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Abstract: Due to the variation in the image capturing process, the difference between source and
target sets causes a challenge in unsupervised domain adaptation (UDA) on person re-identification
(re-ID). Given a labeled source training set and an unlabeled target training set, this paper focuses
on improving the generalization ability of the re-ID model on the target testing set. The proposed
method enforces two properties at the same time: (1) camera invariance is achieved through the
positive learning formed by unlabeled target images and their camera style transfer counterparts;
and (2) the robustness of the backbone network feature extraction is improved, and the accuracy of
feature extraction is enhanced by adding a position-channel dual attention mechanism. The proposed
network model uses a classic dual-stream network. Comparative experimental results on three public
benchmarks prove the superiority of the proposed method.

Keywords: person re-identification; unsupervised domain adaptation; position-channel dual
attention mechanism

1. Introduction

Person re-identification (re-ID) is not only a hot research topic, but also has consid-
erable practical value in computer vision. Given an interested query pedestrian, person
re-ID focuses on matching the same pedestrian in a camera network without any over-
lapping area [1–4]. Following the development of deep learning, supervised person re-ID
methods have already achieved high rank-1 accuracy and mAP accuracy on widely used
datasets [5–7]. However, these methods heavily rely on a large amount of labeled informa-
tion in the target domain dataset. It is often difficult to obtain labeled information. Various
unsupervised person re-ID methods have been proposed to overcome the lack of labeled
information [8–11]. For example, the labeled source domain dataset and the unlabeled
target domain dataset are used to train the model, or the unlabeled target domain dataset
is directly used to train the model.

Existing unsupervised person re-ID methods can be divided into three categories: (a)
Domain adaptation is used to align the feature distribution between source domain and
target domain [12–14]. (b) Generative adversarial network (GAN) is used to realize the
transformation of pedestrian image style, while the identity annotations of source domain
images are retained [15–17]. (c) Generated pseudo-labels on the target domain are used for
training, and pseudo labels are assigned to similar images by different methods, such as
clustering and KNN search [18–21]. The methods of the third category are restricted by
pseudo labels and has poor accuracy in actual application scenarios. Therefore, this article
focuses on the first two categories. The corresponding methods of the first two categories
use labeled data on the source domain. So, they can be regarded as transfer learning.
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Given labeled source data and unlabeled target data, cross-domain re-ID methods are
dedicated to learning a model that adapts to the target domain. For cross-domain person
re-ID methods, there is no overlap between labeled source domain data and unlabeled
target domain data. Both the source domain and target domain have completely different
classes (pedestrian identities). In addition, since the imaging styles of different cameras
are different, each domain can be further divided into different sub-domains. So, poor
migration performance is attributed to two main factors: intra-domain difference and
inter-domain conversion. In order to achieve good migration performance, both factors
should be considered in the design process. The intra-domain difference is mainly caused
by the inconsistency of camera parameters. However, a lot of existing work ignores the
first factor.

In fact, in the same target domain, the images captured by different cameras still
have obvious style differences. The images captured by one camera can be regarded as a
sub-domain of the target domain. The commonly used datasets DukeMTMC-ReID and
Market1501 have eight and six sub-domains, respectively, which can be derived from the
corresponding camera numbers. In a real-world scene, the distribution of a sub-domain
may be considerably different from the distribution of other sub-domains, due to different
camera types and image collection scenes. In this case, it is not appropriate to treat any
target domain as a whole. It is better to reduce the deviation between each sub-domain in
the source and target domains to achieve domain adaptation.

In order to alleviate the above issue, Zhong [17] applied CycleGAN (CamStyle) to
generate camera style conversion images to achieve data enhancement for person re-ID.
CycleGAN is used to train an image-to-image conversion model for each pair of cameras.
Subsequently, the obtained model can generate new image samples that are converted from
the source domain to target domain. Since CycleGAN can only be modeled by a one-to-one
domain mapping, this method can only learn the mapping between a pair of cameras used
in one model. Therefore, multiple models need to be trained to build a complete camera
style conversion network by using the CycleGAN method. For example, there are six
different cameras in the Market1501 dataset, so C2

6 = 15 different models need to be trained
separately. Similarly, DukeMTMC-ReID needs an additional 28 different models. As the
number of cameras increases, the time complexity and the number of parameters increase
dramatically. In addition, the cross-camera relationship is ignored in this model. In the
proposed method, StarGAN [22] is used to remove the above limitations, and a similarity
preservation term is applied to the loss function to achieve image-to-image conversion of
camera perception.

