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Abstract: Due to its ability to significantly improve the wireless communication efficiency, the
intelligent reflective surface (IRS) has aroused widespread research interest. However, it is a challenge
to obtain perfect channel state information (CSI) for IRS-related channels due to the lack of the ability
to send, receive, and process signals at IRS. Since most of the existing channel estimation methods are
developed to obtain cascaded base station (BS)-IRS-user devices (UDs) channel, this paper studies
the problem of computation and communication resource allocation of the IRS-assisted federated
learning (FL) system based on the imperfect CSI. Specifically, we take the statistical CSI error model
into consideration and formulate the training time minimization problem subject to the rate outage
probability constraints. In order to solve this issue, the semi-definite relaxation (SDR) and the
constrained concave convex procedure (CCCP) are invoked to transform it into a convex problem.
Subsequently, a low-complexity algorithm is proposed to minimize the delay of the FL system.
Numerical results show that the proposed algorithm effectively reduces the training time of the FL
system base on imperfect CSI.

Keywords: federated learning; intelligent reflector surfaces; imperfect channel state information;
outage probability

1. Introduction

In recent years, with the advancement of 5G technology, the internet of things (IoT)
has seen rapid development. In the world of “internet of everything”, many sensors are
deployed in the environment to collect information in real time and generate a large amount
of data. The traditional machine learning (ML) framework stores data on a central node,
and its all functions are implemented on this node. However, such a centralized learning
framework has high latency and poses a great challenge to privacy protection. Fortunately,
due to the significant increase in data processing capabilities of mobile devices, the concept
of edge learning has been introduced to solve these problems, which processes data at the
edge rather than at the cloud center. Federated learning (FL) is one of the most promising
edge learning frameworks, where user devices (UDs) only send local models calculated by
local resource to the base station (BS) without sharing local data [1,2].

In FL, the time and energy consumed in model training are the important aspects of its
performance, which depends on firmly the allocated computation resources for local model
training and communication resources for model transmission between BS and UDs [3].
In addition, due to the limited computing power and energy reserve of UDs, the problem of
joint computation and communication resource allocation is crucial for the deployment of
FL in wireless networks. The authors proposed a resource management algorithm for the
multi-access edge computing enabled FL system in [4,5]. In [6,7], the resource scheduling
problem was studied under imperfect channel state information (CSI).
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Due to the development of the metamaterial technology, an emerging paradigm called
intelligent reflector surfaces (IRS) was introduced into the field of wireless communications.
IRS can significantly improve the wireless communication efficiency by adjusting the phase
shift of the incident signal using passive reflective elements, which are low-cost and low
energy [8,9]. Thus, this attracts people to study the beneficial effects of IRS in FL [10–12].
However, these studies are based on the assumption that perfect CSI can be obtained.
Unfortunately, due to the lack of the ability to receive, send and process signals for IRS,
it is a challenge to estimate IRS-related channels, including the UDs-IRS channel and the
IRS-BS channel, which thus have attracted widespread research attention. At present,
channel estimation of IRS-related channels can be divided into two methods. One is to
directly estimate IRS-related channels [13,14]. In [13], some active channel components
can be equipped on the IRS to enable it to receive, send and process signals. The authors
proposed a channel estimation protocol to estimate the channel by adjusting the reflective
elements ON/OFF in [14]. However, these methods will bring additional cost, such as
hardware cost and power consumption cost, which will cause an unaffordable burden
on the IRS. The other is to estimate the cascade UD-IRS-BS channel. The advantage of
this method is that the cascaded channel can be estimated without additional hardware
and power cost. Therefore, there are a lot of works dedicated to IRS cascaded channel
estimation [15–18]. In [15,16], the transmission protocol was proposed to estimate the
cascaded channel. The author studied the robust transmission design base on imperfect
CSI in [17,18].

Against the above background, this paper studies the computation and communi-
cation resource allocation problem in IRS-assisted FL systems based on imperfect CSI.
Specifically, we aim to design the resource allocation algorithm to minimize the delay of
FL. The main contributions of this paper can be summarized as follows:

• In this paper, we study the FL system assisted by IRS under the imperfect CSI, and out-
age probability is introduced to characterize the impact of imperfect CSI. We aim to
minimize the delay of FL by jointly designing the computation and communication
resource allocation;

• Due to the non-convex form of the objective function, the coupling effect of multiple
variables and the binary constraint brought by the user selection vector, the optimiza-
tion problem is difficult to solve. By introducing additional variables and invoking
the semi-definite relaxation (SDR) and the constrained concave convex procedure
(CCCP) techniques, we convert it into a convex optimization problem. Then, a low-
complexity algorithm is proposed to optimize the computation and communication
resources allocation;

• The simulation results demonstrate that the effectiveness of proposed algorithm in
reducing the training time of the FL system base on imperfect CSI.

