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Abstract: An essential criterion for the proper implementation of case-control studies is selecting
appropriate case and control groups. In this article, a new simulated annealing-based control group
selection method is proposed, which solves the problem of selecting individuals in the control group
as a distance optimization task. The proposed algorithm pairs the individuals in the n-dimensional
feature space by minimizing the weighted distances between them. The weights of the dimensions
are based on the odds ratios calculated from the logistic regression model fitted on the variables
describing the probability of membership of the treated group. For finding the optimal pairing of
the individuals, simulated annealing is utilized. The effectiveness of the newly proposed Weighted
Nearest Neighbours Control Group Selection with Simulated Annealing (WNNSA) algorithm is
presented by two Monte Carlo studies. Results show that the WNNSA method can outperform
the widely applied greedy propensity score matching method in feature spaces where only a few
covariates characterize individuals and the covariates can only take a few values.

Keywords: control group selection; weighted k-nearest neighbour; simulated annealing; logistic
regression; negative covariates

1. Introduction

Observational studies are widely applied data analysis methods mainly used in
healthcare [1–5]. In these studies, the effect of a treatment, a risk factor, or other intervention
is evaluated by performing a comparative analysis. The comparison is based on the
analysis of the results of two groups, the treated and the untreated (control) groups, and
the investigator has no control over the assignment of the subjects into the groups. Such
analyses are carried out, for example, when the effectiveness of a drug for a particular
disease is to be assessed (e.g., how effective a drug is at treating heart failure). In this
case, the case group includes patients treated with the drug under investigation, while the
control group includes patients who do not receive the drug. The comparison between
the two groups can only be made adequately if the groups are similar in terms of the
factors influencing the administration of the drug under study (e.g., severity of disease
treated, comorbidities, drug sensitivity) and factors influencing the disease under study (in
this example, age, lifestyle). For example, if only more severely ill or significantly older
patients were selected in the control group, the result of the comparative analysis would
be misleading. When the treated and the control groups are unbalanced to each other, the
result of data analysis is often misleading. To get well-balanced treated and control groups,
the bias of those covariates that simultaneously affect group assignment and the output
variable of the study should be avoided. For balancing the two groups, different matching
techniques were proposed. The simplest solution is based on stratified matching, but
balancing score-based methods can also be used, and pairing of the treated and untreated
individuals can also be performed in the n-dimensional space of the covariates.
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Propensity score matching (PSM) [6] is the most widely applied balancing score-based
matching method for selecting proper individuals into the control group. Despite the
widespread use of the PSM method, it has received much criticism, as many articles point
to the possible imbalance between the treated and control groups. When individuals are
characterized by many covariates, the propensity scores of the individuals are diverse,
and the PSM methods achieve a good performance. However, when only a few covariates
are considered, and these covariates influence the selection of individuals with similar
weighting factors, the PSM methods may result in a less balanced control group.

To solve the problem mentioned before, a nearest neighbour-based control group
selection method (Weighted Nearest Neighbours Control Group Selection with Error
Minimization, WNNEM) was proposed in our previous study [7]. However, the WNNEM
method also has some limitations.

On the one hand, it cannot handle covariates negatively associated with the treatment
assignment and, on the other hand, it uses local optimization to find the proper control
group. In the current research, we aimed to eliminate these limitations. As a result,
this article proposes a novel control group selection algorithm named Weighted Nearest
Neighbours Control Group Selection with Simulated Annealing (WNNSA), which uses a
global metaheuristic optimization method, namely simulated annealing for finding the best
pairing of individuals. Furthermore, concerning the effect of the covariates, the proposed
algorithm can also handle both positive and negative covariates. The new model can not
only deal with variables related positively to the outcome variable (e.g., the risk of heart
failure increases with age) but also variables negatively related to the outcome variable
(e.g., taking an ACE inhibitor reduces the risk of heart failure). The efficiency of the newly
proposed method will be presented by Monte Carlo simulations on two datasets. Results
show that the new algorithm presented in this article outperforms the WNNEM method,
the nearest neighbour matching, the Mahalanobis metric matching and the widely applied
greedy PSM method in feature spaces where only a few covariates characterize individuals
and the covariates can only take a few values.

The rest of the article is organized as follows. Section 2 provides a short overview of
the control group selection task and presents the applied methods to solve the problem. In
Section 3, the newly proposed WNNSA algorithm is presented in detail. Section 4 presents
the methodology of the Monte Carlo simulations and the data used for the evaluations.
Section 5 presents the results and, finally, Section 6 contains the main conclusions of
the research.