Some recently published solutions [23–26] confirm that neighborhood invariance is
effective in dealing with changes in the target domain. These methods set up a memory
bank to search for the nearest neighbor of each probe in the entire dataset and impose
consistent constraints. Since the target domain is unlabeled and lacks the corresponding
strong constraints, these models cannot well suppress the impacts of changes between
different cameras (including viewing angle and background). In this case, proximity search
tends to select candidates captured by the same camera as the probe, but these candidates
are not actually correct. In order to solve this issue, this paper uses two loss functions to
impose constraints on both inter-camera and intra-camera matching for the enhancement
of neighborhood invariance.

In order to obtain more discriminative feature embedding, attention mechanism is in-
troduced. DANet [27,28] introduced a self-attention mechanism to capture the dependency
of features in the spatial and channel dimensions, respectively. Specifically, two parallel
attention modules, position attention module and channel attention module, are attached
to the top of the expanded full convolutional network. In the position attention module,
a self-attention mechanism is introduced to capture the spatial dependency between any
two positions in the feature map. For the features of a certain location, the weighted sum
method is used to aggregate and update the features of all locations. Any weight is deter-
mined by the feature similarity of the corresponding two locations. In other words, any two
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positions with similar characteristics can promote each other, regardless of their distance in
the spatial dimension. In the channel attention module, a similar self-attention mechanism
is used to capture the channel dependency between any two channel graphs, and the
weighted sum of all the channel graphs is used to update each channel graph. Finally, the
outputs of two attention modules are merged to further enhance the feature representation.

Inspired by the weaknesses of existing solutions, this paper proposes a novel un-
supervised domain adaptive framework for person re-ID. According to the number of
cameras, the target domain is divided into the corresponding sub-domains to perform
image style conversion between domains. In addition, due to the poor robustness of
image features, a dual attention mechanism is added to the learning framework to analyze
feature dependencies.

The main contributions of this paper are summarized as follows.

• StarGAN is introduced into pedestrian image processing to reduce the distribution
deviation between different sub-domains in the target dataset. Fast style conversion
is applied to multi-domain images. The dataset is expanded while generating high-
quality images.

• A dual-channel attention network is integrated to the feature extraction network.
More discriminative features are obtained without affecting domain style. The feature
dependence from both spatial and channel dimensions is obtained to further enhance
feature representation.

• The effectiveness of the proposed method is verified by comparing with state-of-the-
art methods on both Market-1501 and DukeMTMC-reID datasets.

The rest of this paper is structured as follows: Section 2 discusses related work;
Section 3 presents the proposed method; Section 4 compares the proposed method with
state-of-the-art methods and analyzes the related experimental results; and Section 5
concludes this paper.

