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����������
�������

Citation: Damaševičius, R.;

Maskeliūnas, R. Agent State Flipping

Based Hybridization of Heuristic

Optimization Algorithms: A Case of

Bat Algorithm and Krill Herd Hybrid.

Algorithms 2021, 14, 358. https://

doi.org/10.3390/a14120358

Academic Editor: Antonio Della

Cioppa

Received: 15 November 2021

Accepted: 8 December 2021

Published: 10 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
2 Department of Multimedia Engineering, Kaunas University of Technology, 51368 Kaunas, Lithuania;

rytis.maskeliunas@ktu.lt
* Correspondence: robertas.damasevicius@polsl.pl

Abstract: This paper describes a unique meta-heuristic technique for hybridizing bio-inspired
heuristic algorithms. The technique is based on altering the state of agents using a logistic probability
function that is dependent on an agent’s fitness rank. An evaluation using two bio-inspired algorithms
(bat algorithm (BA) and krill herd (KH)) and 12 optimization problems (cross-in-tray, rotated hyper-
ellipsoid (RHE), sphere, sum of squares, sum of different powers, McCormick, Zakharov, Rosenbrock,
De Jong No. 5, Easom, Branin, and Styblinski–Tang) is presented. Furthermore, an experimental
evaluation of the proposed scheme using the industrial three-bar truss design problem is presented.
The experimental results demonstrate that the hybrid scheme outperformed the baseline algorithms
(mean rank for the hybrid BA-KH algorithm is 1.279 vs. 1.958 for KH and 2.763 for BA).

Keywords: hyper-heuristic; meta-heuristic; bio-inspired algorithms; heuristic optimization

1. Introduction

In global optimization problems, the objective function often has a high computational
complexity, high dimensionality, and non-trivial landscape. Such tasks are of high practical
significance, and a lot of methods have been proposed as a basis to find their solutions.
Localization capability with a high probability of sub-optimal (close to optimal) solutions
is one of the main advantages of this class of algorithms, in addition to their versatility
and simplicity of implementation. In practically important optimization problems, it is
often sufficient to make such decisions. Some methods are specially developed or are best
suited for solving optimal problems with mathematical models of a certain type. Thus, the
mathematical apparatus of linear programming is specially designed to solve problems
with linear optimality criteria and linear constraints on variables and leads to the solution
of most of the problems formulated in this formulation. Dynamic programming is well
suited for solving optimization problems of multi-stage processes, especially those in
which the state of each stage is defined by a relatively small number of state variables.
However, in the presence of a significant number of these variables, that is, with a high
dimension in each stage, the use of the dynamic programming method is difficult due to
the limited speed and memory capacity of computers. Perhaps the best way to choose
the optimization method that is most suitable for solving the corresponding problem is to
study the possibilities and experiences of using various optimization methods.

Bio-inspired algorithms are an actively developing area of heuristic optimization
and decision-making methods [1]. Meta-heuristic optimization methods motivated by
examples in nature are becoming more common in real-life applications. At the moment,
the most promising direction can be considered the creation of new versions of bio-inspired
algorithms, which take into account problem-oriented information about the search area
for optimal solutions, as well as the history of the search. Bio-inspired algorithms exploit
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the principles of the collective behavior of living organisms, such as insect swarms or bird
flocks. Bio-inspired algorithms, in a broader sense, define the behavior of communicative
agents in a multi-agent system. Whereas every agent has a limited processing capability,
the system of agents (such as a swarm) as a whole can accomplish complicated tasks, such
as searching for resources. Many current meta-heuristic algorithms have been presented
that are influenced by natural or social events, such as grey wolf optimizer (GWO) [2],
artificial bee colony (ABC) [3], particle swarm optimization (PSO) [4], firefly algorithm
(FA) [5], krill herd (KH) [6], polar bear optimization [7], and red fox optimization [8]. Such
algorithms are commonly used in various domains, including scientific computing [9],
image recognition [10], software bug detection [11], industrial production optimization [12],
and disease recognition from biomedical images [13,14].

The No Free Lunch theorem [15], which proved that, for an optimization algorithm,
any improvement in performance for a single category of problems leads to a decrease in
performance for another category, has motivated the comparison of bio-inspired algorithms
for solving various optimization problems. As a rule, it is impossible to recommend the
adoption of any one method without exception to solve all problems that arise in practice.

To create new, highly efficient bio-inspired algorithms, a method such as hybridization
is used. Hybridization is an evolutionary meta-heuristic approach [16]. Meta-heuristics
are flexible and easy to use since they replicate physical or biological events and only
address inputs and outcomes. Meta-heuristics are also a type of probabilistic optimization
approach. This trait enables them to efficiently avoid local optima, which are common
in real-world issues. Meta-heuristic algorithms typically outpace heuristic optimization
methods in solving numerous difficult and challenging optimization problems in real life
due to their simplicity, flexibility, and ability to escape local optima. In the process of their
development, hybrid bio-inspired algorithms can overcome the main disadvantages of
classical bio-inspired algorithms.

