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Abstract: In this work, we give provable sieving algorithms for the Shortest Vector Problem (SVP) and
the Closest Vector Problem (CVP) on lattices in `p norm (1 ≤ p ≤ ∞). The running time we obtain is
better than existing provable sieving algorithms. We give a new linear sieving procedure that works
for all `p norm (1 ≤ p ≤ ∞). The main idea is to divide the space into hypercubes such that each
vector can be mapped efficiently to a sub-region. We achieve a time complexity of 22.751n+o(n), which
is much less than the 23.849n+o(n) complexity of the previous best algorithm. We also introduce a
mixed sieving procedure, where a point is mapped to a hypercube within a ball and then a quadratic
sieve is performed within each hypercube. This improves the running time, especially in the `2 norm,
where we achieve a time complexity of 22.25n+o(n), while the List Sieve Birthday algorithm has a
running time of 22.465n+o(n). We adopt our sieving techniques to approximation algorithms for SVP
and CVP in `p norm (1 ≤ p ≤ ∞) and show that our algorithm has a running time of 22.001n+o(n),
while previous algorithms have a time complexity of 23.169n+o(n).

Keywords: lattice; shortest vector problem; closest vector problem; provable sieving algorithm

1. Introduction

A lattice L is the set of all integer combinations of linearly independent vectors
b1, . . . , bn ∈ Rd,

L = L(b1, . . . , bn) := {
n

∑
i=1

zibi : zi ∈ Z} .

We call n the rank of the lattice and d the dimension of the lattice. The matrix
B = (b1, . . . , bn) is called a basis of L. A lattice is said to be full-rank if n = d. In this work,
we only consider full-rank lattices unless otherwise stated.

The two most important computational problems on lattices are the Shortest Vector
Problem (SVP) and the Closest Vector Problem (CVP). Given a basis for a lattice L ⊆ Rd,
the goal of SVP is to compute the shortest non-zero vector in L, while the goal of CVP is to
compute a lattice vector at a minimum distance to a given target vector t. Typically, the
length/distance is defined in terms of the `p norm, which is given by

‖x‖p = (|x1|p + |x2|p + · · ·+ |xd|p)1/p for 1 ≤ p < ∞

and ‖x‖∞ = max
1≤i≤d

|xi|

These lattice problems have been mostly studied in the Euclidean norm (p = 2). Starting
with the seminal work of [1], algorithms for solving these problems either exactly or
approximately have been studied intensely. These algorithms have found applications in
various fields, such as factoring polynomials over rationals [1], integer programming [2–5],
cryptanalysis [6–8], checking the solvability by radicals [9], and solving low-density subset-
sum problems [10]. More recently, many powerful cryptographic primitives have been
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constructed whose security is based on the worst-case hardness of these or related lattice
problems [11–19].

1.1. Prior Work

The lattice algorithms that have been developed to solve SVP and CVP are either
based on sieving techniques [20,21], enumeration methods [3,22], basis reduction [1,23], or
Voronoi cell-based deterministic computation [4,24,25]. The fastest of these run in a time of
2cn, where n is the rank of the lattice and c is some constant. Since the aim of this paper
is to improve time complexity of sieving algorithms, we mainly focus on these. For an
overview of the other types of algorithms, interested readers can refer to the survey by
Hanrot et al. [26].

1.1.1. Sieving Algorithms in the Euclidean Norm

The first algorithm to solve SVP in the time exponential in the dimension of the
lattice was given by Ajtai, Kumar, and Sivakumar [21] who devised a method based on
“randomized sieving”, whereby exponentially many randomly generated lattice vectors are
iteratively combined to create increasingly short vectors, eventually resulting in the shortest
vector in the lattice. The time complexity of this algorithm was shown to be 23.4n+o(n) by
Micciancio and Voulgaris [27]. This was later improved by Pujol and Stehle [28], who
analyzed it with the birthday paradox and gave a time complexity of 22.571n+o(n). In [27]
the authors introduced List Sieve, which was modified in [28] (List Sieve Birthday) to
give a time complexity of 22.465n+o(n). The current fastest provable algorithm for exact
SVP runs in a time of 2n+o(n) [20,29], and the fastest algorithm that gives a large constant
approximation runs in a time of 20.802n+o(n) [30].

To make lattice sieving algorithms more practical for implementation, heuristic vari-
ants were introduced in [27,31]. Efforts have been made to decrease the asymptotic time
complexity at the cost of using more space [32–35] and to study the trade-offs in reducing
the space complexity [35–38]. Attempts have been made to make these algorithms com-
petitive in high-performance computing environments [39–43]. The theoretically fastest
heuristic algorithm that is conjectured to solve SVP runs in a time of 20.29n+o(n) [33] (LD-
Sieve).

The CVP is considered to be a harder problem than SVP since there is a simple
dimension and approximation-factor preserving reduction from SVP to CVP [44]. Based on
a technique due to Kannan [3], Ajtai, Kumar, and Sivakumar [45] gave a provable sieving
based algorithm that gives a 1+ α approximation of CVP in time (2+ 1/α)O(n). Later, exact
exponential time algorithms for CVP were discovered [24,46]. The current fastest algorithm
for CVP runs in a time of 2n+o(n) and is due to [46].

1.1.2. Algorithms in Other `p Norms

Blomer and Naewe [47] and then Arvind and Joglekar [48] generalized the AKS
algorithm [21] to give exact provable algorithms for SVP that run in a time of 2O(n). Addi-
tionally, ref. [47] gave a 1 + ε approximation algorithm for CVP for all `p norms that runs
in a time of (2 + 1/ε)O(n). For the special case when p = ∞, Eisenbrand et al. [5] gave a
2O(n) · (log(1/ε))n algorithm for (1 + ε)-approx CVP. Aggarwal and Mukhopadhyay [49]
gave an algorithm for SVP and approximate CVP in the `∞ norm using a linear sieving
technique that significantly improves the overall running time. In fact, for a large constant
approximation factor, they achieved a running time of 3n for SVP. The authors have argued
that it is not possible for any of the above-mentioned algorithms to achieve this running
time in the `∞ norm.

1.1.3. Hardness Results

The first NP hardness result for CVP in all `p norms and SVP in the `∞ norm was
given by Van Emde Boas [50]. Ajtai [51] proved that SVP is NP-hard under randomized
reductions. Micciancio [52] showed that SVP is NP-hard to approximate within some
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constant approximation factor. Subsequently, it was shown that approximating CVP in any
`p norm and SVP in `∞ norm up to a factor of nc/ log log n is NP-hard [53,54]. This difficulty
of the approximation factor has been improved to nc in [55], assuming the Projection
Games Conjecture [56]. Furthermore, the difficulty of SVP up to factor 2log1−ε n has been
obtained assuming NP * RTIME(npoly(log n)) [57,58]. Recently, ref. [59] showed that for
almost all p ≥ 1, CVP in the `p norm cannot be solved in 2n(1−ε) of time under the strong
exponential time hypothesis. A similar difficulty result has also been obtained for SVP in
the `p norm [60].

1.2. Our Results and Techniques

In this paper, we adopt the framework of [21,45] and give sieving algorithms for
SVP and CVP in `p norm for 1 ≤ p ≤ ∞. The primary difference between our sieving
algorithm and the previous AKS-style algorithms such as those in [21,45,47,48] is in the
sieving procedure—ours is a linear sieve, while theirs is a quadratic sieve. This results in
an improvement in the overall running time.

Before describing our idea, we give an informal description of the sieving procedure
of [21,45,47,48]. The algorithm starts by randomly generating a set S of N = 2O(n) lattice
vectors with a length of at most R = 2O(n). It then runs a sieving procedure a polynomial
number of times. In the ith iteration, the algorithm starts with a list S of lattice vectors of a
length of at most Ri−1 ≈ γi−1R, for some parameter γ ∈ (0, 1). The algorithm maintains
and updates a list of “centers” C, which is initialized to be the empty set. Then, for each
lattice vector y in the list, the algorithm checks whether there is a center c at a distance of
at most γ · Ri−1 from this vector. If there exists such a center, then the vector y is replaced
in the list by y− c, and otherwise it is deleted from S and added to C. This results in
Ni−1 − |C| lattice vectors which have a length of at most Ri ≈ γRi−1, where Ni−1 is the
number of lattice vectors at the end of i− 1 sieving iterations. We would like to mention
here that this description hides many details and in particular, in order to show that this
algorithm succeeds eventually in obtaining the shortest vector, we need to add a small
perturbation to the lattice vectors to start with. The details of this can be found in Section 3.