The rest of this paper is organized as follows. The system model and channel model
are described in Section 2. In Section 3, we formulate the latency minimization problem.
The iterative algorithm to find the local optimal solution of the latency minimization
problem is given in Section 4. In Section 5, we discuss the simulation results. Finally, our
conclusions are drawn in Section 6.

Notations: In the paper, scalars, vectors and matrices are denote by lowercase letters,
lowercase bold letters and uppercase bold letters, respectively. CM×N denotes the space of
M× N complex matrix. j denotes the imaginary unit. I denotes the identity matrix with
appropriate dimensions. (·)H and Tr(·) represent the Hermitian transpose and the trace,
respectively. FX(·) denotes the cumulative distribution function (CDF) of the variable X.
Finally, CN(0, σ2) denotes the circularly symmetric complex Gaussian (CSCG) associated
with zero-mean and variance σ2. The other parameters used in the paper are listed in
Table 1. The acronyms used in the paper are listed in Table 2.
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Table 1. Key symbols.

Symbol Definition Symbol Definition

K Number of UDs N Number of IRS elements

K Set of UDs N Set of IRS elements

τl
k, el

k
The time and energy consumed on

local training of the k-th UD τu
k , eu

k

The time and energy consumed
on the model transmission of the

k-th UD

L Number of local iteration αk

Effective capacitance coefficient
of the k-th UD’s computing

chipset

ck
Number of CPU cycles for the k-th

UD to process one sample data Dk Training data set of the k-th UD

fk
CPU frequency variable of the k-th

UD for local training fmin, fmax
The minimum and maximum
computation capacity of UDs

pk

The transmission power variable
of the k-th UD for the model

transmission
pmax

The max transmission power of
UDs

b Bandwidth of each UD hd,k, hr,k, gk

Channel from the k-th UD to BS,
the k-th UD to IRS and from IRS

to BS

σ2 The noise power spectral density εd,k, εa,k
Estimation error of direct channel

and cascaded channel

Rk
The transmission rate of the k-th

UD νk
The transmission target rate of

the k-th UD

Table 2. Acronyms.

Acronym Meaning Acronym Meaning

ML Machine learning FL Federated learning

UD User device BS Base station

CSI Channel state information IRS Intelligent reflector surfaces

SDR Semi-definite relaxation CCCP Constrained concave convex
procedure

CCDF Complementary cumulative
distribution function CSCG Circularly symmetric complex

Gaussian

MINLP Mixed integer non-linear
programming QCQP Quadratically constrained

quadratic program

2. System Model and Channel Model

In this section, we introduce the IRS-assisted FL system model, its CSI error model
and outage probability as follows.

2.1. System Model

An FL system with IRS is considered as shown in Figure 1, where an IRS, composed
of N reflective elements, deployed in the system to assist the communication between a
single-antenna BS and K single-antenna UDs. UDs and reflective elements are indexed by
K = {1, . . . , K} and N = {1, . . . , N}. In the FL system, after receiving the global model
from the BS, UDs train it to obtain the local models using the local dataset. Then, the local
models are sent to BS to be aggregated into a new global model. This process is repeated
until the accuracy of the learning model is reached. Specifically, the process can be divided
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into three steps, which are “local model computation”, “local model transmission”, and
“global model aggregation and broadcast” [19,20]. The details are as follows:

IRS

UDs

BS

Figure 1. An FL system model with IRS.

2.1.1. Local Model Computation

At this step, UDs use local sample subsets to update the global model, which is
received from BS. Assuming that local sample subsets are enough in each UD, from which
Dk are taken out for local training. Let ck denotes the number of CPU cycles required to
train one sample data, and fk denotes CPU frequency. The time and energy consumed on
local training of the k-th UD can be expressed as:

τl
k = L

ck|Dk|
fk

, (1)

el
k = L

αk
2

fk
2ckDk, (2)

where L is the number of local iteration, and αk/2 denotes the effective capacitance coeffi-
cient of the k-th UD’s computing chipset [21].