A simple method of hybridization is to combine two algorithms to create a new
one. There may be several heuristics from which to pick when addressing an issue, and
each heuristic has its own set of strengths and limitations. The goal is to automatically
create algorithms by combining the strengths and correcting the weaknesses of known
heuristics. A broader concept is to automatically create new algorithms by combining the
strengths and correcting the faults of existing heuristic algorithms. This approach is known
as hyper-heuristic, and it aims to automate the selection, combination, or adaptation
of numerous simpler heuristics (or parts thereof) to solve computational optimization
problems quickly [17].

When compared to the conventional application of meta-heuristics for optimization
issues, hyper-heuristics perform at a higher level. In other words, a hyper-heuristic is a
higher-level heuristic that acts on lower-level heuristics [18], with the goal of intelligently
selecting the best heuristic or technique for a particular situation. Hyper-heuristics fre-
quently employ a “selection function”, which leverages the exploitation and exploration
operations in order to select the best heuristic to employ [19]. The selection function
can be stochastic [20], lower-level heuristic performance based [18], evolutionary [21], or
greedy [20]. A greedy selection function favors low-level heuristics with the highest current
performance. The decision function, for example, can be described as a third-order tensor
of the record of a hyper-heuristic [22]. The factorization of such a tensor shows hidden
links between lower-level heuristics and the higher-level heuristic.

The co-algorithmic hybridization of population optimization algorithms is based on
the following basic idea. Simultaneously, several sub-populations evolve in the search
space, each of which is based on one of the population algorithms and solves the optimiza-
tion problem. Each of the sub-populations “fights” for computational resources, which,
at the end of a given number of iterations, are redistributed in favor of the more efficient
sub-population. A co-algorithm can be built around various optimization algorithms,
for example, artificial bee colony (ABC) [23] and particle swarm optimization (PSO) [24].
Researchers have also proposed new hybrid algorithms by merging two or more meta-
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heuristic algorithms, such as the multistart hyper-heuristic [25], which combines ant colony
optimization (ACO), robust tabu search (RTS), simulated annealing (SA), and breakout
local search (BLS), and the hybridization of KH and ABC algorithms [26].

This study describes a unique meta-heuristic technique for hybridizing nature-inspired
algorithms. The technique is based on altering the state of the agents by employing a logistic
function that is dependent on an agent’s fitness rank.

The remaining parts of the article are organized follows. Section 2 discusses previous
studies. Section 3 presents the proposed methods. Section 4 analyzes the results. Section 5
presents the results of experiments on the industrial engineering design problem of the
three-bar truss design. Finally, Section 6 reviews the main findings and concludes this work.

2. Related Works

Heuristic optimization methods can be categorized into evolutionary and behavioral
(imitation) methods [27]. Behavioral methods are based on modeling the collective behavior
of self-organizing living or non-living systems, the interacting elements of which are
called agents. The key ideas of behavioral methods are decentralization, the interaction of
agents, and the simplicity of their behavior [28]. To improve the efficiency of behavioral
methods of global optimization, two main approaches are currently used—hybridization
and meta-optimization. Hybridization combines either different methods or the same
methods but with different values of the free parameters so that the effectiveness of one
method compensates for the weakness of the other. There are several classifications of
hybridization algorithms for behavioral methods of global optimization [29]. According
to X. Wang, hybridization is distinguished according to the scheme of the embedded
methods, the hybridization of the pre-processor/post-processor type, and the co-algorithm
hybridization [30]. High-level embedded hybridization implies a loose coupling of the
combined methods. In this case, combined methods retain significant autonomy, so it
is relatively easy to single out each of them in the final method. In low-level embedded
hybridization, the combined methods are so strongly integrated that it is usually impossible
to isolate the components of the final method; i.e., low-level hybridization creates, in fact, a
new method.

Behavioral methods of global optimization, particularly hybrid methods, have a large
number of free parameters. The effectiveness of a method often depends on the values of
these parameters. On the other hand, there are usually no rules for selecting the values
of these parameters. Therefore, one of the main approaches to increase the effectiveness
of behavioral methods is to develop algorithms for adapting the values of their free
parameters to the features of a specific optimization problem or to the features of a certain
class of optimization problems—the meta-optimization of behavioral methods. The most
famous classifications of meta-optimization algorithms are presented in [31,32]. The idea
of one-time parameter-tuning algorithms is that the program implementing the considered
optimization method is executed for different values of its free parameters on a large
number of optimization problems of a particular class. Based on the research results, the
parameter values with the best efficiency indicators are selected, in accordance with which
algorithms for parameter tuning and those for parameter control are distinguished [33].

Related to hyper-heuristics are evolutionary algorithms (EAs) [34], which can dis-
cover the optimal EA to optimize problem solutions. Self-modification Cartesian genetic
programming [35] encodes low-level heuristics with self-modifying operators, and the
exponentially expanding hyper-heuristic [36] employs a meta-hyper-heuristic algorithm to
seek the heuristic space for better performance. The leader-following consensus problem
can be characterized as a combination of heuristics, where the leader is the heuristic with
the greatest fitness and is pursued by other heuristics.

