

t→0
π1:`−1

# γK ⊗ π1:`−1
# γK. So, if

η 7→
∫∫

GW(µ`|1:`−1, ν`|1:`−1)dηdη (A9)

is continuous over the transport plans between µ1:`−1 and ν1:`−1, we have∫∫
(x`x′` − y`y′`)

2dγt
K(x, y)dγt

K(x′, y′)

−−→
t→0

∫∫
GW(µ`|1:`−1, ν`|1:`−1)π1:`−1

# γK(dx1:`−1, dy1:`−1)π
1:`−1
# γK(dx′1:`−1, dy′1:`−1)
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and ∫∫
GW(µ`|1:`−1, ν`|1:`−1)π1:`−1

# γK(dx1:`−1, dy1:`−1)π
1:`−1
# γK(dx′1:`−1, dy′1:`−1)

=
∫∫

(x`x′` − y`y′`)
2dγK(x, y)dγK(x′, y′)

by replacing the true expression of GW and using the disintegration γK = (π1:`−1
K )#γK ⊗

γ
`|1:`−1
K .

For the continuity, we can apply [19] (Lemma 1.8) (as in the [19] (Corollary 2.24)) with
X = Y = R`−1×R`−1, X̃ = Ỹ = P(Ω) with Ω ⊂ Rd−`+1×Rd−`+1 and c(a, b) = GW(a, b),
which can be bounded on compact supports by max |c|. Moreover, we use Theorem A1

and the fact that ηt ⊗ ηt
D−−→

t→0
γ1:`−1

K ⊗ γ1:`−1
K .

By taking the limit t→ 0, we now obtain:∫∫
(x`x′` − y`y′`)

2dγ(x, y)dγ(x′, y′) ≤
∫∫

(x`x′` − y`y′`)
2dγK(x, y)dγK(x′, y′).

We can now disintegrate with respect to γ1:`−1 as before. We just need to prove that
the marginals coincide, which is performed by taking for test functions:{

ξ(x1, . . . , x`−1, y1, . . . , y`−1)φ(x`)
ξ(x1, . . . , x`−1, y1, . . . , y`−1)ψ(y`)

and using the fact that the measures are concentrated on yk = TK(xk).

Part 4:

Therefore, we have well γt
D−−→

t→0
γK. Finally, for the L2 convergence, we have:

∫
‖Tt(x)− TK(x)‖2

2 µ(dx) =
∫
‖y− TK(x)‖2

2 dγt(x, y)→
∫
‖y− TK(x)‖2

2 dγK(x, y) = 0

as γt = (Id× Tt)#µ and γK = (Id× TK)#µ. Hence, Tt
L2
−−→
t→0

TK.
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