2. Related Work

Control group selection aims to find such a group of individuals (XUT), which is
similar to the individuals in the treated group (XT). The selection is generally performed
by applying matching techniques so that proper individuals are selected from a set of
possible candidates (XC). Although 1:1 and 1:N matching can also be performed, mostly
1:1 matching is applied. Matching should be performed on those baseline covariates
( f1, f2, . . . , fn, n ∈ N) that affect both the exposure of the group membership and the
outcome variable of the study. As all individuals in XT , XC, and XUT are characterized by n
features, they can be seen as n-dimensional objects in the n-dimensional vector space. Since
the treated and control groups must be disjoint, it is a basic expectation that XT ∩ XC = ∅.

In clinical research, the control group is mainly selected by propensity score matching.
In this case, the pairing of individuals is performed in the one-dimensional space of the
propensity scores. Propensity score (which is a balancing score) is the likelihood of the
individuals being assigned to the treated group according to the baseline covariates, and
it is usually calculated by a logistic regression fit [8,9]. In order to balance the bias of the
treated and control groups, PSM selects those individuals into the control group who have
similar propensity scores to the individuals in the treated group. The matching can be
performed in different ways. The most widely applied PSM methods are nearest neighbour
matching, radius matching, and inverse probability weighting [10–12]. The application of
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PSM has been the subject of numerous research, for example, its application was studied
for subgroup analysis [13] and also for handling missing data [14].

Although different methods may produce control groups of different quality [15]
(depending on the nature of the population used for selection), studies published in the
literature most often only use the greedy PSM matching. Despite the popularity of the
widely applied greedy k-nn-based PSM method, it has also got many criticisms [16–22].
All these articles pointed out that the PSM method in some cases and studies may result
in a not well-balanced control group. For example, in [20] the authors highlighted that
propensity score matching might increase imbalance even relative to the original data. The
main limitation of the PSM methods is that they map the feature space into a single value
(propensity score), and the matching of the individuals is performed in this compressed
space. This can cause the problem of competing risks; this problem was also highlighted
in [23].

However, the matching of the individuals can also be performed in the original feature
space, and it is not necessary to compress the features into a single value. The simplest
solution of this approach is stratified matching (SM) [24]. The condition for the successful
application of stratified matching is that there should be enough candidates in each stratum
to perform the pairing. The disadvantage of this method arises from the difficulty of
handling continuous features.

The WNNEM method [7] also performs the matching in the original feature space
of the individuals, but it utilizes the well-known k-nn principle for this purpose. This
method can be seen as a hybrid combination of the PSM method and the nearest neighbour
matching, as matching is performed based on the nearest neighbours, but the distances
per dimension are weighted according to the relevance of the covariates (dimensions)
calculated from a logistic regression fit. It was presented that the WNNEM method can
select more balanced control groups than the greedy PSM method, especially in cases when
individuals are characterized by only a few covariates and covariates can take only a few
values [7].

Unfortunately, in many studies, control group selection is made by automatisms, and
little attention is paid to the evaluation of the goodness of the control group. However, in
the absence of this or in the case of bias in the control group, the results of the comparative
analysis are questionable.

The similarity of case and control groups can be evaluated from different aspects. On
the one hand, the distributions of the covariates have to be similar in the treated and control
groups. On the other hand, having treated and control groups with similar distributions
on the baseline variables does not mean that individuals are also similar to each other.
Therefore, the similarity of the paired individuals should also be evaluated. This second
criterion is also not sufficient as an independent criterion either because the distributions
may contain bias in this case.

To measure the similarity of the distributions of the covariates, the standardized
mean difference (SMD) [25] or goodness of fit tests can be used. For continuous variables,
in the case of a normal distribution, the t-test [26], for general cases, the Kolmogorov–
Smirnov [27,28] test can be calculated. For nominal data, the chi-squared test [29], for
ordinal data, the Mann–Whitney U test [30] can be applied. The main drawback of these
tests is that they evaluate the similarity of the treated group and the control group on
only a single covariate. Calculating the Distribution Dissimilarity Index (DDI) [31] opens
another aspect to the evaluations, as it calculates the similarity of the covariates based on
the differences in the frequencies of the histograms of the covariates. In biomedical studies,
the Hansen–Bowers test [32] is applied for more complex evaluations. This measure allows
the evaluation of the imbalance of all covariates simultaneously.