A crucial step in this algorithm is to find a vector c from the list of centers that is
close to y. This problem is called the nearest neighbor search (NNS) problem and has been
well studied, especially in the context of heuristic algorithms for SVP (see [33] and the
references therein). A trivial bound on the running time for this is |S| · |C|, but much effort
has been dedicated to improving this bound under heuristic assumptions (see Section 1.1.1
for some references). Since they require heuristic assumptions, such improved algorithms
for the NNS have not been used to improve the provable algorithms for SVP.

One can also view such sieving procedures as a division of the “ambient” geometric
space (consisting of all the vectors in the current list). In the ith iteration, the space of all
vectors with a length of at most Ri−1 is divided into a number of sub-regions such that in
each sub-region the vectors are within a distance of at most γRi−1 from a center. In the
previous provable sieving algorithms such as those in [21,27,47,48] or even the heuristic
ones, these sub-regions have been an `p ball of certain radius (if the algorithm is in `p norm)
or some sections of it (spherical cap, etc.). Given a vector, one has to compare it with all the
centers (and hence sub-regions formed so far) to determine in which of these sub-regions it
belongs. If none is found, we make it a center and associate a new sub-region with it. Note
that such a division of space depends on the order in which the vectors are processed.

The basic idea behind our sieving procedure (let us call it Linear Sieve) is similar to
that used in [49] in the special case of the `∞ norm. In fact, our procedure is a generalization
of this method for all `p norm (1 ≤ p ≤ ∞). We select these sub-regions as hypercubes and
divide the ambient geometric space a priori (before we start processing the vectors in the
current list) considering only the maximum length of a vector in the list. A diagrammatic
representation of such a division of space in two dimensions has been given in Figure 1. It
must be noted that in this figure (for ease of illustration), the radius of the small hypercube
(square) is the same for `1, `2, and `∞ balls (circles). However, in our algorithm, this radius
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depends on the norm. The advantage we obtain is that we can map a vector to a sub-region
efficiently -in O(n) time; i.e., in a sense we obtain better “decodability” property. If the
vector’s hypercube (sub-region) does not contain a center, we select this point as the center;
otherwise, we subtract this vector from the center to obtain a shorter lattice vector. Thus,
the time complexity of each sieving procedure is linear in the number of sampled vectors.
Overall, we obtain an improved time complexity at the cost of increased space complexity
compared to previous algorithms [26,47,48]. A more detailed explanation can be found in
Section 3.1.

Figure 1. Division of the area of a circle in `1, `2, and `∞ norm (respectively) into smaller squares.

Specifically, we obtain the following result.

Theorem 3 in Section 3.3

Let γ ∈ (0, 1), and let ξ > 1/2. Given a full.rank lattice L ⊂ Qn, there is a randomized
algorithm for SVP(p) with a success probability of at least 1/2, space complexity of at
most 2cspacen+o(n), and running time of at most 2ctimen+o(n), where cspace = cs +max(cc, cb/2)

and ctime = max(cspace, cb), where cc = log
(

2 + 2
γ

)
, cs = − log

(
0.5 − 1

4ξ

)
and

cb = log
(

1 + 2ξ(2−γ)
1−γ

)
.

A mixed sieving algorithm

In an attempt to gain as many advantages as possible, we introduce a mixed sieving
procedure (let us call it Mixed Sieve). Here, we divide a hyperball into larger hypercubes
so that we can map each point efficiently to a hypercube. Within a hypercube, we perform
a quadratic sieving procedure such as AKS with the vectors in that region. This improves
both time and space complexity, especially in the Euclidean norm.

Approximation algorithms for SVP(p) and CVP(p)

We have adopted our sieving techniques to approximation algorithms for SVP(p) and
CVP(p). The idea is quite similar to that described in [49] (where it was shown to work for
only the `∞ norm). In Section 5.1, we have shown that our approximation algorithms are
faster than those of [47,48], but again they require more space.

Remark 1. It is quite straightforward to extend our algorithm to the Subspace Avoiding Problem
(SAP) (or Generalized Shortest Vector Problem GSVP) [47,48]: replace the quadratic sieve by any
one of the faster sieves described in this paper. We thus obtain a similar improvement in running
time. By Theorem 3.4 in [47], there are polynomial time reductions from other lattice problems
such as the Successive Minima Problem (SMP) (given a lattice L with rank n, the Successive
Minima Problem (SMP) requires to find n linearly independent vectors v1, . . . , vn ∈ L such that
‖vi‖p ≤ cλ

(p)
i (L).) and Shortest Independent Vector Problem (SIVP) (given a rank n lattice L

the Shortest Independent Vector Problem (SIVP) requires to find n linearly independent vectors
v1, . . . vn ∈ L such that ‖vi‖p ≤ cλ

(p)
n (L). The definition of λ

(p)
i (and hence λ

(p)
n ) has been given

in Section 2 (Definition 5); c is the approximation factor) with approximation factor 1 + ε to GSVP
with approximation factor 1 + ε. Thus, we can obtain a similar improvement in running time for
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both these problems. Since in this paper, we focus mainly on SVP and CVP, we do not delve into
further details for these other problems.

Remark 2. Our algorithm (and in that case any sieving algorithm) is quite different from deter-
ministic algorithms such as those in [4,61]. They reduce the problem in any norm to a `2 norm and
compute an approximation of the shortest vector length (or distance of the closest lattice point to
a target in case of CVP) using the Voronoi cell-based deterministic algorithm in [27]. Then, they
enumerate all lattice points within a convex region to find the shortest one. Constructing ellipsoidal
coverings, it has been shown that the lattice points within a convex body can be computed in a time
proportional to the maximum number of lattice points that the body can contain in any translation
of an ellipsoid. Note for `p norm that any smaller `q ball (where p = q or p 6= q) can serve this
purpose, and the bound on the number of translates comes from standard packing arguments. For
these deterministic algorithms, the target would be to chose a shape so that the upper bound (packing
bound) on the number of translates can be reduced. Thus, the authors chose small `p balls to cover a
larger `p ball.

In contrast, in our sieving algorithm, we aimed to map each lattice point efficiently within
a sub-region. Thus, we divided any arbitrary `p ball into smaller hypercubes. The result was
an increase in space complexity, but due to the efficient mapping, we reduced the running time.
To the best of our knowledge, this kind of sub-divisions has not been used before in any sieving
algorithm. The focus of our paper is to develop randomized sieving algorithms. Thus, we will not
delve further into the details of the above-mentioned deterministic algorithms. Clearly, these are
different procedures.

1.3. Organization of the Paper

In Section 2, we give some preliminary definitions and results that are useful for
this paper. In Section 3, we introduce the linear sieving technique, while in Section 4, we
describe the mixed sieving technique. In Section 5, we discuss how to extend our sieving
methods to approximation algorithms.

2. Preliminaries
2.1. Notations

We write logq to represent the logarithm to the base q, and simply log when the base
is q = 2. We denote the natural logarithm by ln.

We use bold lowercase letters (e.g., vn) for vectors and bold uppercase letters for
matrices (e.g., Mm×n). We may drop the dimension in the superscript whenever it is clear
from the context. Sometimes, we represent a matrix as a vector of column (vectors) (e.g.,
Mm×n = [m1m2 . . . mn] where each mi is an m−length vector). The ith co-ordinate of v is
denoted by vi.

Given a vector x = ∑n
i=1 ximi with xi ∈ Q, the representation size of x with respect to

M is the maximum of n and the binary lengths of the numerators and denominators of the
coefficients xi.

We denote the volume of a geometric body A by vol(A).

2.2. `p Norm and Ball

Definition 1. The `p norm of a vector v ∈ Rn is defined by

‖v‖p =
(

∑n
i=1 |vi|p

)1/p
for 1 ≤ p < ∞ and ‖v‖∞ = max{|vi| : i = 1, . . . n} for p = ∞.

Fact 1. For x ∈ Rn ‖x‖p ≤ ‖x‖2 ≤
√

n‖x‖p for p ≥ 2 and
1√
n‖x‖p ≤ ‖x‖2 ≤ ‖x‖p for 1 ≤ p < 2.
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Definition 2. A ball is the set of all points within a fixed distance or radius (defined by a metric)
from a fixed point or center. More precisely, we define the (closed) ball centered at x ∈ Rn with
radius r as

B(p)
n (x, r) = {y ∈ Rn : ‖y− x‖p ≤ r}.