2.1.2. Local Model Transmission

After finishing local model computation, the local models are sent to BS via multiple
channel access, such as the frequency division multiple access (FDMA) or the time division
multiple access (TDMA) [19]. In this paper, we adopt FDMA for communication between
BS and UDs. The total band width is equally divided into K sub-channels, each of which
has a bandwidth b. Let pk denotes the k-th UD’s transmit power, and the transmission rate
of the k-th UD can be written as

Rk = b log(1 +
|hk|2 pk

σ2 ), (3)

where hk = hd,k + gkΘhr,k is the composite channels spanning from the k-th UD to BS.
The channel from the k-th UD to IRS and from IRS to BS are, respectively, modeled by
hr,k ∈ CN×1 and gk ∈ C1×N , and the direct channel from the k-th UD to BS is modeled
by hd,k ∈ C. σ2 denotes the noise power spectral density. The phase shift effect of IRS is
defined as a diagonal matrix, that is Θ = diag{ejθ1 , ejθ2 , . . . , ejθn}, where θn ∈ [0, 2π] for
n ∈ N . Accordingly, the delay and energy consumed in this step can be written as

τu
k =

d
Rk

, (4)

eu
k = τu

k pk, (5)

where d denotes the size of local model.
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2.1.3. Global Model Aggregation and Broadcast

At this step, BS receives the local models from all UDs and aggregate them to obtain
the global model. Then, the global model is broadcast to each UD for the next iteration.
Due to the powerful computing capability and transmission power of the BS, the delay in
this step is neglected compared with other steps. Furthermore, because of the stable energy
supply in BS, the energy consumed is also ignored [20].

2.2. Imperfect Channel Model

In the IRS-assisted FL system, there are two kinds of channels, that are direct UDs-BS
channel and cascaded UDs-IRS-BS channel. For cascaded channel, it is a challenge to
directly obtain the IRS-related channels due to the passive features of the IRS. Thus, we
focus on channel error models in the cascaded UDs-IRS-BS channel.

The composite channel from the k-th UD to BS can be rewritten as

hk = hd,k + gkΘhr,k = hd,k + φHak, (6)

where φ = [φ1, φ1, . . . , φn]T , ak = diag(gk)hrk, φn = ejθn . Assuming that both direct UDs-
BS channels and cascaded UDs-IRS-BS channels are imperfect, which can be represented as

hd,k = ĥd,k + εd,k, (7)

ak = âk + εa,k, (8)

where ĥd,k and âk stand for the direct UDs-BS estimated channel and cascaded UDs-IRS-
BS estimated channel, respectively. εd,k and εa,k are estimated error followed the CSCG
distribution, i.e., εd,k ∼ CN(0, σ2

d,k) and εa,k ∼ CN(0, σ2
a,k I), where σ2

d,k and σ2
a,k, respectively,

represent variance of the direct channel estimation and cascaded channels estimation. Thus,
the composite channel from k-th UD to BS can be further rewritten as

hk = hd,k + φHak

= ĥd,k + εd,k + φH(âk + εa,k)

= ĥk + εh,k ∼ CN(ĥk, σ2
h,k), (9)

where ĥk = ĥd,k +φH âk and εh,k = εd,k +φHεa,k. Due to the lack of correlation of estimation
errors for the different channel, we have

σ2
h,k = E((εd,k + φHεa,k)(εd,k + φHεa,k)

H)

= E(εd,kεH
d,k + φHεa,kεH

a,kφ)

= σ2
d,k + Nσ2

a,k, (10)

2.3. Outage Probability

Outage probability is an important performance measurement, typically used to
characterize the events that the instantaneous data rate is less than the target rate under
imperfect CSI [22]. Defining the transmission target rate of the k-th UD as νk, and the
outage probability can be written as

Pr[Rk < νk] = Pr[
|hk|2 pk

σ2 < 2νk/b − 1]

= Pr[
|hk|2

σ2
h,k

<
γkσ2

pkσ2
h,k

]

= FXk (
γkσ2

pkσ2
h,k

), (11)
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where γk = 2νk/b − 1 and Xk = |hk |2
σ2

h,k
. It is obvious that Xk is a random variable that

obeys non-central chi-squared distribution with degrees of freedom 2, and its non-central

parameter is λk =
|ĥk|2
σ2

h,k/2
, i.e., Xk ∼ χ2(λk). Due to that the generalized Marcum Q-function

Qn(a, b) is the complementary cumulative distribution function (CCDF) or reliability
function of the normalized non-central chi-squared distribution with 2n degrees of freedom,
the outage probability can be rewritten as [23]