We discuss other notable examples from the literature below. Alrassas [37] proposed a
modified ANFIS (adaptive neuro-fuzzy inference system) model created using the Aquila
Optimizer (AO), a novel optimization technique. The AO is a recently developed opti-
mization algorithm influenced by the natural behavior of Aquila. AO-ANFIS, the created
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model, was tested using real-world datasets given by local partners. Furthermore, thor-
ough comparisons to the standard ANFIS model and numerous improved ANFIS models
utilizing various optimization strategies were performed. The AO-ANFIS outperformed
classic ANFIS and various modified models in terms of numerical results and statistics
while also improving ANFIS prediction accuracy.

Helmi et al. [38] proposed a lightweight feature selection (FS) technique to improve
classification for a real-world human activity recognition problem. The new FS approach,
known as GBOGWO, intends to increase the performance of the gradient-based optimizer
(GBO) algorithm by utilizing grey wolf optimizer’s (GWO) operators. Support vector
machine (SVM) is employed to categorize the activities once GBOGWO has selected
suitable characteristics. Extensive tests were carried out to assess the efficiency of GBOGWO
utilizing well-known UCI-HAR and WISDM datasets. The results suggested that GBOGWO
enhanced the classification accuracy by an average of 98%.

Jouhari et al. [39] proposed a modified Harris hawks optimizer (HHO), providing an
efficient method for addressing UPMSPs. The new approach, dubbed MHHO, employs the
salp swarm algorithm (SSA) as a local search strategy to improve HHO’s performance and
reduce its computation time. Several tests were carried out to evaluate the characteristics
of MHHO utilizing small and large problem scenarios. Furthermore, the proposed method
was compared to other modern UPMSP methodologies. The MHHO outperformed the
other methods in both small and large problem scenarios.

In Makhadmeh et al. [40], grey wolf optimizer (GWO), a swarm-based optimization
method influenced by grey wolf behavior, was developed to address the power scheduling
problem in a smart home (PSPSH). GWO features strong operations that are regulated
by dynamic parameters that maintain exploration and exploitation actions in the search
space. Simulations were performed using seven scenarios of power consumption and
dynamic pricing schemes in order to assess the multi-objective PSPSH employing the SHB
(BMO-PSPSH) approach. The performance of the BMO-PSPSH technique was compared to
that of 17 other recent algorithms.

Neggaz et al. [41] developed a new salp swarm optimizer (SSA) version that, when
paired with the sine cosine algorithm and the disruption operator, adjusts the location of
followers in SSA using oscillating functions. This improvement aids in the discovery phase
and avoids stagnation in a limited region. The disruption operator is used to increase
variation in the population and maintain the balance between exploration and exploitation
processes. The experimental outcomes were examined using 20 datasets, 4 of which had
high complexity and a limited number of occurrences.

Ksiazek et al. [42] proposed using a modified ant lion optimizer for effective simulation
and positioning models to assist human operators with radiation heat transfer in an electric
furnace, which is supported by the results of tests that suggest that the proposed algorithm
may efficiently settle the system.

Cruz et al. [43] provided an approach for customizing population-based meta-
heuristics based on a heuristic model driven by simulated annealing. The method uses
search operators from 10 meta-heuristic strategies as building blocks for new strategies.
The method was tested on 107 benchmark high-dimensional functions under various
experimental settings. The results show that it is feasible to create high-performing meta-
heuristics with a variety of settings for each case study in an automated manner.

Turky et al. [44] presented a hyper-heuristic framework comprising numerous local
optimization techniques and a pool of neighborhood structures. First, a two-stage hyper-
heuristic framework is constructed for choosing a local search method and its operators.
Second, an adaptive ranking system selects the best neighborhood constructs for the
present local search method. It assesses the benefits of the local search in terms of quality
and variety using entropy and adaptively updates the pool of potential neighborhood
structures. Third, a population of solutions is employed to efficiently travel to various
sections of the solution search space.
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Wang et al. [45] proposed a hybrid AO and HHO technique merged with a non-
linear escape energy parameter and stochastic opposition-based learning technique. First,
integrating the key characteristics of AO and HHO preserves considerable exploration and
exploitation opportunities. Second, in the exploitation phase, stochastic opposition-based
learning is incorporated to increase the evasion of local optima. Finally, to leverage the
exploration and exploitation stages, the non-linear escape energy parameter is used. The
hybrid algorithm was assessed on 23 benchmark functions and 4 industrial engineering
challenges to validate its optimization performance.

Abd Elaziz et al. [46] proposed a method that relies on the operators of six meta-
heuristic algorithms (symbiotic organisms search (SOS), WOA, differential evolution (DE),
GWO, SCA, and SSA), which allow solutions to be more diverse. Two benchmarks, the
IEEE CEC 2014 and IEEE CEC 2017, were used to assess the technique.

In Dabba et al. [47], the quantum moth flame optimization algorithm (QMFOA), a
unique swarm intelligence system for gene selection that is based on the hybridization of
quantum computation with the moth flame optimization (MFO) algorithm, was proposed.
The QMFOA is a straightforward two-phase technique. The first phase is a pre-processing
phase that solves the challenge of high-dimensional data by measuring the redundancy
and relevance of the gene in order to acquire the relevant gene set. In order to tackle the
gene selection problem, the second phase involves the hybridization of MFOA, quantum
computing, and support vector machine (SVM) with leave-one-out cross-validation, among
other things. The authors employed quantum computing to provide a good trade-off
between exploration and exploitation of the search space, while a new updated moth
operation based on Hamming distance and the Archimedes spiral enables rapid exploration
of all conceivable gene subsets.