The boundary of B(p)
n (x, r) is the set

bd(B(p)
n (x, r)) = {y ∈ Rn : ‖y− x‖p = r}.

We may drop the first argument when the ball is centered at the origin 0 and drop
both arguments for a unit ball centered at the origin. Let
B(p)

n (x, r1, r2) = B(p)
n (x, r2) \ B(p)

n (x, r1) = {y ∈ Rn : r1 < ‖y− x‖p ≤ r2}. We drop the first
argument if the spherical shell or corona is centered at the origin.

Fact 2. |B(p)
n (x, c · r)| = cn · |B(p)

n (x, r)| for all c > 0.

Fact 3. vol(B(p)
n (R)) =

(
2Γ
(

1
p +1

)
R
)n

Γ
(

n
p +1

) . Specifically vol(B(∞)
n (R)) = (2R)n.

The algorithm of Dyer, Frieze, and Kannan [62] almost uniformly selects a point in
any convex body in polynomial time if a membership oracle is given [63]. For the sake of
simplicity, we ignore the implementation detail and assume that we are able to uniformly
select a point in B(p)

n (x, r) in polynomial time.

2.3. Lattice

Definition 3. A lattice L is a discrete additive subgroup of Rd. Each lattice has a basis
B = [b1, b2, . . . bn], where bi ∈ Rd and

L = L(B) =
{ n

∑
i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n
}

For algorithmic purposes, we can assume that L ⊆ Qd. We call n the rank of L and
d the dimension. If d = n, the lattice is said to be full-rank. Though our results can be
generalized to arbitrary lattices, in the rest of the paper, we only consider full-rank lattices.

Definition 4. For any lattice basis B, we define the fundamental parallelepiped as

P(B) = {Bx : x ∈ [0, 1)n}

If y ∈P(B), then ‖y‖p ≤ n‖B‖p, as can be easily seen by triangle inequality. For any
z ∈ Rn, there exists a unique y ∈P(B) such that z− y ∈ L(B). This vector is denoted by
y ≡ z mod B and it can be computed in polynomial time given B and z.

Definition 5. For i ∈ [n], the ith successive minimum is defined as the smallest real number r
such that L contains i linearly independent vectors with a length of at most r:

λ
(p)
i (L) = inf{r : dim(span(L ∩ B(p)

n (r))) ≥ i}

Thus, the first successive minimum of a lattice is the length of the shortest non-zero
vector in the lattice:

λ
(p)
1 (L) = min{‖v‖p : v ∈ L \ {0}}
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We consider the following lattice problems. In all the problems defined below, c ≥ 1
is some arbitrary approximation factor (usually specified as subscript), which can be a
constant or a function of any parameter of the lattice (usually rank). For exact versions of
the problems (i.e., c = 1), we drop the subscript.

Definition 6 (Shortest Vector Problem (SVP(p)
c )). Given a lattice L, find a vector v ∈ L \ {0}

such that ‖v‖p ≤ c‖u‖p for any other u ∈ L \ {0}.

Definition 7 (Closest Vector Problem (CVP(p)
c )). Given a lattice L with rank n and a target

vector t ∈ Rn, find v ∈ L such that ‖v− t‖p ≤ c‖w− t‖p for all other w ∈ L.

Lemma 1 ([49]). The LLL algorithm [1] can be used to solve SVP(p)
2n in polynomial time.

The following result shows that in order to solve SVP(p)
1+ε, it is sufficient to consider

the case when 2 ≤ λ
(p)
1 (L) < 3. This is done by appropriately scaling the lattice.

Lemma 2 (Lemma 4.1 in [47]). For all `p norms, if there is an algorithm A that for all lattices L
with 2 ≤ λ

(p)
1 (L) < 3 solves SVP(p)

1+ε in time T = T(n, b, ε), then there is an algorithm A′ that

solves SVP(p)
1+ε for all lattices in time O(nT + n4b).

Thus, henceforth, we assume 2 ≤ λ
(p)
1 (L) < 3.

2.4. Some Useful Definitions and Results

In this section, we give some results and definitions which are useful for our analysis
later.

Definition 8. Let P and Q are two point sets in Rn. The Minkowski sum of P and Q, denoted
as P⊕Q, is the point set {p + q : p ∈ P, q ∈ Q}.

Lemma 3. Let B1 = B(p)
n (0, a) and B2 = B(p)

n (v, a) such that ‖v‖p = λ
(p)
1 and λ

(p)
1 < 2a. Let

D = B1 ∩ B2.
If |D| and |B1| are the volumes of D and B1, respectively, then

1. [64] |D||B1|
≥ 2−n

(
1− λ

(p)
1
2a

)n
if 1 ≤ p < ∞.

2. [26] When p = 2, further optimization can be done such that we get
|D|
|B1|
≥
[
1−

(
λ
(2)
1
2a

)2]n/2
.

3. [49] When p = ∞ then |D||B1|
≥
(

1− λ
(∞)
1
2a

)n
.

Theorem 1 (Kabatiansky and Levenshtein [65]). Let E ⊆ Rn \{0}. If there exists φ0 > 0
such that for any u, v ∈ E, we have φu,v ≥ φ0, then |E| ≤ 2cn+o(n) with c = − 1

2 log[1 −
cos(min(φ0, 62.99◦))]− 0.099.

Here, φu,v is the angle between the vectors u and v.

Below, we give some bounds which work for all `p norms. We especially mention
the bounds obtained for the `2 norm where some optimization has been performed using
Theorem 1.

Lemma 4. 1. [47] Let cc = log(1+ 2
γ ). If C is a set of points in B(p)

n (R) such that the distance

between two points is at least γR, then |C| ≤ 2ccn+o(n).

2. [26,27] When p = 2, we can have |C(2)| ≤ 2c(2)c n+o(n) where c(2)c = − log γ + 0.401.



Algorithms 2021, 14, 362 8 of 24

Since the distance between two lattice vectors is at most λ
(p)
1 (L), we obtain the

following corollary.

Corollary 1. Let L be a lattice and R be a real number greater than the length of the shortest vector
in the lattice.

1. [64] |B(p)
n (R) ∩ L| ≤ 2cbn where cb = log

(
1 + 2R

λ
(p)
1

)
.

2. [26,28] |B(2)
n (R)

⋂L| ≤ 2c(2)b n+o(n) where c(2)b = log R
λ
(2)
1

+ 0.401.

3. A Faster Provable Sieving Algorithm in `p Norm

In this section, we present an algorithm for SVP(p) that uses the framework of the AKS
algorithm [21] but uses a different sieving procedure that yields a faster running time. Using
Lemma 1, we can obtain an estimate λ∗ of λ

(p)
1 (L) such that λ

(p)
1 (L) ≤ λ∗ ≤ 2n · λ(p)

1 (L).
Thus, if we try polynomially many different values of λ = (1 + 1/n)−iλ∗, for i ≥ 0, then
for one of them, we have λ

(p)
1 (L) ≤ λ ≤ (1 + 1/n) · λ(p)

1 (L). For the rest of this section,
we assume that we know an estimated λ of the length of the shortest vector in L, which is
correct up to a factor 1 + 1/n.

The AKS algorithm (or its `p norm generalization in [47,48]) initially uniformly sam-

ples a large number of perturbation vectors, e ∈ B(p)
n (d), where d ∈ R>0, and for each such

perturbation vector, it maintains a vector y close to the lattice (y is such that y− e ∈ L).
Thus, initially, we have a set S of many such pairs (e, y) ∈ B(p)

n (d) × B(p)
n (R) for some

R ∈ 2O(n). The desired situation is that after a polynomial number of such sieving iterations,
we are left with a set of vector pairs (e′′, y′′) such that y′′ − e′′ ∈ L ∩ B(p)

n (O(λ
(p)
1 (L))).

Finally, we take the pair-wise differences of the lattice vectors corresponding to these vector
pairs and output the one with the smallest non-zero norm. It was shown in [21,47,48] that,
with overwhelming probability, this is the shortest vector in the lattice.