Pr[χ2(λk) <
γkσ2

pkσ2
h,k

] = F(
γkσ2

pkσ2
h,k

)

= 1−Q(
√

λk,

√
γkσ2

pkσ2
h,k

), (12)

where Qn(
√

a,
√

b) =
∫ ∞

b
1
2 (

x
a )

n
2−

1
2 e−

x+a
2 In−1(

√
ax)dx, In denotes modified Bessel function

of order n. In order to obtain the closed expression of the outage probability, we approxi-
mate the non-central chi-square distribution with the central chi-square distribution, which
can written as [22]

Pr[χ2(λk) <
γkσ2

pkσ2
h,k

] ≈ Pr[χ2(0) <
γkσ2/pkσ2

h,k

1 + λk/2
]

= 1−Q(0,

√
γkσ2/pkσ2

h,k

1 + λk/2
), (13)

where Qn(0,
√

b) = e−
b
2

n−1
∑

m=0

(b/2)m

m! when n is a positive integer. Thus, the closed expression

of the outage probability can be approximately written as

Pr[χ2(λk) <
γkσ2

pkσ2
h,k

] ≈ 1− exp(−
γkσ2/pkσ2

h,k

2(1 + λ2
k/2)

), (14)

3. Problem Formulation

Due to differences in the calculation and communication capabilities of UDs, we aim
for minimizing FL delay under imperfect CSI by jointly optimizing the user selection
vector µ = [µ1, µ2, . . . , µK]

T , UDs’ CPU frequency f = [ f1, f2, . . . , fK]
T , transmit power

p = [p1, p2, . . . , pK]
T , the IRS phase shifts vector φ = [φ1, φ2, . . . , φN ], interrupt trans-

mission rate ν = [ν1, ν2, . . . , νK]
T . Assuming that each UD uploads its local model after

finishing local model computation. Moreover, the BS starts aggregation until receiving
the local model from all UDs. The total delay of FL under one communication round
can be expressed as tlu = max

K
µk(τ

l
k + τu

k ). Thus, the delay minimization problem is

formulated as
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P0 : min
µ,ν,p, f ,φ

max
k∈K

µk(L
ckDk

fk
+

d
νk
), (15)

s.t. L
αk
2

fk
2ckDk +

dpk
νk
≤ ek max, ∀k ∈ K, (16)

Pr[Rk < νk] ≤ δ0, ∀k, (17)

|φn|2 = 1, ∀n ∈ N , (18)

fmin ≤ fk ≤ fmax, ∀k ∈ K, (19)

0 ≤ pk ≤ pmax, ∀k ∈ K, (20)

∑
k∈K

µk = µ, (21)

µk ∈ {0, 1}, ∀k ∈ K, (22)

where Equation (16) denotes the energy constraint and ek max is the maximum energy
consumption of the k-th UD in FL; Equation (17) is the constraint of outage probability and
δ0 is limit of the outage probability; Equation (18) represents the range of the phase shift;
Equations (19) and (20) denote the range of CPU frequency and transmit power, where
fmax and fmin, respectively, represent the upper and lower bounds of fk range, and pmax
is the maximum transmit power; Finally, Equations (21) and (22) denote the constraints
of user selection vector, where µ represents the total number of UDs participating in this
model training. µk = {0, 1}, ∀k ∈ K, where µk = 1 indicates that k-th UD participate in this
model training, and µk = 0, otherwise.

4. Resource Allocation Design for Delay Minimization

Problem P0 is non-convex due to the binary constraints, the coupling effect between
variables and the min-max form of the objective function. Additionally, it is a mixed integer
non-linear programming (MINLP) which is NP-hard. Thus, it is a challenge to find its
solution. In order to solve the optimization problem, a low-complexity iterative algorithm
is proposed.