2. Related Work
2.1. Unsupervised Domain Adaptation

The source domain is labeled and the target domain is not labeled. The UDA meth-
ods focus on solving the target domain without any labels [29–32]. In order to learn
the discriminative features in the target domain, early-stage methods focus on the fea-
ture/sample mapping between the source domain and target domain. Some existing
solutions [16,33–35] reduce the deviation between the source domain and target domain
at the image level. The image-to-image conversion from the source domain to the tar-
get domain is first performed [22,36], and then the converted images are used to train
the model. In addition, some methods [14,37–39] associate two domains with common
auxiliary tasks. Wang et al. [14] proposed an attribute consistent framework to achieve
UDA on unlabeled target domains by learning the semantics of pedestrian attributes.
Huang et al. [37] performed human body segmentation and posed estimation on two do-
mains at the same time to align local features and improve the generalization performance
of the corresponding model. Some recently published solutions [9,23–25] recognize the
importance of mining discriminative features in the target domain. Yu et al. [9] first used
the features of source domain as references to measure whether the image features of the
target domain are similar. Then, soft labels were assigned to unlabeled pedestrian identities
to explore potential pairwise relationships. Finally, contrast loss was used to reinforce the
relationships. Zhong et al. [23] introduced the concept of memory to store the intermediate
features of the target data during the training process. Three invariance constraints (named
as sample invariance, camera invariance and neighborhood invariance) were imposed on
target domain samples to reduce the influence of changes in the corresponding domain.
Ding et al. [25] proposed an adaptive exploration (AE) method. In the target domain, the
distance between all pedestrians is maximized, and the distance between similar pedestri-
ans is minimized. Yang et al. [24] proposed a patch-based unsupervised framework to learn
discriminative features from image patches instead of the entire image. At present, many
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methods [40–42] first adopt pseudo-label estimation schemes, then use some clustering
algorithms to label target samples, and finally train the corresponding model accordingly.
The above operations are repeated until the trained model converges, which results in high
computation costs.

2.2. Generative Adversarial Networks

In recent years, generative adversarial networks have shown significant improvements
in various computer vision tasks, especially image-to-image translation.
Radford et al. [43] introduced a deep convolutional generative confrontation network
(DCGAN) by proposing some constraints on the network structure. The training process is
stable and high resolution images are generated. Pix2Pix [44] as an extension of GANs uses
conditional GANs to achieve the mapping from an input image to the output image by
combining both adversarial loss and L1 loss. Additionally, this method requires paired data
in the training process. Some existing methods [22,36,45] overcome the above limitation.
Liu et al. [45] proposed a coupling generative adversarial network (CoGAN) to learn the
joint distribution of multi-domain images without any paired image tuples. It can learn
the joint distribution by only drawing samples from the marginal distribution, which
is achieved by implementing weight sharing constraints. Cyclic consistency adversarial
network (CycleGAN) [36] uses cyclic consistency in the image-to-image conversion process
without any paired samples to retain key attributes. However, CycleGAN has limited
scalability. It can only learn the mapping between two domains. When images are trans-
lated between multiple domains, multiple models need to be trained. So, Choi et al. [22]
proposed a unified generative confrontation network (StarGAN), which allows one model
to learn the mapping between multiple domains.

2.3. Self-Attention Modules

The attention module can establish a long-range dependency model and has been
widely used in many tasks [46,47]. The attention mechanism in pedestrian re-ID models
aims to highlight key image features to avoid misalignment caused by posture changes,
occlusion, or lack of body parts in the bounding boxes [47]. Existing attention mechanisms
can be divided into two categories: hard attention and soft attention. The former solutions
usually use a pose estimation model to locate rough areas, and then apply the correspond-
ing local features to person re-ID [48]. These hard region-level attentions heavily rely on
pose estimation, which is usually inaccurate. Additionally, they do not consider pixel-level
information that is important for person re-ID in the selected areas. The soft-attention mech-
anism usually inserts a trainable layer in the baseline to mask the convolutional feature map
to highlight the area rich in information [49]. There are usually two soft-attention mech-
anisms: spatial attention and channel attention. The former solutions enable the model
to focus on valuable features in different spatial locations. The latter solutions enable the
model to perform channel re-calibration to improve its characterization capability. On this
basis, Fu et al. [27] integrated both types of solutions to propose a dual-channel attention
network (DANet), which models semantic relevance in spatial and channel dimensions,
respectively. In this paper, this network is added to the backbone network of person re-ID
feature extraction.

3. The Proposed Method
3.1. Overview of the Proposed Framework

As shown in Figure 1, the overall network structure of the proposed method refers to
hetero-homogeneous learning (HHL), proposed by Zhong et al. [50]. Both source and target
domain samples are forwarded to the network after intra-domain style conversion. The
first branch as a classification process is used to learn with labeled source domain samples.
With the aid of the memory bank, the learning of the second branch is supervised by the
consistency of both intra-camera and inter-camera neighborhoods. The backbone network
of the proposed method uses IBN-net [51], which integrates instance normalization (IN)
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and batch normalization (BN). IN mainly learns the correlation of visual changes, such as
color, style, true, and false, etc. BN mainly learns the content-related information, which
can accelerate training and learn more distinguishing features.