One of the main and usually the most expensive steps in this algorithm is the sieving
procedure, where given a list of vector pairs (e, y) ∈ B(p)

n (d)× B(p)
n (R) in each iteration, it

outputs a list of vector pairs (e′, y′) ∈ B(p)
n (d)× B(p)

n (γR) where γ ∈ R(0,1). In each sieving
iteration, a number of vector pairs (usually exponential in n) are identified as “center pairs”.
The second element of each such center pair is referred to as the “center”. By a well-defined
map, each of the remaining vector pairs is associated to a “center pair” such that after
certain operations (such as subtraction) on the vectors, we obtain a pair with a vector
difference yielding a lattice vector with a norm less than R′. If we start an iteration with say
N′ vector pairs and identify |C| number of center pairs, then the output consists of N′ − |C|
vector pairs. An illustration is given in Figure 2. In [21] and most other provable variants
or generalizations such as [47,48], the running time of this sieving procedure, which is
the dominant part of the total running time of the algorithm, is roughly quadratic in the
number of sampled vectors.

Here, we propose a different sieving approach to reduce the overall time complexity of
the algorithm. This can be thought of as a generalization of the sieving method introduced
in [49] for the `∞ norm. We divide the space such that each lattice vector can be mapped
efficiently into some desired division. In the following subsection, we explain this sieving
procedure, whose running time is linear in the number of sampled vectors.
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Figure 2. One iteration of the quadratic AKS sieve in the `2 norm. Each point represents a vector
pair. The solid dots are the sampled ones, while the hollow dots are the unsampled ones. Among
the sampled vector pairs, some are identified as centers (red dots) and the space is divided into a
number of balls, centered around these red dots. Vector subtraction (denoted by arrow) is performed
with the center pair in each ball, such that we obtain shorter lattice vectors in the next iteration.

3.1. Linear Sieve

In the initial AKS algorithm [21,45] as well as in all its variants thereafter [27,47,48], in
the sieving sub-routine, a space B(p)

n (R) has been divided into sub-regions such that each
sub-region is associated with a center. Then, given a vector, we map it to a sub-region and
subtract it from the center so that we get a vector of length at most γR. We must aim to
select these sub-regions such that we can (i) map a vector efficiently to a sub-region (ii)
without increasing the number of centers “too much”. The latter factor is determined by
the number of divisions of B(p)

n (R) into these sub-regions and directly contributes to the
space (and hence time) complexity.

In all the previous provable sieving algorithms, the sub-regions were small hyperballs
(or parts of them) in `p norm. In this paper, our sub-regions are hypercubes. The choice
of this particular sub-region makes the mapping very efficient. First, let us note that, in
contrast with the previous algorithms (except [49]), we divide the space a priori. This can
be done by dividing each co-ordinate axis into intervals of length γR

n1/p so that the distance
between any two vectors in the resulting hypercube is at most γR. In an ordered list,
we store an appropriate index (say, co-ordinates of one corner) of only those hypercubes
which have a non-zero intersection with B(p)

n (R). We can map a vector to a hypercube
in O(n) time simply by looking at the intervals in which each of its co-ordinates belong.
If the hypercube contains a center, then we subtract the vectors and store the difference;
otherwise, we assign this vector as the center. An illustration is given in Figure 3.

Figure 3. One iteration of the linear sieve in the `2 norm. (a) A number of vector pairs (solid black
dots) with (Euclidean) length at most R are sampled. (b) The space is divided into a number of
hypercubes with diagonal length r, and each vector pair is mapped into a hypercube. (c) Within each
hypercube, a subtraction operation (denoted by arrow) is performed between a center (red dot) and
the remaining vector pairs, such that we obtain shorter lattice vectors in the next iteration.
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The following lemma gives a bound on the number of hypercubes or centers we obtain
by this process. Such a volumetric argument can be found in [66].

Lemma 5. Let γ ∈ (0, 1), R ∈ R≥1, 1 ≤ p ≤ ∞ and r = γR
2n1/p . The number of translates of

B(∞)
n (r) required to cover B(p)

n (R) is at most O
((

2 + 2
γ

)n)
.

Proof. Let Nh be the number of translates of L = B(∞)
n (r) required to cover K = B(p)

n (R).
These translates are all within K⊕ 2L. In addition, noting that L ⊆ rn1/p

R K, we have

Nh ∗ vol(L) ≤ vol(K + 2L) ≤
(

1 +
2rn1/p

R

)n

vol(K)

Plugging in the value of r, we have Nh ≤ (1 + γ)n vol(K)
vol(L) .

Using Fact 3, we have Nh ∈ O
((

2 + 2
γ

)n)
.

Note that the above lemma implies a sub-division where one hypercube is centered at
the origin. Thus, along each axis, we can have the following 2r-length intervals:

. . . [−5r,−3r), [−3r,−r), [−r, r), [r, 3r), [3r, 5r), . . .

We do not know whether this is the most optimal way of sub-dividing B(p)
n (R) into smaller

hypercubes. In [49], it has been shown that if we divide [−R, R] from one corner—i.e., place

one small hypercube at one corner of the larger hypercube B(∞)
n (R)—then O

((⌈
2
γ

⌉)n
)

copies of hypercubes of radius r suffices.
Suppose in one sieving iteration, we have a set S of lattice vectors of length at most

R; i.e., they all lie in B(p)
n (R) (Figure 3a). We would like to combine points so that we

are left with vectors in B(p)
n (γR). We divide each axis into intervals of length y = γR

n1/p

and store in an ordered set (I) co-ordinates of one corner of the resulting hypercubes that
have a non-zero intersection with B(p)

n (R) (Figure 3b). Note that this can be done in a time
of O(nNh), where Nh is the maximum number of hypercube translates as described in
Lemma 5.

We maintain a list C of pairs, where the first entry of each pair is an n-tuple in I (let
us call it “index-tuple”) and the second one, initialized as empty set, is for storing a center
pair. Given y, we map it to its index-tuple Iy as follows: we calculate the interval in which
each of its co-ordinates belong (steps 10–13 in Algorithm 2). This can be done in O(n) time.
This is equivalent to storing information about the hypercube (in Figure 3b) in which it
belongs or is mapped to. We can access C[Iy] in constant time. For each (e, y) ∈ S, if there
exists a (ec, c) ∈ C[Iy]—i.e., Iy = Ic (implying ‖y− c‖p ≤ γR)—then we add (e, y− c + ec)
to the output set S′ (Figure 3c). Otherwise, we add vector pair (e, y) to C[Iy] as a center
pair. This implies that if there exists a center in the hypercube, then we perform subtraction
operations to obtain a shorter vector. Otherwise, we make (e, y) the center for its hypercube.
Finally, we return S′.

More details of this sieving procedure (Linear Sieve) can be found in Algorithm 2.

3.2. AKS Algorithm with a Linear Sieve

Algorithm 1 describes an exact algorithm for SVP(p) with a linear sieving procedure
(Linear Sieve) (Algorithm 2).
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Algorithm 1: An exact algorithm for SVP(p)

Input: (i) A basis B = [b1, . . . bn] of a lattice L, (ii) 0 < γ < 1, (iii) ξ > 1/2, (iv)
λ ≈ λ

(p)
1 (L) ,(v) N ∈ N

Output: A shortest vector of L
1 S← ∅ ;
2 for i = 1 to N do
3 ei ←uniform B(p)

n (0, ξλ) ;
4 yi ← ei mod P(B) ;
5 S← S ∪ {(ei, yi)} ;
6 end
7 R← n maxi ‖bi‖p ;

8 for j = 1 to k =
⌈

logγ

(
ξ

nR(1−γ)

)⌉
do

9 S← sieve(S, γ, R, ξ) using Linear Sieve (Algorithm 2) ;
10 R← γR + ξλ ;
11 end
12 Compute the non-zero vector v0 in {(yi − ei)− (yj − ej) : (ei, yi), (ej, yj) ∈ S}

with the smallest `p norm ;
13 return v0 ;

Algorithm 2: Linear Sieve for `p norm

Input: (i) Set S = {(ei, yi) : i ∈ I} ⊆ B(p)
n (ξλ)× B(p)

n (R) such that
∀i ∈ I, yi − ei ∈ L, (ii) (γ, R, ξ)

Output: A set S′ = {(e′ i, y′ i) : i ∈ I′} ⊆ B(p)
n (ξλ)× B(p)

n (γR + ξλ) such that
∀i ∈ I′, y′ i − e′ i ∈ L

1 R← max(e,y)∈S ‖y‖p ;
2 S′ ← ∅ ;
3 Divide each axis into intervals of length γR

n1/p and store a corner of those resulting

hypercubes with a non zero intersection with B(p)
n (R) in ordered set I ;

4 C ← {((i1, i2, . . . , in), ∅) : (i1, i2, . . . , in) ∈ I} ;
5 for (e, y) ∈ S do
6 if ‖y‖p ≤ γR then
7 S′ ← S′ ∪ {(e, y)} ;
8 else
9 I ← ∅ ;

10 for i = 1, . . . , n do
11 Find the integer j such that (j− 1) ≤ yi+R

γR/n1/p < j ;

12 I[i] = j ;
13 end
14 if ∃(ec, c) ∈ C[I] then
15 S′ ← S′

⋃{(e, y− c + ec)} ;
16 else
17 C[I]← C[I]⋃{(e, y)} ;
18 end
19 end
20 end
21 return S′ ;

Lemma 6. Let γ ∈ R(0,1). The number of center pairs in Algorithm 2 always satisfies |C| ≤
2ccn+o(n) where cc = log

(
2 + 2

γ

)
.
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Proof. This follows from Lemma 5 in Section 3.1.