In the problem P0, the objective function, Equations (16)–(18) and (22) are non-convex.
Next, we solve them in turn. First, for the Equation (22), it is a binary constraint, which can
be equivalent to

0 ≤ µk ≤ 1, ∀k ∈ K, (23)

µk(µk − 1) ≥ 0, ∀k ∈ K. (24)

Note that optimization variable uk is a continuous value between 0 and 1. However,
Equation (24) is a non-convex. In order to deal with the Equation (24), we reformulate
problem P0 as

P1 : min
µ,ν,p, f ,φ

max
k∈K

µk(L
ckDk

fk
+

d
νk
)− η ∑

k∈K
µk(µk − 1), (25)

s.t. (16)− (21), (23)

where η is usually a constant and represents a penalty factor for penalizing the objective
function that any µk is not equal to 0 or 1 [24]. In order to solve the min–max form of
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the objective function, the variable T is introduced. Therefore, the problem P1 can be
reformulated as

P2 : min
µ,ν,p, f ,φ,T

T, (26)

s.t. µk(L
ckDk

fk
+

z
νk
)− η ∑

k∈K
µk(µk − 1) ≤ T, (27)

(16)− (21), (23)

Note that although we introduce the variable T to solve the min–max form of the objective
function, it also brings a new non-convex Equation (27). Due to non-convex Equations
(16)–(18) and (27), the problem P2 is still difficult to solve.

For Equation (16), its non-convexity comes from the form x/y of the second term.
By replacing the variable pk with a new variable qk =

√
pk, the Equation (16) can be

rewritten as

L
αk
2

fk
2ckDk +

dq2
k

νk
≤ ek max. (28)

It is obvious that the Equation (28) is convex. Thus, the optimization problem P2 can
be rewritten as

P3 : min
µ,ν,q, f ,φ,T

T, (29)

s.t. σ2
h,k(−

1
log(1− δ0)

γ̂kσ2

q2
kσ2

h,k
− 2) ≤

∣∣∣ĥk

∣∣∣2, (30)

(18)− (21), (23), (27), (28)

Note that the problem P3 is a non-convex quadratically constrained quadratic program
(QCQP). By introducing variables κ and Λ, the problem P3 can be rewritten as

P4 : min
µ,ν,q, f ,Λ,T

T, (31)

s.t. σ2
h,k(−

1
log(1− δ0)

γ̂kσ2

q2
kσ2

h,k
− 2) ≤ ĥH

d,k ĥd,k + Tr(Ξ̂kΛ), (32)

Λn,n = 1, ∀n ∈ {1, 2, . . . , N + 1}, (33)

Rank(Λ) = 1, (34)

(19)− (21), (23), (27), (28)

where φ̄ =

[
φ
κ

]
, Λ = φ̄φ̄H , Ξ̂k =

[
âk âH

k âk ĥH
dk

ĥdk âH
k 0

]
, and Rank(Λ) represents the rank

of matrix Λ. Due to non-convex Equations (27), (32) and (34), problem P4 still cannot
be solved directly. For the Equation (34), SDR can be invoked to relax it. Furthermore,
by introducing the variable ζk, the Equation (32) can be rewritten as

σ2
h,k(

1
ζk
− 2) ≤ hH

d,khd,k + Tr(ΞkΛ), ∀k ∈ K, (35)

− 1
log(1− δ0)

γ̂kσ2

σ2
h,k
≤

q2
k

ζk
, ∀k ∈ K. (36)

It is obvious that the Equation (32) is converted into Equation (35) by introducing
variables, which is convex. However, it also brings a non-convex Equation (36). Next,
the CCCP is invoked to solve this issue, which main idea is that when the original problem
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is difficult to optimize, the algorithm does not directly seek its local optimal solution,
but looks for its approximation problem to solve iteratively [25].

For a given point (q(n), ζ(n)) at the n-th iteration, the function fk(qk, ζk) = q2
k/ζk has a

lower bound, that is

f̃k(qk, ζk) = 2β
(n)
k qk − (β

(n)
k )2ζk, (37)

where β
(n)
k = q(n)k /ζ

(n)
k . Thus, Equation (36) can be rewritten as

− 1
log(1− δ0)

γ̂kσ2

σ2
h,k
≤ 2β

(n)
k qk − (β

(n)
k )2ζk, ∀k ∈ K. (38)

Now, Equation (38) is convex. For the convenience of derivations, we rewrite
Equation (27) as

g1,k(µk, fk, νk) + g2,k(µk, fk, νk) + g3,k(µk) ≤ T, ∀k ∈ K, (39)

where

g1,k(µk, fk, νk) =
1
4

(
µk + (L

ckDk
fk

+
z
νk
)

)2
, (40)

g2,k(µk, fk, νk) = −
1
4

(
µk − (L

ckDk
fk

+
z
νk
)