Figure 1. The framework of the proposed method.

For UDA person re-ID, a labeled source dataset S = {Xs, Ys} that contains Ns pedes-
trian images is obtained. The source domain contains Ns images of P pedestrians. Each
image corresponds to an identity label ys

i . There are Nt unlabeled target images {xt
i}

Nt
i=1

from the unlabeled target dataset T = {Xt}. The identity of each target image xt in {Xt}
is unknown. In addition, the camera index of an image (for example, Cs = {cs

i }
Ns
i=1 and

Ct = {ct
i}

Nt
i=1) is available in both domains. Given the above information, learning a model

that can be well generalized to the target domain is achieved.

3.2. Supervised Learning for Source Domain

Since the identity labels of source domain images are available, the training process
of source domain images can be reduced to a classification problem. Cross entropy loss is
used to optimize the network by the following equation.

Lsrc = −
1
ns

ns

∑
i=1

log p(ys,i|xs,i) (1)

where ns is the number of source images in the training batch, and p(ys,i|xs,i) is the
predicted probability that the source image xs,i belongs to the identity ys,i, which is obtained
by the classification module.

A model obtained by training on the labeled source data can produce high accuracy
on the same distribution testing dataset. However, when both the testing set and source
domain have different distributions, the performance is severely degraded. Next, a method
based on example storage is introduced to overcome this problem. This method considers
the intra-domain changes of the target domain during the network training.

3.3. Intra-Domain Learning

In order to improve the generalization ability of the network on the target testing set,
this paper considers the invariance learning in the network by estimating the similarity
between target images. A sample memory is first constructed to store the latest features
of all target images. The sample memory is a key–value structure [51], which has a key
memory (K) and a value memory (V). In the sample memory, each slot stores features in
the key part, and labels in the value part. Given a target dataset containing Nt unlabeled
images, each image instance is treated as a separate category. Therefore, the sample
memory contains slots, and each slot stores the features and labels of target images. In the
initialization process, the values of all the features in the key memory are initialized to
zero. For simplicity, the corresponding index as the label of a target sample is specified
and stored in value memory. For example, the category of the first target image in value
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memory is assigned as V [i] = i. During the training process, the labels in value memory
are fixed. In each training iteration, each target training sample is input into the deep re-ID
network for forward propagation, and the L2 normalized feature f (xt,i) of the output of the
fully connected layer is obtained. During the back propagation process, the characteristics
of the training samples in key memory are updated in the following way.

K[i]← αK[i] + (1− α) f (xt,i) (2)

where K[i] is the key memory of xt,i image in the i-th slot. α ∈ [0, 1] controls the update
rate. Then L2-normalization K[i] is performed by K[i]← ‖K[i]‖2.

3.4. Camera-Aware Neighborhood Invariance

When the label space (given by the identity annotation and the number of identities) is
unknown, it is not feasible to directly analyze the categories of target samples. In this case,
the pairwise relationship is a potential clue to guide the feature learning in target domain.
In characteristics learning, it is usually assumed that each sample is likely to share the same
basic label with its nearest neighbors. The probability that xt

i and xt
j share the same identity

can be instantly obtained by using the memory bank mentioned above as follows.

pij =
exp

(
s×KT

j f (xt
i )
)

∑Nt
n=1 exp(s×KT

n f (xt
i ))

(3)

where s is the scale factor, which can adjust the sharpness of the probability distribution.
Based on the above assumptions, ECN [23] was proposed to maximize the probability of
each detection image and its nearest neighbor in the entire dataset as follows.

Lag = −∑
j

wi,j log pij, wi,j =

{
1
|Ωi |

, j 6= i
1, j = i

, ∀j ∈ Ωi (4)

where Ωi represents the nearest neighbor of xt
i in the entire target domain.