As we mentioned before, the similarity of the distributions of the covariates does
not mean that the matched individuals are also similar pairwise. The pairwise similarity
of the matched objects can be evaluated by the Nearest Neighbour Index (NNI) and the
Global Dissimilarity Index (GDI) [31]. The first measure only evaluates whether the paired
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individual is the closest individual from the candidate elements, while the second one
considers the degree of the difference.

3. Weighted Nearest Neighbours Control Group Selection with Simulated
Annealing (WNNSA)

The Weighted Nearest Neighbours Control Group Selection with Simulated Annealing
algorithm proposed in this article is a distance-based method combined with simulated
annealing (SA) [33]. The WNNSA method considers each subject as an n-dimensional data
point in an n-dimensional space where each covariate ( fi, i = 1, . . . , n) represents a unique
dimension. Thus, control group selection can be interpreted as a distance minimization
problem. To select a proper control group, those individuals have to be identified from
the candidates that lie close to the individuals of the treated group. Because different
covariates contribute differently to whether an individual is selected into the treated group,
the closeness of the candidate individuals can not be calculated as a simple distance (e.g.,
Euclidean distance). For example, if the treated group includes individuals receiving a
certain treatment, the application of the treatment may be affected differently by the age
of the patient and the severity of the disease. Therefore, the WNNSA method takes the
dimensions into account with different weights. The degree of influence is calculated
from the regression coefficients of the logistic model fitted to the variable describing group
membership. In this logistic regression model, the logit of the probability of belonging to
the treated group of the individuals can be estimated as follows:

logit(p) = ln
(

p
1− p

)
= b0 + b1 f1 + b2 f2 + · · ·+ bn fn, (1)

where p is the probability of belonging to the treated group and bi-s (i = 1, 2, ..., n) are the
regression coefficients that describe the relative effects of the covariates ( fi, i = 1, 2, ..., n).

The WNNSA method utilizes the odds ratio (OR) values of the fitted logistic regression
model as weighting factors for the dimensions to compute the distances between the
individuals. The weights for the features are calculated as:

wi =

expbi ORi ≥ 1
1

expbi
ORi < 1,

(2)

where wi yields the weight applied for the i-th dimension in the distance calculation. If
ORi < 1, then the covariate bi is negatively correlated to the assignment to the treated
group, and if ORi ≥ 1, the covariate is positively associated. The calculation of the weights
of covariates with an OR value above 1 (positive association) is simple, and it can take any
value above one as the weighting factor. In case of negative association, the weight of the
covariate should be calculated as the reciprocal of the calculated OR value. This way, the
weights of the negatively associated covariates can also take any value from (1, ∞], and it
appropriately presents the weight of the covariate.

Having the extended calculation of the weighting factors, the distance matrix contain-
ing the pairwise distances of the individuals in the treated and candidate groups can be
calculated by weighting the dimensions as follows:

dist(Xi, Xj) =
n

∑
l=1

wld
(l)
ij , (3)

where d(l)ij denotes the normalized dissimilarity value of the Xi ∈ XT and Xj ∈ XC in the
l-th dimension. Normalization of the distances along the dimensions is required to avoid
the effect of the different ranges of the covariates [7].

As mentioned before, the WNNSA method considers control group selection as
a distance minimization problem in the n-dimensional space. Distances between the
individuals of the treated and control groups are calculated as weighted distances of the
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dimensions, and the aim is to match the control subjects to the treated subjects so that
the sum of their distances is minimal. It is easy to see that in a simple case, when the
neighbour closest to an individual in the treated group is chosen as the pair from the
group of possible candidates, then the minimization problem is solved. The only problem
arises when there are candidates closest to more than one individual of the treated group
(conflicting candidates). The developed WNNSA algorithm presented aims to eliminate
this problem.