In Huo et al. [48], a hybrid differential symbiotic organisms search (HDSOS) method
was developed by merging the differential evolution (DE) mutation approach with modi-
fied symbiotic organism search techniques (SOS). The proposed method retains the SOS’s
local search capacity while also having a high global search capability. Furthermore, a
perturbation method is used to improve the algorithm’s resilience.

Shehadeh [49] proposed a combination of the gravitational search algorithm (GSA)
and “sperm swarm optimization” (SSO), called HSSOGSA. The presented algorithm’s
basic principles and ideas are to combine the power of exploitation in SSO with the
capability of exploration in GSA in order to combine the strengths of both algorithms. The
proposed HSSOGSA method was compared to the regular GSA and SSO algorithms. These
algorithms were evaluated using two mechanisms: qualitative and quantitative testing.
The study used best fitness, standard deviation, and average metrics for the quantitative
test, while for the qualitative test, the authors compared the convergence rates attained by
the proposed algorithm to the convergence rates achieved by SSO and GSA.

Kundu and Garg [50] proposed an enhanced teaching–learning Harris hawks opti-
mization (ITLHHO) based on teaching–learning-based optimization for tackling various
types of engineering design and numerical optimization problems. ITLHHO’s performance
was demonstrated by using 33 well-known benchmark functions, including IEEE Congress
on Evolutionary Computation’s CEC-C06 2019 Competition Test Functions and 10 engi-
neering optimization problems, and the significance of the results was demonstrating by
statistical analysis with the Wilcoxon rank-sum test and multiple comparison test.

Chiu et al. [51] proposed a hybrid of the sine cosine algorithm and fitness-dependent
optimizer (SC-FDO) for updating the velocity (pace) using the sine cosine scheme. SC-
FDO, the proposed method, was evaluated on 19 classical and CEC-C06 2019 benchmark
test functions. The results showed that SC-FDO outperformed the original FDO and
well-known optimization techniques in the majority of scenarios. The proposed SC-FDO
improved on the original FDO by obtaining a better exploit–explore trade-off while also
attaining a quicker convergence speed.

In Alkhateeb et al. [52], a hybrid cuckoo search and simulated annealing (CSA) ap-
proach was proposed. The optimization operators of the simulated annealing technique
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are included in the cuckoo search algorithm. They introduced discrete CSA (DCSA), a
discrete version of CSA for solving the JSSP, in this study. DCSA introduces four changes
to CSA. First, in the initialization stage, it employs the opposition-based learning approach
to generate a varied set of candidate solutions. Second, it combines variable neighborhood
search (VNS) and Lévy flight techniques to improve search space exploration. Third, it
jumps out of local optima using the elite opposition-based learning approach prior to the
abandonment stage of CSA. Finally, the lowest position value is used.

In this paper, we introduce a hyper-heuristic for combining the behavior of two
independent heuristic algorithms. The combination of the BA [53] and the KH [6] is
provided as a case study. Using 12 benchmark optimization challenges, the efficiency of
the hyper-heuristic is compared to that of stand-alone BA and KH.

3. Hybridization Method
3.1. General Description

The presented hybridization approach designates the state (corresponding to the
behavior) of each agent and proposes an algorithm for how this state evolves during
algorithm execution. We presume that an agent’s behavior is fully set by its state. If a
swarm of agents is under-performing, their states can be adjusted in the hope that the
change in behavior will lead to improved performance. As a result, the status of the agents
is not consistent and might change from the previous iteration to the next iteration. The
hybridization hyper-heuristic pseudo-code is shown below in Algorithm 1.

For simplicity, let there be two possible states (Agent1 or Agent2), while their appro-
priate actions are defined by Algorithms 2 and 3.

Algorithm 1 Proposed hybridization algorithm.

1: Set initial positions of swarming agents
2: Initialize algorithms Algorithms 2 and 3
3: while iterations not completed do
4: if iteration is first then
5: Set the agent state to Agent1 or Agent2 randomly
6: else
7: Use logistic probability function to flip the state of agents
8: end if
9: for agent ∈ state of Agent1 do

10: Compute new position using a single step of Algorithm 2
11: end for
12: for agent ∈ state of Agent2 do
13: Compute new position using a single step of Algorithm 3
14: end for
15: Combine both populations
16: end while
17: Return the performance of the best agent

The probability of switching the agent’s state in Line 6 of the pseudo-code is computed
using a common logistic function:

P(r) =
1

1 + e−(r−n/2)
(1)

where r is the performance rank of an operating agent (agents are arranged from best-
performing to worst-performing agents by their fitness value), and n is the total count of
agents in the population.