∣∣Ω(xt
i )
∣∣ indicates

the size of the neighbor set. For convenience, this loss function is called the camera-
independent neighborhood loss because it treats all candidates equally, regardless of their
camera indexes, when searching for neighbors.

Due to the scene changes between cameras, there is a significant difference in the
distribution of similarity between inter-camera matching and intra-camera matching [52].
The average pairwise similarity of inter-camera matches is smaller than that of intra-camera
matches. In this case, Equation (3) pushes the positive match between cameras away from
the probe, which causes issues. As an intuitive solution, a larger neighborhood is selected.
However, such an approach inevitably involves more negative matches, which is not
conducive to feature learning.

To solve this problem, this paper proposes to enforce neighborhood invariance for
intra-camera matching and inter-camera matching, respectively. It has the following two
assumptions. Ointra

i represents an instance set that shares the same camera with xt
i . Ointer

i
represents an instance set that has a different camera index from xt

i . For both intra-camera
matching and inter-camera matching of samples, only the instances in Ointra

i and Ointer
i can

be accessed respectively. Therefore, the probability that xt
i shares the same identity with

candidate xt
j in the camera is formalized as follows.

pintra
i,j =

exp
(

s×KT
j f (xt

i )
)

∑n∈Ointra
i

exp(s×KT
n f (xt

i ))
(5)
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As shown in Equation (6), the definition of the probability that the candidate has the
same identity between xt

i and the camera is similar to Equation (5).

pinter
i,j =

exp
(

s×KT
j f (xt

i )
)

∑n∈Ointer
i

exp(s×KT
n f (xt

i ))
(6)

Therefore, the original camera-agnostic loss function shown in Equation (3) is replaced
by the following two camera-perceived loss functions.

Lintra = −∑
j

wi,j logpintra
i,j , ∀j ∈ Ωintra

i

Linter = −∑
j

wi,j logpinter
i,j , ∀j ∈ Ωinter

i
(7)

where Ωintra
i and Ωinter

i represent the neighborhood set of xt
i between Ointra

i and Ointer
i ,

respectively. This paper defines the neighborhood based on the relative similarity with the
top-1 neighbor.

In addition, the mining neighborhood used in intra-camera matching is more reliable
than the mining neighborhood used in inter-camera matching without interference from
cross-camera changes. Therefore, it is much easier to learn the discriminative intra-camera
representation first, which can be conducive to accurate inter-camera matching. Therefore,
the proposed method uses Lintra before participation in Linter.

3.5. Style Transfer

The image style change caused by cameras is a key factor that affects the testing
process of person re-ID. In order to realize the invariance property of cameras in the target
domain, the proposed method learns the images of the same pedestrian with different
camera styles in an unlabeled target domain. These images retain different amounts of
personal identity information and reflect other camera styles, which can be used to generate
new target images. The proposed method adopts the CamStyle method to learn the camera
style transfer model in the target dataset. Unlike the image-to-image translation methods
using CycleGAN [44], CamStyle based on StarGAN [51] was proposed. StarGAN can
train multi-camera image-to-image conversion with a single model, while CycleGAN
needs to train a conversion model for each pair of cameras. Suppose the images in the
target dataset are captured by C cameras. A StarGAN model is first trained, which can
perform image-to-image conversion between each camera pair. For the real target image
xt,j collected by camera j(j ∈ 1, 2, . . . , C) in the target dataset, C fake images (camera style
transfer) xt∗ ,1, xt∗ ,2, . . . , xt∗ ,C that more or less contain the same number of people as xt,j
are generated by using the learned StarGAN model. However, their styles are similar to
cameras 1, 2, . . . , C. These C images contain the style transferred from camera j that has the
style of the real image xt,j.

3.6. Dual Attention Network

For the attention mechanism, the proposed method adopts the dual attention network
proposed by Fu et al. [27]. The specific structure is shown in Figure 2. The long-range
contextual information in both the space and channel dimensions is captured, respectively.
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Figure 2. The details of the position attention module and channel attention module.