Claim 1. The following two invariants are maintained in Algorithm 1:
1. ∀(e, y) ∈ S, y− e ∈ L 2. ∀(e, y) ∈ S, ‖y‖p ≤ R.

Proof. 1. The first invariant is maintained at the beginning of the sieving iterations in
Algorithm 1 due to the choice of y at step 4 of Algorithm 1.
Since each center pair (ec, c) once belonged to S, c− ec ∈ L. Thus, at step 15 of the
sieving procedure (Algorithm 2), we have (e− y) + (c− ec) ∈ L.

2. The second invariant is maintained in steps 2–6 of Algorithm 1 because y ∈ P(B)
and hence ‖y‖p ≤ ∑n

i=1 ‖bi‖p ≤ n maxi ‖bi‖p = R.
We claim that this invariant is also maintained in each iteration of the
sieving procedure.
Consider a pair (e, y) ∈ S and let Iy be its index-tuple. Let (ec, c) be its associated
center pair. By Algorithm 2, we have Iy = Ic; i.e., ‖y − c‖p

p = ∑n
i=1 |yi − ci|p ≤

∑n
i=1

γpRp

n ≤ γpRp. Thus, ‖y− c‖p ≤ γR and hence ‖y− c + ec‖p ≤ ‖y− c‖p +
‖ec‖p ≤ γR + ξλ.
The claim follows by the re-assignment of variable R at step 10 in Algorithm 1.

In the following lemma, we bound the length of the remaining lattice vectors after
all the sieving iterations are over. The proof is similar to that given in [49], so we write
it briefly.

Lemma 7. At the end of k iterations in Algorithm 1, the length of lattice vectors ‖y− e‖p ≤
ξ(2−γ)λ

1−γ + γξ
n(1−γ)

=: R′.

Proof. Let Rk be the value of R after k iterations, where
logγ

(
ξ

nR(1−γ)

)
≤ k ≤ logγ

(
ξ

nR(1−γ)

)
+ 1.

Then,

Rk = γkR +
k

∑
i=1

γk−1ξλ ≤ ξγ

n(1− γ)
+

ξλ

1− γ

[
1− ξ

nR(1− γ)

]
Thus, after k iterations, ‖y‖p ≤ Rk, and hence after k iterations,

‖y− e‖p ≤ ‖y‖p + (‖ − e‖p) ≤ Rk + ξλ

=
(2− γ)ξλ

1− γ
+

γξ

n(1− γ)

Using Corollary 1 and assuming λ ≈ λ
(p)
1 , we obtain an upper bound on the number

of lattice vectors of a length of at most R′; i.e.,
|B(p)

n (R′) ∩ L| ≤ 2cbn+o(n), where cb = log
(

1 + 2ξ(2−γ)
1−γ

)
.

The above lemma along with the invariants implies that at the beginning of step 12
in Algorithm 1, we have “short” lattice vectors; i.e., vectors with a norm bounded by R′.
We want to start with a “sufficient number” of vector pairs so that we do not end up with
all zero vectors at the end of the sieving iterations. For this, we work with the following
conceptual modification proposed by Regev [67].
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Let u ∈ L such that ‖u‖p = λ
(p)
1 (L) ≈ λ (where 2 < λ

(p)
1 (L) ≤ 3), D1 = B(p)

n (ξλ) ∩
B(p)

n (−u, ξλ) and D2 = B(p)
n (ξλ) ∩ B(p)

n (u, ξλ). Define a bijection σ on B(p)
n (ξλ) that maps

D1 to D2, D2 to D1 and B(p)
n (ξλ) \ (D1 ∪ D2) to itself :

σ(e) =


e + u if e ∈ D1

e− u if e ∈ D2

e else

For the analysis of the algorithm, we assume that for each perturbation vector e
chosen by our algorithm, we replace e by σ(e) with probability 1/2 and that it remains
unchanged with probability 1/2. We call this procedure tossing the vector e. This does
not change the distribution of the perturbation vectors {e}. Further, we assume that this
replacement of the perturbation vectors happens at the step where this has any effect on the
algorithm for the first time. In particular, at step 17 in Algorithm 2, after we have identified
a center pair (ec, c), we apply σ on ec with probability 1/2. Then, at the beginning of
step 12 in Algorithm 1, we apply σ to e for all pairs (e, y) ∈ S. The distribution of y
remains unchanged by this procedure because y ≡ e ≡ σ(e) mod P(B) and y− e ∈ L.
A somewhat more detailed explanation of this can be found in the following result of [47].

Lemma 8 (Theorem 4.5 in [47] (re-stated)). The modification outlined above does not change
the output distribution of the actual procedure.

Note that since this is just a conceptual modification intended for ease in analysis, we
should not be concerned with the actual running time of this modified procedure. Even
the fact that we need a shortest vector to begin the mapping σ does not matter.

The following lemma will help us to estimate the number of vector pairs to sample at
the beginning of the algorithm.

Lemma 9 (Lemma 4.7 in [47]). Let N ∈ N and q denote the probability that a random point
in B(p)

n (ξλ) is contained in D1 ∪ D2. If N points x1, . . . xN are chosen uniformly at random in
B(p)

n (ξλ), then with a probability larger than 1− 4
qN , there are at least qN

2 points xi ∈ {x1, . . . xN}
with the property xi ∈ D1 ∪ D2.

From Lemma 3, we have

q ≥ 2−csn where cs = − log
(

0.5− 1
4ξ

)
Thus, with a probability of at least 1− 4

qN , we have at least 2−csnN pairs (ei, yi) before the
sieving iterations such that ei ∈ D1 ∪ D2.

Lemma 10. If N ≥ 2
q (k|C| + 2cbn + 1), then with a probability of at least 1/2, Algorithm 1

outputs a shortest non-zero vector in L with respect to `p norm for 1 ≤ p ≤ ∞.

Proof. Of the N vector pairs (e, y) sampled in steps 2–6 of Algorithm 1, we consider those
such that e ∈ (D1 ∪ D2). We have already seen there are at least qN

2 such pairs with a
probability of at least 1− 4

qN . We remove |C| vector pairs in each of the k sieve iterations.
Thus, at step 12 of Algorithm 1, we have N′ ≥ 2cbn + 1 pairs (e, y) to process.

By Lemma 7, each of them is contained within a ball of radius R′ which can have
at most 2cbn lattice vectors. Thus, there exists at least one lattice vector w for which the
perturbation is in D1 ∪ D2, and it appears twice in S at the beginning of step 12. With a
probability of 1/2, it remains w, or with the same probability, it becomes either w + u or
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w− u. Thus, after taking pair-wise difference at step 12 with a probability of at least 1/2,
we find the shortest vector.

Theorem 2. Let γ ∈ (0, 1), and let ξ > 1/2. Given a full rank lattice L ⊂ Qn, there is a
randomized algorithm for SVP(p) with a success probability of at least 1/2, a space complexity of at
most 2cspacen+o(n), and running time of at most 2ctimen+o(n), where cspace = cs + max(cc, cb) and
ctime = max(cspace, 2cb), where

cc = log
(

2 + 2
γ

)
, cs = − log

(
0.5− 1

4ξ

)
and cb = log

(
1 + 2ξ(2−γ)

1−γ

)
.

Proof. If we start with N pairs (as stated in Lemma 10), then the space complexity is at
most 2cspacen+o(n) with cspace = cs + max(cc, cb).

In each iteration of the sieving Algorithm 2, it takes at most O(nNh) time to initialize
and index C (Lemmas 5 and 6). For each vector pair (e, y) ∈ S, it takes a time of at most n
to calculate its index-tuple Iy. Thus, the time taken to process each vector pair is at most
(n + 1), and the total time taken per iteration of Algorithm 2 is at most O(n(Nh + N)),
which is at most 2cspacen+o(n), and there are at most poly(n) such iterations.