Conflicting Candidates

The WNNSA algorithm solves the pairing of the proper individuals using metaheuris-
tic population-based optimization. Each state in the search space represents a possible
solution for the control group selection (a possible pairing of the individuals of the treated
and control groups). The goal of the algorithm is to find the best pairing. To achieve this
goal, the algorithm utilizes simulated annealing to select the best pairs for the treated
individuals, and the goal is to minimize the sum of the pairwise distances of the paired
individuals. The probability for selecting the candidate Xj ∈ XC for the individual Xi ∈ XT
is calculated as:

p(Xi, Xj) =
ptemp(Xi, Xj)

∑j ptemp(Xi, Xj)
, (4)

where

ptemp(Xi, Xj) =
1

dist(Xi, Xj)t (5)

and t is the temperature of the simulated annealing process.
The energy function (e) determining the fitness of the candidate solutions is given by

Equation (6).

e = ∑
(Xi ,Xj)∈M

dist(Xi, Xj), (6)

where M = {M1, M2, . . . , Mm} yields the pairing of the elements. In case of 1:1 matching,
m = |XT |. For later use, denote Mi1 the first and Mi2 the second element from the i-th pair
from M(i = 1, 2, . . . , m).

In cases when individuals to be paired can be selected from many candidates, many
possible pairings are conceivable. To reduce the runtime of the algorithm, the WNNSA
algorithm looks for the optimal solution in a reduced search space. The applied heuristic
constraints the search space in such a way that the individual of the treated group can only
be paired to their k-nearest neighbours from the candidate set. Further neighbours are not
considered for the pairing. Denote NNk(Xi, Y) the k-closest neighbours of Xi from the set
Y. Using this notation, the k-size reduced environment for an individual Xi ∈ XT is given by
NNk(Xi, XC).

The detailed algorithm of the Weighted Nearest Neighbours Control Group Selection
with Simulated Annealing method is presented in Algorithm 1. After the initialization
of the variables (Step 1) and the normalization of the features (Step 2), the algorithm
determines the sets of the k-nearest neighbours for all Xi ∈ XT individuals (Steps 3 and 4).
Steps 5 to 9 describe the simulated annealing optimization of the matching. In Step 5, the
probabilities are calculated using the temperature parameter of the simulated annealing by
Equation (4), and they are assigned to the elements. Step 8 describes the probability-based
matching, while the detection of the conflicted candidates can be found in Step 9. The
resolution of conflicts is made iteratively by repeating Steps 7 to 9. After finding a possible
solution, the fitness value of the matching is calculated in Step 11. Following this, the
actual matching is compared to the best result up to this point, and the better solution is
saved as the best matching (Step 12). Finally, the temperature is reduced (Step 13). The
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simulated annealing process continues until the temperature reaches 0 (Step 14). The
algorithm returns the control group with the lowest e(t) energy with the corresponding
matching result (Step 15). For the sake of clarity, it should be noted that ActualMatching(t)

denotes a transient set of matched pairs that the algorithm generates at temperature t.
Furthermore, ActualMatching(t)i yields an element of this set, that is a specific matching of

a treated element with a candidate element. Moreover, ActualMatching(t)i1 denotes the first

and ActualMatching(t)i2 the second element of the matched pair of the i-th element from the
set ActualMatching(t). The first element comes from the treated group while the second
one from the set of candidates to be paired as control individuals.

Algorithm 1: Weighted Nearest Neighbours Control Group Selection with Sim-
ulated Annealing (WNNSA).

Input: XT : the set of the treated group; XC: the set of candidate individuals; k the
size of the reduced environment; tmax the starting temperature

Output: XUT the selected control group; M the set of the matched pairs.
1 Initialize:

XUT = ∅
M = ∅
ebest = ∞
t = tmax

2 Normalize XT and XC collectively using feature scaling.
3 Calculate the distance matrix D for all pairs of Xi ∈ XT and Xj ∈ XC by Equation (3).
4 Determine NNk(Xi, XC) based on the distance matrix D for all Xi ∈ XT .
5 Determine p(Xi, Xj) for each Xi ∈ XT and for each Xj ∈ NNk(Xi, XC) by Equation (4).
6 Set:

X(t)
unpaired = XT

X(t)
UT = ∅

M(t) = ∅.
7 Set ActualMatchings(t) = ∅

8 For all Xi ∈ X(t)
unpaired

Select an Xj pair from NNk(Xi, XC) for Xi ∈ X(t)
unpaired at random with

probability p(Xi, Xj).
Set ActualMatchings(t) = ActualMatchings(t) ∪ {(Xi, Xj)}.

9 For l = 1, . . . , |ActualMatchings(t)|
If ActualMatchings(t)l2 is selected for only one Xi ∈ XT

X(t)
unpaired = X(t)

unpaired − {Xi}

X(t)
UT = X(t)

UT ∪ {ActualMatchings(t)l2 }
M(t) = M(t) ∪ {ActualMatchings(t)l }

End if
10 Repeat Steps 7 to 9, while X(t)

unpaired 6= ∅.