In our further experiments, Algorithm 1 is krill herd (KH) and Algorithm 2 is the bat
algorithm (BA), which are explained below.
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3.2. Krill Herd (KH)

Krill herd (KH) is a swarm intelligence optimization approach influenced by Antarctic
krill herding behavior and takes into account krill’s Lagrangian and evolutionary activities
in their native habitat [6]. Krill can form enormous herds that can span hundreds of
meters in length. Whenever predators (such as penguins or other birds) attack krill herds,
they remove a krill, resulting in a lower krill density. Following a predator assault, krill
formation is a multi-objective process aimed at increasing the krill density and accessing
food. The krill swarm density, krill distance, and food density all influence the goal function
in KH. The krill position is determined by the following factors: (i) movement caused
by other krill, (ii) foraging movement, and (iii) physical diffusion. When looking for the
maximum density and food, every individual krill migrates towards the best feasible
solution. The smallest distances between individual krill and food, as well as the largest
density of the herd, are regarded as the objective function for krill movement, which
eventually leads to krill herding around the global minima.

The KH method uses the Lagrangian model in a d-dimensional solution space as follows:

dXi
dt

= Ni + Fi + Di (2)

where Ni, Fi, and Di are the movement caused by other krill, foraging movement, and
physical scattering of the ith krill.

The direction of motion, alphai, of the movement caused by other krill is approximated
by the target swarm density, local swarm density, and repulsive swarm density. This
movement may be characterized for a krill individual as shown below, where Nmax is
the greatest induced speed, omegan is the motion inertia weight in [0, 1], and Nold

i is the
final movement.

Nnew
i = Nmaxαi + ωnNold

i (3)

The two basic components estimate the foraging motion. The first is the food po-
sition, and the second is prior knowledge of the food position. This movement may be
approximated for the ith krill as:

Fi = Vf βi + ω f Fold
i (4)

where
βi = β

f ood
i + βbest

i (5)

and Vf is foraging velocity, ω f is the inertia of foraging motion, and Foldi is the final foraging
movement.

In general, the random dispersal of krill individuals might be considered a random
process. A maximum scattering velocity and a random directed vector can be used to
define this motion. It is defined as:

Di = Dmaxδ (6)

where Dmax is the greatest scattering velocity, and δ is the stochastic vector with values
from [−1, 1].

The spatial vector of a krill throughout the interval t to t + ∆t is calculated based on
the three above-mentioned motions and varying factors of the motion during this time, as
follows:

Xi(t + ∆t) = Xi(t) + ∆t
dXi
dt

(7)

The KH algorithm is summarized in Algorithm 2.
The KH method has been demonstrated to be capable of effectively solving multiple

numerical optimization problems [54], but it cannot avoid local optima, so it cannot be
used to find a global optimum solution.
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Algorithm 2 Pseudo-code for the KH Algorithm.

1: Define the bounds, parameter(s), and so forth.
2: Randomly create the starting population in search space.
3: Assess each krill based on its position.
4: Perform movement calculation.
5: Calculate movement influenced by other krill: foraging movement and physical scat-

tering.
6: Update the krill location in the search space.
7: Go to Line 3 until the stopping criteria are reached.

3.3. Bat Algorithm (BA)

The bat algorithm was proposed by Yang in [53] and motivated by the echolocation
behavior of bats. Microbat echolocation can be characterized as follows: each virtual bat
flies at a random velocity vi at position (solution) xi with varying frequency or wavelength
and loudness Ai. Its frequency, loudness, and pulse emission rate r fluctuate as it seeks
for and finds its victim. A local random walk is used to enhance the search. The best
ones are chosen until the specified stop requirements are reached. The dynamic behavior
of a swarm of bats is controlled using a frequency-tuning approach, and the balance
between exploration and exploitation can be managed by tweaking algorithm-dependent
parameters in the bat algorithm.

The steps in BA are as follows:

• All bats employ echolocation to sense distance, and a bat’s location xi is regarded as a
solution to a problem.

• Bats look for prey by flying randomly at location xi with variable frequency (from the
smallest frequency fmin to the largest value fmax) with varying wavelengths lambda
and loudness A. They can automatically alter the wavelengths (or frequencies) of their
emitted pulses as well as the rate of pulse emission r based on the target’s distance.

• The value of loudness ranges from a large positive number A0 to the smallest value
Amin.

Each bat i should have its position (xi) and velocity (vi) defined in a d-dimensional
solution space. Position xi should be updated as the iterations progress.

fk = fmin + ( fmax − fmin)rand (8)

vt+1
k = vt

k + (x∗ − xt
k) fk (9)

xt+1
k = xt

k + vt+1
K (10)

where rand ∈ [0, 1] is a stochastic vector drawn from a uniform distribution. In this case, x∗

is the current global best position (solution) found after evaluating all solutions across all n
bats. A new solution is produced locally for each bat using the random walk, defined as

Xnew = Xold + ε〈Ak+1〉 (11)

where ε ∈ [−1, 1] is a stochastic number, while 〈At+1
k 〉 is the mean loudness of bats at the

current time step.
As iterations proceed, the loudness and rate of pulse emission are modified. As the bat

comes closer to its meal, the volume decreases, and the pulse rate increases. The following
equations are the formulas for loudness and puls e rate update:

At+1
k = ωAt

k (12)

rt+1 = r0(1− exp(−η)) (13)

where 1 < ω < 1 and η < 1 are constants. As t → ∞, we have At
k → 0 and rt

k → r0
k . The

initial parameters are defined as follows: A0 ∈ [1, 2] and emission rate r0 ∈ [0, 1].
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The BA algorithm is summarized in Algorithm 3.