If N′ ≥ 2cbn + 1, then the time complexity for the computation of the pairwise differ-
ences is at most (N′)2 ∈ 22cbn+o(n).

Thus, the overall time complexity is at most 2ctimen+o(n) where
ctime = max(cspace, 2cb).

3.3. Improvement Using the Birthday Paradox

We can obtain a better running time and space complexity if we use the birthday
paradox to decrease the number of sampled vectors but obtain at least two vector pairs
corresponding to the same lattice vector after the sieving iterations [26,28]. For this, we
have to ensure that the vectors are independent and identically distributed before step 12
of Algorithm 1. Thus, we incorporate the following modification, as discussed in [26].
Very briefly, the trick is to set aside many uniformly distributed vector pairs as centers for
each sieving step, even before the sieving iterations begin. In each sieving iteration, the
probability that a vector pair is not within the required distance of any center pair decreases.
Now, if we sample enough vectors, then with a good probability at step 12, we have at
least two vectors whose perturbation is in D1

⋃
D2, implying that with a probability of at

least 1/2, we obtain the shortest vector.
In the analysis of [26], the authors simply stated that the required center pairs can be

sampled uniformly at the beginning. In our linear sieving algorithm, we have an advantage.
Unlike the AKS-style algorithms, in which the center pairs are selected and then the space
is divided, in our case, we can divide the space a priori. We take advantage of this and
conduct a number of random divisions of the space. Since in each iteration, the length of
the vectors decreases, the size of the hypercubes also decreases, and this can be calculated.
Thus, for each iteration we have a number of divisions of the space into hypercubes of a
certain size. For this, we need to divide the axes into intervals of a fixed size. Simply by
shifting the intervals in each axis, we can make this division random. Then, among the
uniformly sampled vectors, we select a center for each hypercube.

Assume we start with N ≥ 2
q (n

3k|C|+ n2
cb
2 n) sampled pairs. After the initial sampling,

for each of the k sieving iterations, we fix Ω
(

2n3

q |C|
)

pairs to be used as center pairs in the
following way.

1. Let R = maxi∈[N] ‖yi‖p. We maintain k lists of pairs, C1, C2, . . . , Ck, where each list is
similar to (C), as described in Algorithm 2. In the ith list, we store the indices (co-ordinates
of a corner) of translates of B(∞)

n (ri) that have a non-zero intersection with B(p)
n (Ri) where

Ri = γi−1R + ξλ 1−γi−1

1−γ and ri =
γRi

2n1/p . For such a division, we can obtain O(|C|) center
pairs in each list. To meet our requirement, we maintain O(n3) such lists for each i. We call
these O(n3) lists the “sibling lists” of Ci.
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2. For each (e, y) ∈ S (where S is the set of sampled pairs), we first calculate ‖y‖p to
check in which list group it can potentially belong, say Cj. That is, Cj corresponds to the
smallest hyperball containing y. Then, we map it to its index-tuple Iy, as has already been
described before. We add (e, y) to a list in Cj or any of its sibling lists if it was empty before.
Since we sampled uniformly, this ensures we obtain the required number of (initially) fixed
centers, and no other vector can be used as a center throughout the algorithm.

Having set aside the centers, now we repeat the following sieving operations k times.
For each vector pair (e1, y1) ∈ S, we can check which list (or its sibling lists) it can belong
to from ‖y1‖p. Then, if a center pair is found, we subtract as in step 15 of Algorithm 2.
Otherwise, we discard it and consider it “lost”.

Let us call this modified sieving procedure LinearSieveBirthday. We obtain the
following improvement in the running time.

Theorem 3. Let γ ∈ (0, 1), and let ξ > 1/2. Given a full rank lattice L ⊂ Qn, there is a
randomized algorithm for SVP(p) with a success probability of at least 1/2, a space complexity of at
most 2cspacen+o(n), and running time of at most 2ctimen+o(n), where cspace = cs + max(cc, cb

2 ) and
ctime = max(cspace, cb), where

cc = log
(

2 + 2
γ

)
, cs = − log

(
0.5− 1

4ξ

)
and cb = log

(
1 + 2ξ(2−γ)

1−γ

)
.

Proof. This analysis has been taken from [26]. At the beginning of the algorithm, among
the pairs set aside as centers for the first step, there are Ω

(
n3|C|

)
pairs such that the

perturbation is in D1
⋃

D2 with high probability (Lemma 9). We call them good pairs.
After fixing these pairs as centers, the probability that the distance between the next
perturbed vector and the closest center is more than γR decreases. The sum of these
probabilities is bounded from above by |C|. As a consequence, once all centers have
been processed, the probability for any of the subsequent pairs to be lost is O

(
1

n3

)
. By

induction, it can be proved that the same proportion of pairs is lost at each step of the

sieve with high probability. As a consequence, no more than 1−
(

1− 1
n3

)O(n2)
= O

(
1
n

)
pairs are lost during the whole algorithm. This means that in the final ball, there are
Ω
(

n2
cb
2 n
)

probabilistically independent lattice points corresponding to good pairs with
high probability. As in the proof of Lemma 10 this implies that the algorithm returns a
shortest vector with a probability of at least 1/2.

Comparison of Linear Sieve with provable sieving algorithms [21,45,47,48]

For 1 ≤ p ≤ ∞, the number of centers obtained by [47] is
|C(BN)| ≤ 2cc(BN)n, where cc(BN) = log(1+ 2

γ ) (Lemma 4). If we conducted a similar anal-

ysis for their algorithm, we would obtain space and time complexities of 2cspace(BN)n+o(n)

and 2ctime(BN)n+o(n), respectively, where

cspace(BN) = cs + max(cc(BN), cb)

and ctime(BN) = max(cspace(BN) + cc(BN), 2cb).

We can incorporate modifications to apply the birthday paradox, as has been done in [26]
(for `2 norm). This would improve the exponents to

cspace(BN′) = cs + max(cc(BN), cb/2)

and ctime(BN′) = max(cspace(BN) + cc(BN), cb).

Clearly, the running time of our algorithm is less since
(

1 + 2
γ

)2
>
(

2 + 2
γ

)
for all γ < 1.

In [47], the authors did not specify the constant in the exponent of running time. However,
using the above formulae, we found out that their algorithm can achieve a time complexity
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of 23.849n+o(n) and space complexity of 22.023n+o(n) at parameters γ = 0.78, ξ = 1.27 (with-
out the birthday paradox, the algorithm in [47] can achieve time and space complexities of
25.179n+o(n) and 23.01n+o(n), respectively, at parameters γ = 0.572, ξ = 0.742). In compari-
son, our algorithm can achieve a time and space complexity of 22.751n+o(n) at parameters
γ = 0.598, ξ = 0.82.

For p = 2, we can use Theorem 1 to obtain a better bound on the number of lattice vec-
tors that remain after all sieving iterations. This is reflected in the quantity cb, which is then

given by c(2)b = 0.401+ log
(

2ξ(2−γ)
1−γ

)
(Corollary 1). Furthermore, c(2)s = −0.5 log

(
1− 1

4ξ2

)
(Lemma 3). At parameters γ = 0.693 and ξ = 0.99, we obtain c(2)time = c(2)space = 2.49. The AKS
algorithm with the birthday paradox manages to achieve a time complexity of 22.571n+o(n)

and space complexity of 21.407n+o(n) when γ = 0.589 and ξ = 0.9365 [26]. Thus, our
algorithm achieves a better time complexity at the cost of more space.

For p = ∞, we can reduce the space complexity by using the sub-division men-
tioned in Section 3.1 and achieve a space and time complexity of 22.443n+o(n) at parame-
ters γ = 0.501, ξ = 0.738 (in [49], the authors mentioned a time and space complexity of
22.82n+o(n) in `∞ norm. We obtain a slightly better running time by using cb, as mentioned
in this paper). Again, this is better than the time complexity of [47] (which is for all `p
norms).