11 Calculate the actual energy e(t) for the matching M(t) by Equation (6).
12 If e(t) < ebest

ebest = e(t)

XUT = X(t)
UT

M = M(t).
13 Set t = t− 1.
14 Repeat Steps 5 to 13 until t = 0.
15 Return XUT and M.
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As Algorithm 1 showed, the WNNSA method uses a reduced environment for select-
ing the elements of the control group. However, the application of a reduced environment
introduces another problem. Below a given value of k, it is guaranteed that the algorithm
will not result in a control group with the desired size. This stems from conflicts occurring
during the selection process. For example, consider the following situation.

Let X1, X2, and X3 be three individuals from the treated group. Let X4 be the closest
and X5 the second-closest neighbour of X1 and X2 individuals among the candidate subjects.
Furthermore, let X5 be the first and X4 the second nearest neighbour of X3. Moreover, let X6
be the third nearest neighbour of X1, X2, and X3. Our aim is to select an equal-sized control
group for the treated group. In this case, if we set k to 2, then the reduced environments
for X1, X2, and X3 contain only the individuals X4 and X5. So, three individuals cannot be
selected from the reduced environments; therefore, 1:1 matching can not be performed. This
problem can also be extended to higher k values. For this reason, a method to determine
the minimal k value is needed. A visual representation of the problem above can be seen in
Figure 1.

Figure 1. Demonstration of conflicting pairs in a reduced environment X1, X2 and X3 are three
individuals from the treated group and X4, X5, and X6 are three individuals from the candidate
group. In the case of a k = 2 reduced environment, 1:1 matching cannot be performed; while in the
case of a k = 3 reduced environment, conflicts can be resolved.

The problem of unsolvable conflict described above can be solved mathematically. As
mentioned before, NNk(Xi, Y) denotes the k-closest neighbours of Xi from the set Y. Addi-
tionally, denote Xk

C∗ the aggregated reduced set of candidates for the k-sized environment as:

Xk
C∗ = {Xj|Xj ∈ NNk(Xi, XC), ∀Xi ∈ XT}. (7)

Furthermore, denote Dem(Xj) those individuals from the treated group for which
Xj ∈ Xk

C∗ is in their k-size reduced environment. Dem(Xj) is called the demand set of Xj, and
it is calculated as:

Dem(Xj) = {Xi|Xj ∈ NNk(Xi, XC)}, (8)

where Xi ∈ XT .
Let di(Xj) be the demand index for Xj ∈ Xk

C∗ quantifying those Xi ∈ XT subjects which
select Xj as one of the k-nearest neighbours into the k-reduced environment. The demand
index is calculated as:

di(Xj) =
|Dem(Xj)|

k
, (9)
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where |Dem(Xj)| yields the size of the demand set of Xj.
Denote asi(Xj) the alternative selection index for Xj, which quantifies the alternative

selection options of Xj for all Xi ∈ Dem(Xj). Alternative selection means that the elements
of the demand set of Xj are paired to another candidate individual instead of Xj. The
alternative selection index for Xj can be calculated as:

asi(Xj) =
∑Xi∈Dem(Xj)

min(di(NNk(Xi, XC)))

|Dem(Xj)|
. (10)

Using these metrics, we can easily define the minimum size of the environment
required for our pairing algorithm to succeed. If exists such an Xj ∈ Xk

C∗ that di(Xj) > 1
and asi(Xj) > 1, there is an unsolvable conflict. In this case, the size of the environment
(the value of k) have to be increased. The method to determine the minimum value of k is
summarized in Algorithm 2.

Algorithm 2: Determination of the minimal size for the reduced environment
for the WNNSA algorithm.

Input: XT : the set of the treated group; XC: the set of candidate individuals
Output: kmin: the minimal size for the reduced environment.