Algorithm 3 Bat algorithm.

1: Define objective function
2: Initialize the flock of bats
3: Define frequency of pulse
4: Set loudness and pulse rates
5: while t ≤ tmax do
6: Adjust value of frequency
7: Update velocities
8: Update locations/solutions
9: if (rand > rk) then

10: Select a solution from a set of best solutions
11: Create a local solution nearby the selected best solution
12: end if
13: Create a new solution for a bat flying randomly
14: if (rand < Ak & F(xk) < F(x∗)) then
15: Adopt new solutions
16: Increase rk
17: Decrease Ak
18: end if
19: Evaluate all bats and pick the current best bat
20: end while

3.4. Summary

The proposed hyper-heuristic hybridization approach, which is applied to the hy-
bridization of the BA and KH algorithms, is visually presented in Figure 1. Whereas
low-performing agents strive to copy the behavior of well-performing agents by flipping
to their style of behavior, a fascinating collective behavior emerges as a result of the basic
process of probabilistic state flipping. If, however, a single state applies to the bulk of
agents, worse-performing agents begin to migrate to another state. Such opportunistic
behavior is a trade-off between exploration and exploitation. The exploration process aids
in getting near the global minimum or a local minimum, whereas the exploitation process
aids in more precisely locating the global minimum. As a result, the hyper-heuristic strikes
a balance between local and global qualities since the baseline algorithm may have a biased
behavior towards global or local searching, thus allowing the diversification of the search
to prevent becoming locked in a local optimum.
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Figure 1. Abstract scheme of the introduced meta-heuristic hybridization approach.

4. Benchmarks

To experimentally validate the proposed approach, we employed 12 mathematical
benchmark functions as follows: cross-in-tray (Equation (14)), rotated hyper-ellipsoid
(RHE) (Equation (15)), sphere (Equation (16)), sum of different powers (Equation (17)),
sum of squares (Equation (18)), McCormick (Equation (19)), Zakharov (Equation (20)),
Rosenbrock (Equation (21)), De Jong function No. 5 (Equation (22)), Easom (Equation (23)),
Branin (Equation (24)), and Styblinski–Tang (Equation (25)). These functions were recently
used to evaluate other heuristic optimization methods [55,56].

f1(x) = −0.0001(| sin(x1) sin(x2) exp(|100−

√
x2

1 + x2
2

π
|)|+ 1)0.1, xi ∈ [−10, 10], ∀i = 1, 2. (14)

f2(x) =
d

∑
i=1

i

∑
j=1

x2
j , xi ∈ [−65.536, 65.536], ∀i = 1, . . . , d. (15)

f3(x) =
d

∑
i=1

x2
i , xi ∈ [−5.12, 5.12], ∀i = 1, . . . , d. (16)

f4(x) =
d

∑
i=1
|xi|i+1, xi ∈ [−1, 1], ∀i = 1, . . . , d. (17)

f5(x) =
d

∑
i=1

ix2
i , xi ∈ [−5.12, 5.12], ∀i = 1, . . . , d. (18)

f6(x) = sin(x1 + x2) + (x1 − x2)
2 − 1.5x1 + 2.5x2 + 1, x1 ∈ [−1.5, 4], x2 ∈ [−3, 4]. (19)
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f7(x) =
d

∑
i=1

x2
i + (

d

∑
i=1

0.5ixi)
2 + (

d

∑
i=1

0.5ixi)
4, xi ∈ [−5, 10], ∀i = 1, . . . , d. (20)

f8(x) =
d−1

∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2], xi ∈ [−5, 10], ∀i = 1, . . . , d. (21)

f9(x) = (0.002 +
25

∑
i=1

1
i + (x1 − a1i)6 + (x2 − a2i)6 )

−1, xi ∈ [−65.536, 65.536], ∀i = 1, 2. (22)

f10(x) = − cos(xi) cos(x2) exp(−(x1 − π)2 − (x2 − π)2), xi ∈ [−100, 100], ∀i = 1, 2. (23)

f11(x) = a(x2 − bx2
1 + cx1 − r)2 + s(1− t)cos(x1) + s, x1 ∈ [−5, 10], x2 ∈ [0, 15], (24)

where a = 1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10, t = 1/(8π).

f12(x) =
1
2

d

∑
i=1

(x4
i + 16x2

i + 5xi), xi ∈ [−5, 5], ∀i = 1, . . . , d, (25)

where d denotes the dimensionality.
These functions are typically used to benchmark newly proposed evolutionary and

bio-inspired optimization methods [57]. They are visualized in Figure 2.

Figure 2. Visualization of optimization problems used in this study.
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The benchmark functions are summarized in Table 1 according to their properties
of continuity, differentiability, separability, scalability, and unimodality. A function is
differentiable if its first derivative is defined at each point in its domain. A function is
separable if it is defined as the sum of several functions, where at least one is a single-
variable function. A function is unimodal if it only has one minimum or maximum in
its landscape. A function is continuous if small changes in its output can be ensured by
restricting to sufficiently small changes in its input. The hardest problems are considered
to be non-differentiable, non-separable, and multi-modal.

Table 1. Benchmark functions used in this manuscript.