4. A Mixed Sieving Algorithm

The main advantage in dividing the space (hyperball) into hypercubes (as we did in
Linear Sieve) is the efficient “decodability” in the sense that a vector can be mapped to a
sub-region (and thus be associated with a center) in O(n) time. However, the price we pay
is in space complexity, because the number of hypercubes required to cover a hyperball is
greater than the number of centers required if we used smaller hyperballs like in [21,47,48].
To reduce the space complexity, we perform a mixed sieving procedure. Double sieving
techniques have been used for heuristic algorithms as in [32], where the rough idea is the
following. There are two sets of centers: the first set consists of centers of larger radius
balls, and for each such center, there is another set of centers of smaller radius balls within
the respective large ball. In each sieving iteration, each non-center vector is mapped to
the larger balls by comparing with the centers in the first set. Then, they are mapped to a
smaller ball by comparing with the second set of centers. Thus, in both levels, a quadratic
sieve is applied.

In our mixed sieving, the primary difference is the fact that in the two levels, we use
two types of sieving methods: a linear sieve in the first level and then a quadratic sieve such
as AKS in the next level. The overall outline of the algorithm is the same as in Algorithm 1,
except at step 9, where we apply the following sieving procedure, which we call Mixed
Sieve. An illustration is given in Figure 4.

The input to Mixed Sieve is a set of vectors of length R, and the output is a set of
smaller vectors of length γR.

1. We divide the whole space into large hypercubes of length AγR
n1/p , where A is some

constant. In O(n) time, we map a vector to a large hypercube by comparing its
co-ordinates. This has been explained in Section 3.1. We do not assign centers yet
and do not perform any vector operation at this step. The distance between any two
vectors mapped to the same hypercube is at most AγR (Figure 4b).

2. Next, we perform the AKS sieving procedure within each hypercube. For each
hypercube, we have a set (initially null) of centers. When a vector is mapped to a
hypercube ,we check if it is within distance γR of any center (within that hypercube).
If yes, then we subtract it from the center and add the resultant shorter vector to
output set. If no, then we add this vector to the set of centers (Figure 4c).
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Figure 4. One iteration of the mixed sieve in the `2 norm. (a) A number of vector pairs (solid
black dots) with a (Euclidean) length of at most R are sampled. (b) The space is divided into
hypercubes with diagonal length r′, and the vector pairs are mapped into each hypercube. (c) Within
each hypercube, some vector pairs are selected as centers (red dots) and a hypercube is further
sub-divided into a number of `2 balls, centered around these red dots. Then, vector subtraction is
performed between the center and the vector pairs in each `2 ball (like AKS).

Using the same kind of counting method as in Section 3.1, we can say we need 2c′n

large hypercubes, where c′ = log
(

2 + 2
Aγ

)
. The maximum distance between any two

vectors in each hypercube is AγR, and we want to get vectors of length at most γR by
applying the AKS sieve. Thus, the number of centers (let us call these “AKS sieve-centers”)
within each hypercube is 2cpn+o(n) where cp = log(1 + A) (in the special case of Euclidean
norm, we have c2 = 0.401− log

( 2
A
)
). cp (and c2) are obtained by applying Lemma 4. Note

that the value of A must ensure the non-negativity of c2. Thus, the total number of centers
is 2c(p)n+o(n) where c(p) = c′ + cp.

To use the birthday paradox, we apply similar methods as given in Section 3.3 and [26].
Assume that we initially sample N ≥ 2

q (n
3k2c(p)n+o(n) + n2

cb
2 n) vectors. Then, using similar

arguments as in Section 3, we can conclude that, with high probability, we end up with the
shortest vector in the lattice. We are not re-writing the proof since it is similar to that in
Theorem 3. The only thing that is slightly different is the number of center pairs set aside
at the beginning of the sieving iterations. As in Section 3, we randomly divide the space
n3 times into 2c′n hypercubes. Then, among the uniformly sampled vectors, we set aside
2cpn vector pairs as centers for each hypercube. Thus, in Theorem 3, we replace |C| by
2c(p)n+o(n).

Thus, space complexity is 2cspacen+o(n) where cspace = cs + max(c(p), cb/2). It takes
O(n) time to map each vector to a large hypercube, and then at most 2cpn+o(n) time to
compare it with the “AKS sieve-centers” within each hypercube. Thus, the time complexity
is 2ctimen+o(n) where ctime = max(cspace + cp, cb).

Theorem 4. Let γ ∈ (0, 1), ξ > 1/2 and A be some constant. Given a full-rank lattice L ⊂ Qn,
there is a randomized algorithm for SVP(p) with a success probability of at least 1/2, a space
complexity of at most 2cspacen+o(n), and a running time of at most 2ctimen+o(n). Here, cspace = cs +

max(c(p), cb
2 ) and ctime = max(cspace + cp, cb). cs = − log

(
0.5− 1

4ξ

)
, cb = log

(
1 + 2ξ(2−γ)

1−γ

)
,

cp = log(1 + A) and c(p) = log
(

2 + 2
Aγ

)
+ cp.

In the Euclidean norm, we have c2 = 0.401− log
( 2

A
)
,

c(2) = log
(

2 + 2
Aγ

)
+ c2, c(2)s = −0.5 log

(
1− 1

4ξ2

)
and c(2)b = 0.401 + log

(
2ξ(2−γ)

1−γ

)
.

Comparison with previous provable sieving algorithms [20,27,28]

In the Euclidean norm with parameters γ = 0.645, ξ = 0.946 and A = 20.599, we
obtain a space and time complexity of 22.25n+o(n), while the List Sieve Birthday [26,28] has
space and time complexities of 21.233n+o(n) and 22.465n+o(n), respectively. We can also use a
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different sieve in the second level, such as List Sieve [27], etc., which works in `2 norm and
is faster than the AKS sieve. We can therefore expect to achieve a better running time.

The Discrete Gaussian-based sieving algorithm of Aggarwal et al. [20] with a time
complexity of 2n+o(n) performs better than both our sieving techniques. However, their
algorithm works for the Euclidean norm and, to the best of our knowledge, it has not been
generalized to any other norm.

5. Approximation Algorithms for SVP(p) and CVP(p)

In this section, we show how to adopt our sieving techniques to approximation
algorithms for SVP(p) and CVP(p). The analysis and explanations are similar to that given
in [49]. For completeness, we give a brief outline.

5.1. Algorithm for Approximate SVP(p)

We note that at the end of the sieving procedure in Algorithm 1, we obtain lattice
vectors of length at most R′ = ξ(2−γ)λ

1−γ + O(λ/n). Thus, if we can ensure that one of
the vectors obtained at the end of the sieving procedure is non-zero, we obtain a τ =
ξ(2−γ)

1−γ + o(1)-approximation of the shortest vector. Consider a new algorithm A (let us
call it Approx-SVP) that is identical to Algorithm 1, except that Step 12 is replaced by the
following:

• Find a non-zero vector v0 in {(yi − ei) : (ei, yi) ∈ S}.
We now show that if we start with sufficiently many vectors, we must obtain a non-

zero vector.

Lemma 11. If N ≥ 2
q (k|C|+ 1), then with a probability of at least 1/2, Algorithm A outputs a

non-zero vector in L of a length of at most ξ(2−γ)λ
1−γ + O(λ/n) with respect to `p norm.

Proof. Of the N vector pairs (e, y) sampled in steps 2–6 of AlgorithmA, we consider those
such that e ∈ (D1 ∪ D2). We have already seen there are at least qN

2 such pairs. We remove
|C| vector pairs in each of the k sieve iterations. Thus, at step 12 of Algorithm 1, we have
N′ ≥ 1 pairs (e, y) to process.

With a probability of 1/2, e, and hence w = y− e is replaced by either w+ u or w− u.
Thus, the probability that this vector is the zero vector is at most 1/2.

We thus obtain the following result.

Theorem 5. Let γ ∈ (0, 1), ξ > 1/2 and τ = ξ(2−γ)
1−γ + o(1), Assume we are given a full-rank

lattice L ⊂ Qn. There is a randomized algorithm that τ approximates SVP(p) with a success
probability of at least 1/2 and a space and time complexity 2(cs+cc)n+o(n), where cc = log

(
2 + 2

γ

)
,

and cs = − log
(

0.5− 1
4ξ

)
.

Note that while presenting the above theorem, we assumed that we are using the
Linear Sieve in Algorithm 1. We can also use the Mixed Sieve procedure as described
in Section 4. Then, we will obtain space and time complexities of 2(cs+c(p))n+o(n) and
2(cs+c(p)+cp)n+o(n), respectively, where c(p) = log

(
2 + 2

Aγ

)
+ cp and cp = log(1 + A),

respectively (in the Euclidean norm, the parameters are as described in Theorem 4).