3.6.1. Position Attention Module

The location attention module is introduced to build a rich context model based on
local features. The location attention module encodes broad context information into local
features, thereby enhancing their representation capabilities. As shown in Figure 2a, the
given local feature A ∈ RC×H×W is first input into a convolutional layer to generate two
new feature maps B and C, where {B, C} ∈ RC×H×W . Then they are reshaped into RC×N ,
where N = H ×W is the number of pixels. Next, matrix multiplication is performed
between the transposition of C and B, and the softmax layer is applied to calculate the
space. Note that the figure S ∈ RN×N .

sji =
exp(Bi × Cj)

∑N
i=1 exp(Bi × Cj)

(8)

where sji represents the influence of the i-th position on the j-th position. As the similarity
of the feature representations of two locations increases, the correlation between them
gets close.

Additionally, feature A is sent into the convolutional layer to generate a new feature
map D ∈ RC×N , and then the obtained feature map is reshaped into RC×N . Next, matrix
multiplication is performed between the transpose of D and S, and the result is reshaped to
RC×H×W . Finally, the reshaped result is multiplied by the scale parameter α and an element-
wise summation is performed by using feature A to obtain the final output E ∈ RC×H×W

as follows.

Ej = α
N

∑
i=1

(sjiDi) + Aj (9)

where α is initialized to 0, and then more weights are gradually assigned by learning.
According to Equation (9), the resulting feature E of each location is the weighted sum of
the features of all locations and the original feature. Therefore, there is a global context view,
and the contexts based on the spatial attention map are selectively aggregated. Similar
semantic features are mutually improved, thereby improving intra-class compactness and
semantic consistency.
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3.6.2. Channel Attention Module

Each channel graph of high-level features can be regarded as a class-specific response,
and different semantic responses are related to each other. By taking advantage of the
interdependence between channel mappings, the inter-dependent feature mapping is
emphasized, and the feature representation of specific semantics is improved. Therefore,
a channel attention module is used to explicitly model the inter-dependence between
channels. The structure of the channel attention module is shown in Figure 2b. Different
from the position attention module, this module directly calculates the channel attention
map X ∈ RC×C from the original feature A ∈ RC×H×W . Specifically, A is reshaped into
RC×N , and then matrix multiplication is performed between A and A’s transpose. Finally,
the softmax layer is applied to obtain the channel attention map X ∈ RC×C as follows.

xji =
exp(Ai × Aj)

∑C
i=1 exp(Ai × Aj)

(10)

where xji represents the influence of the i-th channel on the j-th channel. In addition, a
matrix multiplication is performed between the transpose of X and A, and the result is
reshaped to RC×H×W . Then the result is multiplied by a scale parameter β and an element-
wise summation operation is performed on A to obtain the final output E ∈ RC×H×W

as follows.

Ej = β
C

∑
i=1

(xji Ai) + Aj (11)

The weights are gradually learned from 0. Equation (11) shows that the final feature of
each channel is the weighted sum of all channel features and the original features, thereby
establishing a long-term semantic dependency between feature maps. It is conducive to
improving the distinguish ability of features.

In order to make full use of remote context information, the characteristics of these
two attention modules are integrated. Specifically, the outputs of the two attention modules
are transformed through the convolutional layer, and the element summation is performed
to complete the feature fusion. Lastly, the final prediction map is generated through the
convolutional layer.

4. Experiments
4.1. Dataset and Evaluation Metrics

The proposed method is applied to the widely used person re-ID datasets Market1501
and DukeMTMC-ReID for verification.

Market1501 was collected on the campus of Tsinghua University, constructed and
published in 2015. It includes 1501 pedestrians captured by 6 cameras and a total of 32,668
images. Among them, 12,936 images of 751 pedestrians (identities) are used for training,
and 19,732 images of 750 pedestrians (identities) are used for testing.