Function Ref. Continuous Differentiable Separable Scalable Unimodal

Cross-In-Tray [58] Yes No No No No
Rotated

Hyper-Ellipsoid [59] Yes Yes Yes Yes Yes

Sphere [58] Yes Yes Yes Yes No
Sum of Different

Powers [60] Yes Yes Yes Yes Yes

Sum of Squares [58] Yes Yes Yes Yes Yes
McCormick [58] Yes Yes No No No
Zakharov [58] Yes Yes No Yes No

Rosenbrock [58] Yes Yes No Yes Yes
De Jong No. 5 [60] Yes Yes Yes Yes No

Easom [58] Yes Yes Yes No No
Branin [60] Yes Yes No No No

Styblinski–Tang [58] Yes Yes No No No

5. Results
5.1. Results with Benchmark Functions

The algorithms were written in MATLAB ver. 2020b (MathWorks, Nattick, MA) and
run on a PC with a 3.9 GHz Quad Core CPU and 8 GB of RAM running Windows 10. For
comparison, we developed and analyzed both the hybrid method, which merges KH and
BA, and stand-alone KH and BA. We utilized 50 agents, and each algorithm was run for
100 iterations. We ran the technique 100 times each and statistically analyzed the findings.

Level curves of the 12 benchmark functions with optimal points (white dots) obtained
by different simulations (N = 50) are presented in Figure 3.

Next, we evaluated the likelihood that the proposed strategy is the best (i.e., achieves
the highest fitness) for all benchmark problems studied (Figure 4). We can observe that
although the proposed strategy does not allow for high fitness in the beginning, its perfor-
mance begins to improve after around 20–30 iterations.

The presented technique obtains top fitness for 11 benchmark problems, with the best
performance (p > 0.9) obtained on RHE, sum of different powers, McCormick, and Easom
functions, while it fails to attain top fitness for one (Branin) (see Figure 5).

The optimization process for 12 benchmark functions is illustrated in Figure 6, which
illustrates the behaviour of the KH, BA, and hybrid KH-Bat algorithms as the process iterates.
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Figure 3. Benchmark function landscapes with solutions (marked by white dots) from different runs
of the proposed hybrid algorithm.

Figure 4. Probability of reaching the top fitness value for the proposed hybrid technique.
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Figure 5. A plot of ranks vs. number of iterations for 12 selected optimization problems.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Cont.
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(j) (k) (l)
Figure 6. Optimization process using KH, BA, and the proposed hybrid algorithm: (a) cross-in-tray, (b) rotated hyper-
ellipsoid, (c) sphere, (d) sum of different powers, (e) sum of squares, (f) McCormick, (g) Zakharov, (h) Rosenbrock, (i) De
Jong No. 5, (j) Easom, (k) Branin, (l) Styblinski–Tang.

To compare the hybridized algorithm with the original (BA and KH) algorithms, we
performed the Friedman test and the post hoc Nemenyi test. All pairwise comparisons of
algorithms were conducted using the non-parametric Nemenyi test with an α level of 0.05.
The results (mean ranks) are visualized as a critical distance (CD) diagram in Figure 7.

Figure 7. Critical difference (CD) diagram from the Friedman test and the post hoc Nemenyi test
comparing baseline algorithms and the hybridized algorithm. High-to-low rankings are presented
from left to right. A higher rank means the algorithm performed better.

The Friedman rank test was adopted to assess the algorithm’s performance. The
Friedman test is a powerful non-parametric statistical ranking-based test that does not
require the assumption of normality. It has been previously used in numerous studies to
analyze the performance of heuristic optimization algorithms [61–64]. The hypothesis
of equal means, i.e., that there is no difference in ranks between the BA, KH, and hybrid
BA-KH, is rejected (p < 0.001). The mean rankings of all compared approaches in the last
(100th) iteration are shown in Figure 8, along with statistical confidence bounds. We can
observe that the proposed technique is the best (mean rank 1.2791± 0.0195), KH is second
(mean rank 1.9579± 0.0228), and BA is third (mean rank 2.7630± 0.0177).

We compared the average ranks of the algorithms under consideration in each iteration
(see Figure 9). Note that from the 15th until about the 50th iteration, KH is the best strategy.
The hybrid strategy then overtakes the top method in terms of rank. On the other hand,
while BA is never the optimal approach, it does manage to outperform KH when the
methods are performed using a greater number of iterations.
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Figure 8. Mean ranks from the Friedman test during optimization.

Figure 9. Average ranks for 12 optimization functions in the final iteration. A smaller rank is better.

For a more balanced evaluation, we adopted a different criterion to terminate iterations.
We used the mean change in the coordinates of a swarm of krill or bats in subsequent
iterations as a criterion. The process of optimization terminates if |Xcurr − Xprev|2 < eps,
where Xcurr, Xprev ∈ (x1, x2, . . . , xD) are the function arguments (i.e., coordinates), D is the
dimensionality of the problem, and eps is a small number. We repeated the process for
50 runs. To statistically evaluate the minimum value returned by the algorithms across 12
optimization problems, we also performed the Friedman test and the post hoc Nemenyi
test (at an α level of 0.05). The results (mean ranks) are visualized as a critical distance
(CD) diagram in Figure 10. These results show the statistically significant superiority of the
hybridized algorithm.
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Figure 10. Critical difference (CD) diagram comparing baseline algorithms and hybridized algorithm
using an alternative stopping criterion. High-to-low rankings are presented from left to right. A
higher rank means that the algorithm performed better.