)2
, (41)

g3,k(µk) = −η ∑
k∈K

µk(µk − 1). (42)

Note that g1,k(µk, fk, νk) is convex, while g2,k(µk, fk, νk), and g3,k(µk) are non-convex.
For a given point (µ(n), f (n), ν(n)) at the n-th iteration,both g2,k(µk, fk, νk) and g3,k(µk) have
an upper bound, which are given as

g̃2,k(µk, fk, νk) = −
1
4

(
µ
(n)
k − (L

ckDk

f (n)k

+
z

ν
(n)
k

)

)2

+
1
2

µ
(n)
k

(
zνk

(ν
(n)
k )2

+
z
νk
− 2z

ν
(n)
k

)

− 1
2

(
µ
(n)
k − (L

ckDk

f (n)k

+
z

ν
(n)
k

)

)(
(µk − µ

(n)
k ) +

LckDk

( f (n)k )2
( fk − f (n)k ) +

z

(ν
(n)
k )2

(νk − ν
(n)
k )

)

+
1
2

µ
(n)
k

(
LckDk fk

( f (n)k )2
+

LckDk
fk
− 2LckDk

f (n)k

)
. (43)

g̃3,k(µk) = −η ∑
k∈K

(
µ
(n)
k (µ

(n)
k − 1) + (2µ

(n)
k − 1)(µk − µ

(n)
k )
)

. (44)

As such, Equation (27) can be approximated by

g1,k(µk, fk, νk) + g̃2,k(µk, fk, νk) + g̃3,k(µk) ≤ T, ∀k ∈ K, (45)

Now, Equation (45) is also convex. For a given point (q(n), ζ(n), µ(n), f (n), ν(n)) at the
(n + 1)-th iteration, the problem P4 can be reformulated as

P5 : min
µ,ν,q, f ,Λ,T

T, (46)

s.t. (19)− (21), (23), (28), (33), (35), (38), (45)

It is clear that the problem P5 is a convex semi-definite program (SDP). Finally, we
solve it directly by using standard optimization packages, such as CVX [26]. However,
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note that P5 is a relaxed problem, which usually cannot lead to a rank-one solution. Thus,
Gaussian randomization is invoked to construct a rank-one solution [27]. For the optimal µk
obtained by solving problem P5, it is close to 0 or 1 due to the punishment item. Rounding
operation is run to obtain 0 or 1. The algorithm to find a feasible solution for problem P5 is
summarized in Algorithm 1.

Algorithm 1: Local optimal iterative algorithm.
1. Initialization
Initialize the a feasible initial point (q(0), ζ(0), µ(0), f (0), ν(0)).
Initialize the maximum number of iterations nmax and penalty factor η

Initialize iteration index n = 1 and accuracy index ξ(0)=1.
2. Joint optimization of q, ζ, µ, f , ν and Λ
repeat
• Calculate β(0) by βk = q(n)k /ζ

(n)
k , ∀k ∈ K

• Calculate (q(n), ζ(n), µ(n), f (n), ν(n), Λ(n)) by solving problem
P5 for a given point (q(n−1), ζ(n−1), µ(n−1), f (n−1), ν(n−1))

• Calculate accuracy ξ(n)=
|tlu(n)−tlu(n−1)|

tlu(n)

• n = n + 1
until ξ(t) ≤ ξ or n = nmax
3. Output optimal µ∗, p∗, f ∗, ν∗ and θ∗

find θ∗ from Λ(n) by SVD and Gaussian randomization.

µ∗ = µ(n), p∗ =
∣∣∣q(n)

∣∣∣2, f ∗ = f (n), ν∗ = ν(n)

Based on the Algorithm 1 description, the complexity analysis of the proposed algo-
rithm is performed. The problem P5 is a SDR problem, which can be solved by using the
interior point method. Therefore, we analyzed the complexity of the proposed algorithm
based on this method. At each iteration, the worst case complexity of solving problem P5
is on the order of (N + 1)6 + K(N + 1)2 + 4K+1, and the complexity of finding variable
β is negligible. Therefore, the overall complexity of the Algorithm 1 can be evaluated by
O(TCCCP((N + 1)6 + K(N + 1)2 + 4K+1)), where TCCCP represents the required iterations
number to achieve the target accuracy ξ [28,29].