Comparison with provable approximation algorithms [30,47,48]

We have mentioned in Section 1 that [47,48] gave approximation algorithms for lattice
problems that work for all `p norms and use the quadratic sieving procedure (as has
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been described before). Using our notations, the space and time complexities of their
approximate algorithms are 2cspace(BN)n+o(n) and 2ctime(BN)n+o(n), respectively, where

cspace(BN) = cs + cc(BN)

and ctime(BN) = cspace(BN) + cc(BN) = cs + 2cc(BN).

The authors did not mention any explicit value of the constant in the exponent. Using
the above formulae, we conclude that [47,48] can achieve time and space complexities of
23.169n+o(n) and 21.586n+o(n), respectively, at parameters γ = 0.99, ξ = 10.001 with a large
constant approximation factor. In comparison, we can achieve a space and time complexity
of 22.001n+o(n) with a large constant approximation factor at the same parameters.

In `2 norm, using the mixed sieving procedure, we obtain a time and space complexity
of 21.73n+o(n) and a large constant approximation factor at parameters γ = 0.999,ξ = 1.
In [30], the best running time reported is 20.802n for a large approximation factor.

Using a similar linear sieve, a time and space complexity of 3n i.e., 21.585n+o(n) can be
achieved for the `∞ norm for a large constant approximation factor [49].

5.2. Algorithm for Approximate CVP(p)

Given a lattice L and a target vector t, let d denote the distance of the closest vector
in L to t. Just as in Section 3.2, we assume that we know the value of d within a factor of
1 + 1/n. We can get rid of this assumption by using Babai’s [68] algorithm to guess the
value of d within a factor of 2n and then run our algorithm for polynomially many values
of d.

For τ > 0, define the following (n + 1)−dimensional lattice L′

L′ = L
(
{(v, 0) : v ∈ L} ∪ {(t, τd/2)}

)
.

Let z∗ ∈ L be the lattice vector closest to t.
Then u = (z∗ − t,−τd/2) ∈ L′ \ (L− k′t, 0) for some k′ ∈ Z.

We sample N vector pairs (e, y) ∈ B(p)
n (ξd)×P(B′) (8–12 of Algorithm 3), where

B′ = [(b1, 0), . . . , (bn, 0), (t, τd/2)] is a basis for L′. Next, we run a number of iterations of
the sieving Algorithm 2 to obtain a number of vector pairs such that ‖y‖p ≤ R = ξd

1−γ + o(1).
Further details can be found in Algorithm 3. Note that in the algorithm, v|[n] is the
n−dimensional vector v′ obtained by restricting v to the first n co-ordinates (with respect
to the computational basis).

From Lemma 7, we have seen that after dlogγ

(
ξ

nR0(1−γ)

)
e iterations (where

R0 = n ·maxi ‖bi‖p), R ≤ ξγ
n(1−γ)

+ ξd
1−γ

[
1 − ξ

nR0(1−γ)

]
. Thus, after the sieving itera-

tions, the set S′ consists of vector pairs such that the corresponding lattice vector v has
‖v‖p ≤ ξd

1−γ + ξd + c = ξ(2−γ)d
1−γ + o(1).

Selecting ξ < (1−γ)τ
2−γ − o(1) ensures that our sieving algorithm does not return vectors

from (L, 0)− (k′t, k′τd/2) for some k′ such that |k′| ≥ 2. Then, every vector has ‖v‖p < τd,
and so either v = ±(z′ − t, 0) or v = ±(z− t,−τd/2) for some lattice vector z, z′ ∈ L.

With similar arguments as in [49] (using the tossing argument outlined in Section 3.2),
we can conclude that with some non-zero probability we have at least one vector in
L′ \ (L± t, 0) after the sieving iterations.

Thus, we obtain the following result.
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Algorithm 3: Approximate algorithm for CVP(p)

Input: (i) A basis B = [b1, . . . bn] of a lattice L, (ii) Target vector t, (iii)
Approximation factor τ, (iv) 0 < γ < 1, (v) ξ such that
1
2 max(1, τ/2) < ξ < (1−γ)τ

2−γ − c′ where c′ is a small constant, (vi)α > 0,
(vii) N ∈ N

Output: A 2τ−approximate closest vector to t in L
1 d← (1 + α) ;
2 T ← ∅; S′′ ← ∅ ;
3 while d ≤ n ·maxi ‖bi‖p do
4 S, S′ ← ∅ ;
5 B′ → [(b1, 0), . . . , (bn, 0), (t, τd/2)] ;
6 L′ → L (B′) ;
7 M→ span({(v, 0) : v ∈ L}) ;
8 for i = 1 to N do
9 ei ←uniform B(p)

n (0, ξλ) ;
10 yi ← ei mod P(B) ;
11 S← S ∪ {(ei, yi)} ;
12 end
13 R← n maxi ‖bi‖p ;
14 while R > ξd

1−γ do
15 S← sieve(S, γ, R, ξ) using Algorithm 2 ;
16 R← γR + ξd ;
17 end
18 S′ ← {y− e : (e, y) ∈ S} ;
19 Compute w ∈ S′ such that

‖w|[n]‖p = min{‖v′|[n]‖p : v′ ∈ S′ and (v′)n+1 6= 0} ;
20 T → T ∪ {w} ;
21 d→ d(1 + α) ;
22 end
23 Let v0 be any vector in T such that ‖v0|[n]‖p = min{‖w|[n]‖p : w ∈ T} ;
24 v′0 ← v0|[n] ;
25 if (v0)n+1 = −τd/2 then
26 return v′0 + t ;
27 else
28 return v′0 − t ;
29 end

Theorem 6. Let γ ∈ (0, 1), and for any τ > 1 let ξ > max(1/2, τ/4). Given a full-rank lattice
L ⊂ Qn, there is a randomized algorithm that, for
τ = ξ(2−γ)

1−γ + o(1), approximates CVP(p) with a success probability of at least 1/2 and a space

and time complexity of 2(cs+cc)n+o(n), where cc = log
(

2 + 2
γ

)
and

cs = − log
(

0.5− 1
4ξ

)
.

Again, using Mixed Sieve in Algorithm 1, we obtain space and time complexities of
2(cs+c(p))n+o(n) and 2(cs+c(p)+cp)n+o(n), respectively, where
c(p) = log

(
2 + 2

Aγ

)
+ cp and cp = log(1 + A), respectively (in the Euclidean norm, the

parameters are as described in Theorem 4).

6. Discussions

In this paper, we have designed new sieving algorithms that work for any `p norm. A
comparative performance evaluation has been given in Table 1. We achieve a better time
complexity at the cost of space complexity for every 1 ≤ p ≤ ∞, except for the algorithm
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in [20] that employs a Discrete Gaussian-based sieving algorithm and has better space and
time complexity in the Euclidean norm. To the best of our knowledge, this algorithm does
not work for any other norm.

Table 1. Comparison of the performance of various sieving algorithms in different `p norms. In the
last row, DGS stands fro Discrete Gaussian Sampling-based sieve.

p Ref. Type of Sieve Time Complexity Space Complexity

1 ≤ p ≤ ∞
[47] Quadratic 23.849n+o(n) 22.023n+o(n)

This work Linear 22.751n+o(n) 22.751n+o(n)

p = ∞ [49] Linear 22.443n+o(n) 22.443n+o(n)

p = 2

[26] Quadratic 22.571n+o(n) 21.407n+o(n)

This work Linear 22.49n+o(n) 22.49n+o(n)

[26,27] Quadratic 22.465n+o(n) 21.233n+o(n)

This work Mixed 22.25n+o(n) 22.25n+o(n)

[20] DGS 2n+o(n) 2n+o(n)

Future Work

An obvious direction for further research would be to design heuristic algorithms on
these kind of sieving techniques and to study if these can be adapted to other computing
environments like parallel computing.

The major difference between our algorithm and the others like [21,47] is in the choice
of the shape of the sub-regions in which we divide the ambient space (as has already been
explained before). Due to this we get superior “decodability” in the sense that a vector can
be efficiently mapped to a sub-region, at the cost of inferior space complexity, as described
before. It might be interesting to study what other shapes of these sub-regions might be
considered and what are the trade-offs we get.

It might be possible to improve the bound on the number of hypercubes required to
cover the hyperball. At least in the `∞ norm we have seen that the number of hypercubes
may depend on the initial position of the smaller hypercube, whose translates cover the
bigger hyperball. In fact it might be possible to get some lower bound on the complexity of
this kind of approach.
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