1 Calculate the distance matrix D by Equation (3).
2 Set k = 1.
3 Determine Xk

C∗ by Equation (7).
4 For all Xj ∈ Xk

C∗ :
Calculate di(Xj) by Equation (9).
If di(Xj) > 1

Calculate asi(Xj) by Equation (10).
If asi(Xj) > 1

k = k + 1
Go Step 3

5 Return k.

After determining the size of the minimal reduced environment, the WNNSA algo-
rithm can be executed. In order to perform a successful control group selection, the value
of k must be initialized to at least the value determined by Algorithm 2. The higher the
value of k is, the greater the degree of freedom the WNNSA algorithm has. However, it
should also be taken into account that a too high value of k reduces the chances of the
simulated annealing optimization to find the optimal pairing of the elements. Therefore, it
is recommended to set the value of the k parameter first to the minimum required (kmin),
or a little higher. If the WNNSA algorithm does not finish in a short time (the conflict
resolution problem is complex and the solution takes more time to find), it is recommended
to iteratively increase the value of k by small increments until the algorithm stops. In our
research, we found that k = bkmin ∗ 1.15cwas the right choice in all cases, and the algorithm
quickly found the right pairings of elements.

4. Study Design

To test the effectiveness of the proposed WNNSA method, several Monte Carlo
simulations were performed. In this paper, two scenarios are presented. In Scenario
I, a widely applied benchmark dataset [34] was used, which is commonly applied in
theoretical PSM studies. As this dataset does not contain covariates that negatively affect
the group assignment, we could only demonstrate the effectiveness of the simulated
annealing optimization against the local optimization of the WNNEM method with this
dataset. Additionally, results were also compared to the results of greedy PSM methods,
the nearest neighbour matching, and the Mahalanobis metric matching. To present the
effectiveness of the proposed method considering both negative and positive covariates,
a novel, more complex, synthetic dataset was created in Scenario II. This scenario aims to
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present the advantage of the WNNSA method in a rare feature space containing only a few
covariates with fewer values.

The rest of the section introduces the datasets and the methodology of the research
in detail.

4.1. Dataset for Scenario I

The first dataset was generated according to [34]. In this scenario, individuals were
characterized by ten binary variables arising from Bernoulli distributions
(xj ∼ B(0.5), j = 1, . . . , 10). For the Monte Carlo simulations, 100 independent datasets
were generated. All datasets contained 1000 individuals and approximately 25% of the
sample were considered members of the treated group. The remaining individuals were
considered as candidate subjects.

The logistic regression model to describe the probability for the treated group mem-
bership was formulated as described in [34]. The logistic model for the group assignment
is presented by Equation (11).

logit(pi,treat) = b0,treat+

bLxi1 + bLxi2 + bLxi3 + bMxi4 + bMxi5+

bMxi6 + bHxi7 + bHxi8 + bVHxi9 + bVHxi10.

(11)

Weights (bi, i = 1, ..., 10) in Equation (11) denote a low (L), medium (M), high (H)
and very high (VH) effect on group assignment. The applied weight coefficients were the
following:

• correction for binary: b0,treat = −1.344090
• low: bL = log(1.1)
• medium: bM = log(1.25)
• high: bH = log(1.5)
• very high: bVH = log(2.1)

4.2. Dataset for Scenario II

The dataset used in Scenario II is a novel synthetic dataset generated for this study.
This dataset contains fewer covariates than the previous one; therefore, it also better
illustrates the problem of conflicting candidates. This dataset also contains covariates with
negative and positive associations. Furthermore, it also contains nominal, ordinal and
continuous variables.

In this dataset, every individual is characterized by two ordinal variables with Bi-
nomial distribution (xj ∼ B(4, 0.5), j = 1, . . . , 2), four binary variables with Bernoulli
distribution (xj ∼ B(0.5), j = 3, . . . , 6) and two continuous variables with Normal distribu-
tion (xj ∼ N (2, 0.6), j = 7, . . . , 8). The weights bi are a mix of variables with negative and
positive effect, described by Equation (12).

logit(pi,treat) = b0,treat−
bLxi1 + bLxi2 + bLxi3 − bMxi4 + bMxi5+

bMxi6 + bHxi7 − bVHxi8,

(12)

where b0,treat = −1.344090, bL = log(1.05), bM = log(1.25), bH = log(1.5) and
bVH = log(1.9). The dataset in each simulation contained 600 individuals and approxi-
mately 19% of the subjects were considered as the member of the treated group.