Finally, we analyzed the time performance for all 12 optimization functions. The
results are presented in Figure 11. Since the hybrid algorithm uses the iterations from
both KH and BA algorithms, its performance is better than the algorithm with the worst
performance (KH) but much worse than the performance of the algorithm with the best
performance (BA).

Figure 11. Time performance comparison for 12 optimization functions.

5.2. Three-Bar Truss Design Problem

The three-bar truss design is a well-known optimization problem in the realm of civil
engineering (see Figure 12). The problem is very popular and has been used to benchmark
optimization methods in numerous papers, most recently in [65–68]. The main goal of this
problem is to decrease the weight of a three-bar truss by taking two structural characteristics
into account. The three major constraints are deflection, stress, and buckling. This problem
is defined as follows.
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Figure 12. Schematic representation of the three-bar truss problem.

The three truss nodes are fully secured. The fourth node is free and has 2 degrees of
freedom of movement u1, u2, and a force of magnitude P is applied to it at angle θ to the
horizon. The angle is counted clockwise and can be changed in the range from 0 to 360◦; L
is the farm size; x1, x2, and x3 are cross-sectional areas of rods; ρ, E, and d are density, the
modulus of longitudinal elasticity, and the permissible tensile and compressive stresses of
the truss material, respectively. The purpose of the design is to select the cross-sectional
areas of the rods x1, x2, and x3 (controlled parameters, design variables) such that the truss
has the minimum mass and that stress and area constraints are met for the cross-sections of
rods. Consider:

−→x = [x1x2] = [A1 A2] (26)

Minimize:
f (−→x ) = (2

√
2x1 + x2)× l (27)

Subject to:

g1(
−→x ) =

√
2x1 + x2√

2x2
1 + 2x1x2

P− σ ≤ 0 (28)

g2(
−→x ) =

x2√
2x2

1 + 2x1x2
P− σ ≤ 0 (29)

g3(
−→x ) =

1√
2x2 + x1

P− σ ≤ 0 (30)

Variable range:
0 ≤ x1, x2 ≤ 1 (31)

where l = 100 cm, P = 2 KN/cm2, and σ = 2 KN/cm2.
The results are presented in Table 2, which also compares the proposed approach with

other methods. Table 2 was adopted from [69] and updated with the proposed hybrid
algorithm results. The algorithms used for comparison are as follows: dingo optimization
algorithm (DOA), mine blast algorithm (MBA), salp swarm algorithm (SSA), PSO with
differential evolution (PSO-DE), and DE with dynamic stochastic selection (DEDS).

Table 2. Comparison of performance on the three-bar truss problem.

Algorithm x1 x2 Optimum Weight

DOA 0.788675095 0.40824840 263.8958434
MBA 0.78856500 0.40855970 263.8958522
SSA 0.78866541 0.40827578 263.8958434

PSO-DE 0.78867510 0.40824820 263.8958433
DEDS 0.78867513 0.40824828 263.8958434

Proposed 0.78853476 0.40866456 263.8958434

6. Discussion and Conclusions

We investigated the proposed model and discovered its suitability for developing
meta-heuristics to address mathematical problems of varying dimensions and features.
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In the process of development, hybrid heuristic algorithms can overcome the major
drawbacks of conventional optimization algorithms, such as becoming trapped in local
optima and performance degradation in practical applications on complex problems.
Combining two algorithms to generate a new one is a basic hybridization procedure. The
purpose of this study was to provide a method for automatically constructing heuristic
algorithms by combining the strengths and compensating for the shortcomings of existing
heuristics. This method is known as hyper-heuristic, and it allows automation of the
selection, combination, or modification of a large number of simpler heuristics to address
complex computational and design engineering optimization issues.

We present a hybridization scheme of bio-inspired algorithms based on state flipping
that sets each agent to a changeable state. The state is switched at random based on
each agent’s fitness rating following its current iteration. The proposed strategy seeks to
combine the benefits of the krill herd (KH) and the bat algorithm (BA) in order to prevent
all agents from becoming stuck in local optimum zones.

On numerous optimization functions with multiple local minima, the proposed ap-
proach is more successful at generating better solutions more frequently (i.e., achieves
a higher rank and has a larger likelihood of reaching the top rank compared to to the
stand-alone KH and BA).

We plan to carry out the following activities in the future:

• Assess the proposed scheme’s efficiency, stability, and significance using other known
unconstrained benchmark functions and several real-life problems.

• Hybridize the GA, PSO, GSA, or ACO algorithms and compare the hybrid method to
these algorithms as baselines.

• Compare the proposed algorithm’s resilience and efficiency to several state-of-the-art
optimization algorithms.

• Apply the proposed hybrid approach to real-life applications, such as image segmen-
tation, clustering, and feature selection, based on its promising results in finding the
best solution for the challenges that we investigated. This discovery is also being
looked at as a potential new research avenue for using meta-heuristic algorithms
to handle issues such as image processing and segmentation, feature selection, and
industrial process parameter estimation.
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