DukeMTMC-ReID is a person re-ID subset of the DukeMTMC dataset. It contains
16,522 training images from 702 people, and 2228 query images from the other 702 people.
The search gallery consists of 17,661 images. During the training process, the images
and camera labels are only used in the training set of each dataset. No other annotation
information is used. The two datasets are used as the source domain and target domain,
respectively. During the testing process, the cumulative matching features (CMC) of rank-1,
rank-5, rank-10, and average accuracy (mAP) are evaluated in the testing dataset of the
target domain.

4.2. Deep Re-ID Model

The proposed method uses the ResNet-based IBN-net as the backbone. The last
downsampling work of ResNet is discarded, resulting in a total stride of 16. Lintra and
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Linter participated in the second and fourth rounds of training, respectively. In terms of
the optimizer, stochastic gradient descent (SGD) with a momentum of 0.9 and a weight
decay of 1× 10−5 is used. The learning rates of the backbone layer and the new layer are
set to 0.0013 and 0.004, respectively. They are divided by 10 in the sixth period. The entire
training process lasts 15 epochs. Each mini-batch of data contains 32 source images and
32 target images. The size of all input images is adjusted to 256× 128. The setting of scale
factor s = 10, neighborhood range = 0.85, memory update momentum σ = 0.7, and beta
distribution parameter α = 0.6 are used in experiments. During the testing process, the
output of the final batch normalization layer is used as the image embedding. The cosine
similarity is used as a measure of retrieval. All experiments are performed on two TESLA
P100 using the PyTorch platform.

4.3. Parameter Analysis

Beta distribution parameter α: The parameter α determines the distribution of the in-
terpolation coefficient λ. Assigning a large value to α results in a strong regularization. The
value of parameter α is changed to five different values and the corresponding performance
is evaluated under the above settings. As shown in Figure 3, both the rank-1 accuracy and
mAP fluctuate little with the change in α. It confirms that the proposed method is relatively
robust to cross-domain hybrid settings.

Figure 3. Evaluation with different values of the beta distribution parameter α.

Scaling factor s: The scale factor s in Equation (3) is critical to the final performance.
A large s can sharpen the probability distribution and simplify optimization. However,
assigning too a large value to s may cause the task to be too trivial to learn discriminative
features. The model under five different values of s is trained, and the corresponding
results are shown in Table 1. When s = 10 and s = 12, the proposed method achieves the best
performance on Market-1501 and DukeMTMC-reID, respectively. When s becomes too large
or too small, the corresponding performance of the proposed method drops considerably.

Table 1. Evaluation with different scale factor s values.

s
Duke to Market Market to Duke

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

6 68.5 82.3 86.6 38.3 61.8 72.6 76.4 39.3
8 75.1 86.4 89.7 45.6 65.9 75.9 80.4 44.2

10 80.1 89.9 93.2 60.1 68.1 79.1 82.3 46.9
12 78.8 88.9 91.9 54.3 69.5 80.4 83.4 48.5
14 76.6 87.4 90.6 53.5 68.9 80.7 84.3 53.0

4.4. Ablation Study

In order to verify the effectiveness of the attention mechanism, DukeMTMC-reID is
used as the source domain to evaluate the performance of the attention mechanism on
Market-1501. In the main body network, the proposed method adds location attention and
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channel attention to the first and fifth layers of the backbone network. The experiments
prove that adding two channels at the same time by controlling variables helps improve
the accuracy of the model. As shown in Table 2, when no attention mechanism is added,
the accuracy of both mAP and Rank-1 is the lowest, which is about 3% lower than the
corresponding values. However, only the positional attention mechanism or the channel
attention mechanism is still less effective than the best accuracy. In addition, more experi-
ments are implemented. The channel attention mechanism is added to the first layer and
the position attention mechanism is added to the fifth layer. The position attention mecha-
nism and channel attention mechanism are added to the first and fifth layers, respectively.
The final accuracy shows that the performance of the proposed model is optimal only when
both the position attention mechanism and channel attention mechanism are added at the
same time.

Table 2. An ablation study on DukeMTMC-reID to Market1501. The best accuracy is reached when
channel and location attention are added.