5. Numerical Results

In this section, we evaluate the performance of proposed scheme in the IRS-assisted
FL systems. In the simulation scenario, the BS and IRS are located at (300 m, 0 m) and
(30 m, 30 m), respectively. In total, 20 UDs are randomly distributed in a circular area
centered at (0 m, 0 m) with radius of 20 m. For channel models, both the large-scale
fading and small-scale fading are considered. The large-scale fading model is expressed as
PL = PL0− 10αPLlog10(x), where αPL and x are the path loss exponent and the link distance
in meters, respectively. PL0 denotes the path loss at the reference distance of 1 m, which is
set as −30 dB. The pass loth exponent of the direct UDs-BS channel and the IRS-related
channel are given as αPL,BU = 3.75 and αPL,IRS = 2.2, respectively. The small-scale fading
of the direct UDs-BS channel and the IRS-related channel are considered as Rayleigh fading
and Rician fading, respectively. Assuming that all UEs have the same energy consumption
limit, i.e., ek,max = E. For the statistical CSI error model, the variance of εd,k and εa,k are,

respectively, defined as δ2
d

∥∥∥ĥd,k

∥∥∥2

2
and δ2

a

∥∥∥ĥa,k

∥∥∥2

2
, where δd = 0.02 and δa = 0.01 denote

the normalized CSI error. In order to guarantee the communication quality, the outage
probability is set to δ0 = 0.05. In the simulation, we set L = 5, c = 12,000 cycle/sample,
fk = [4, 6]× 108cycle/s, α = 10−27, b = 200 KHZ, σ2 = −174 dBm/Hz and d = 25,000 nats.

In order to describe the advantages of our algorithm, the FL algorithm without
IRS is compared, where the IRS-related channels is set to 0, and edge computation and
communication resource allocation is optimized.
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Figure 2 describes the delay versus the maximum transmit power with different
energy consumption limits. It is shown that the delay of the FL algorithm decreases as the
maximum power increases. This is because that the low transmit power leads to a narrow
feasible set of the optimization problem and the feasible set increases as the maximum
power increases. Compared with “FL algorithm without IRS”, the delay decrease in “FL
algorithm with IRS” is up to 32%. In addition, we also found that the scheme with more
relaxed energy consumption limits consumes less time.
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Figure 2. The delay versus the maximum transmit power pmax, where N = 30 and δ0 = 0.05.

Figure 3 presents the relationship between the delay and the outage probability. It is
obvious that the delay of the FL algorithm decreases as the outage probability increases.
This is because that the quality of service is sacrificed in order to increase the communication
rate. As the communication rate increases, the energy consumption becomes less and less.
Therefore, the delay gap between the algorithm with E = 10 mJ and E = 20 mJ becomes less.

0.05 0.1 0.15 0.2

Outage probability 
0

100

120

140

160

180

200

220

D
el

ay
 o

f 
th

e 
F

L
 a

lg
o

ri
th

m
 (

m
s)

FL algorithm without IRS, E = 10mJ

FL algorithm without IRS, E = 20mJ

FL algorithm with IRS, E = 10mJ

FL algorithm with IRS, E = 20mJ

Figure 3. The delay versus the outage probability δ0, where N = 30 and pmax = 15.

Figure 4 presents the relationship between the delay and the number of the IRS ele-
ments with different energy consumption limits. It is obvious that there is a performance
gap between the “FL algorithm with IRS” and “FL algorithm without IRS”, and it in-
creases with the number of the IRS elements increase. This is because that the IRS lead to
a reflection-based beamforming gain, which increases as the number of IRS elements in-
creases. Compared with “FL algorithm without IRS”, the time reduction by “FL algorithm
with IRS” is up to 48% with E = 10 mJ and N = 100.
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Figure 4. The delay versus the number of IRS elements N, where δ0 = 0.05 and pmax = 15.

6. Conclusions

In this paper, we investigate the delay minimum problem in FL systems with IRS
under imperfect CSI, and outage probability is introduced to characterize the impact of
imperfect CSI. By using central chi-square distribution approximations, we transform
the outage probability into tractable form. Then, the problem of minimizing delay was
formulated in the IRS assisted FL framework, and it is a MINLP problem. Next, a low-
complexity algorithm was developed base on the CCCP and SDR to solve the intractable
problem. In various simulation environments, the benefits of the proposed algorithm are
evaluated. Numerical results show that the effectiveness of proposed algorithm in reducing
the training time of the FL system base on imperfect CSI.
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