Method
Duke to Market

Rank-1 Rank-5 Rank-10 mAP

None 77.8 88.1 91.7 48.4
Channel 78.8 88.3 91.7 48.6
Position 78.7 88.9 92 48.5

Position-Channel 77.9 88 91.5 50.5
Channel-Position 79.1 88.7 92.5 53.5
Channel+Position 80.5 89.5 93.2 60.1

4.5. Comparison with State-of-the-Art Methods

Results on Market-1501 dataset. DukeMTMC-reID is used as the source domain
to evaluate the performance of the proposed method on Market-1501. The results are
compared with the representative works in different directions, including methods based
on style transfer [16,34,52], methods based on pseudo-label estimation [42,51], and methods
in mining domains [9,23–25]. As shown in Table 3, the proposed method is superior to the
current leading methods in terms of Rank-1 accuracy and mAP.

Table 3. Comparison with state-of-the-art cross-domain methods on Market-1501 and DukeMTMC-
reID. The proposed method shows better accuracy on both datasets.

Method
Market1501 DukeMTMC-reID

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

PTGAN [16] 38.6 - 66.1 - 27.4 - 50.7 -
SPGAN [52] 51.5 70.1 76.8 22.8 41.1 56.6 63 22.3

CamStyle [53] 58.8 78.2 84.3 27.4 48.4 62.5 68.9 25.1
HHL [50] 62.2 78.8 84 31.4 46.9 61 66.7 27.2
MAR [9] 67.7 81.9 - 40 67.1 79.8 - 48

PAUL [24] 68.5 82.4 87.4 40.1 72 82.7 86 53.2
ARN [54] 70.3 80.4 86.3 39.4 60.2 73.9 79.5 33.4
ECN [23] 75.1 87.6 91.6 43 63.3 75.8 80.4 40.4
UDA [55] 75.8 89.5 93.2 53.7 68.4 80.1 83.5 49
PAST [41] 78.4 - - 54.6 72.4 - - 54.3
SSG [42] 80 90 92.4 58.3 73 80.6 83.2 53.4

CV-DA [51] 79.7 89 91.4 59.8 71.1 81.2 84.2 52.6

Ours 80.5 89.9 93.2 60.1 71.2 81.7 84.3 53.0

Results of DukeMTMC-reID dataset. Market-1501 is used as the source domain, and
the performance of the proposed method is evaluated on DukeMTMC-reID. As shown on
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the right side of Table 3, the performance of the proposed method is competitive with other
state-of-the-art methods.

5. Conclusions

In this paper, a cross-domain person re-ID model is proposed, which considers both
intra-domain changes and inter-domain transfers. The neighborhood invariance method
is used to supervise feature learning in the target domain. However, due to the huge
differences between cameras, the neighbor search often has a relatively large deviation.
So, the proposed method applies StarGan to transform the image style. In addition, this
paper uses a channel attention mechanism and a position attention mechanism to improve
the robustness of feature extraction of the backbone network. An ablation study verifies
the effectiveness of each proposed module. Comparative experiments verify that the
proposed method outperforms state-of-the-art methods. The proposed method achieves
higher accuracy of two objective evaluation indicators, rank-1 and mAP, on two general
datasets. In future research, unsupervised learning of person re-ID will be further explored
to improve the generalization capability of the proposed model in practical applications.
Additionally, data security enhancement in research will also be considered to prevent the
related data from being used by illegal organizations.

The General Data Protection Regulation (GDPR) was issued by the European Union
in 2018. When cameras are deployed in public areas for capturing images used in further
analysis, data privacy protection should indeed be considered. In addition, China has
also issued relevant regulations, such as the Personal Information Protection Law and the
Data Security Law. Security cameras currently focus on capturing the overall appearance
information of pedestrians. The resolution of current security cameras is not high enough.
Generally, they do not obtain clear facial information. So, it is difficult to achieve the
related analysis of pedestrian information by facial recognition. As a basic principle of
research, when any research involves obtaining and processing pedestrian images, the
related research must strictly abide by the laws and regulations of various countries. Any
personal identity information involved in the related research is not allowed to be obtained,
kept, or sold.
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