4.3. Methodology of the Evaluation

In our research, results of the WNNSA method were compared to the results of
stratified matching (SM), nearest neighbour matching (NNM) [35], Mahalanobis metric
matching (MMM) [36], two types of the PSM method and the WNNEM method.
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In practical studies, the PSM method is generally applied with a restrictive condition.
This constraint is controlled by setting the ‘caliper size’ parameter. Generally, the caliper
size is set to 0.2 of the standard deviation of the logit of the propensity scores. This means
that the control individuals can only be selected from a reduced environment of the treated
elements. In the followings, this type of the PSM method is denoted as PSM_02. However,
using this constraint, the control group selection method may also result in a control group
that contains fewer individuals than the treated group. In case of the second version of the
PSM method, for a fair evaluation, propensity score matching was executed with dynamic
caliper size. It means that the size of the neighbourhood (aka the caliper size) of the treated
individuals was determined dynamically such that in each case, an appropriately sized
control group could be selected. In the following, this type of PSM method is denoted
as PSM_DYN.

In the case of the WNNSA algorithm, the minimal size of the reduced k-size environ-
ment (kmin) was calculated in accordance with Algorithm 2. To increase the search space
and the freedom of the algorithm, the value of k was set to k = bkmin ∗ 1.15c in all scenarios.

As mentioned before, the effectiveness of the proposed methods was evaluated
through Monte Carlo simulations. In each scenario, 100 independent datasets were gener-
ated with the given parameters. As WNNEM, SM, NNM and MMM are deterministic, they
were only executed once on each generated dataset. In contrast, as PSM_02, PSM_DYN
and WNNSA methods are not deterministic, they were executed ten times on each dataset.
For these methods, the best result from the ten runs was considered for evaluation.

The quality of the selected control groups was evaluated from several perspectives.
For distribution-based evaluation, SMD, t-test, chi-squared test, Hansen–Bowers test and
Distribution Dissimilarity Index have been used. The pairwise similarities of the paired ele-
ments were evaluated by the Nearest Neighbour Index and the Global Dissimilarity Index.

5. Results
5.1. Results of the Scenario I

As was described before, the data-generating process in this scenario was identical to
the one used in [34] to illustrate the efficiency of the proposed method on a widely used
benchmark dataset.

The results of the algorithms were evaluated from different aspects. The individual
balance values for the observed covariates are presented in Figure 2. When comparing
balances, a method which could achieve the best results on all variables can not be selected.
However, comparing the WNNEM and the WNNSA methods, it can be seen that the
variable-wise balance is a little more diverse in the case of the WNNSA method than in
the case of the WNNEM method. This result is not surprising since the WNNSA method
does not always select the nearest neighbour from the candidates but balances the entire
matching. To assess the balance of the groups by variables, we also calculated the SMD
values for all covariates and all matching methods. The SMD values for all matching and
covariates were less than 0.1, which confirms that according to the general evaluation
principles, all results on all covariates can be seen as well-balanced.

The advantage of using the WNNSA method can be seen when looking at the simi-
larity of control and case groups at the group level. To illustrate this, group-level quality
indicators were also calculated. The results are presented in Table 1. Table 1 contains the
minimal, average and maximal quality values of the control group selections performed on
the generated 100 datasets. As DDI, NNI, and GDI metrics are distance measures, lower
values mean more similar selected control groups. In contrast, in the case of the Hansen
and Bowers test (HB), a higher value means higher similarity. The maximum possible
value of the HB test is 1.
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Figure 2. Similarities of the case and control groups on each attribute in Scenario I. Distributions of
the Chi-square p-values were calculated separately for each covariate.

Table 1. Measures for evaluating the group-level similarities of case and control groups in Scenario I. HB(p) denotes the
p-value of the Hansen and Bowers test, DDI(d) represents the dissimilarity value of the Distribution Dissimilarity Index,
NNI(d) stands for the dissimilarity value of the Nearest Neighbour Index, and GDI(d) is the dissimilarity value of the Global
Dissimilarity Index. In the case of HB(p), the higher value is better, while in the case of DDI(d), NNI(d) and GDI(d), the
lower value is better.

NNM MMM SM

min avg max min avg max min avg max

HB(p) 0.583 0.976 1.000 0.347 0.960 1.000 0.512 0.873 1.000
DDI(d) 0.006 0.015 0.035 0.004 0.015 0.030 0.504 0.574 0.631

NNI(d) 0.054 0.065 0.075 0.057 0.066 0.078 0.504 0.574 0.631
GDI(d) 0.062 0.075 0.095 0.059 0.076 0.097 0.504 0.574 0.631

PSM_02 PSM_DYN WNNEM WNNSA

min avg max min avg max min avg max min avg max

HB(p) 0.813 0.978 1.000 0.904 0.993 1.000 0.740 0.991 1.000 0.955 0.998 1.000
DDI(d) 0.021 0.061 0.116 0.006 0.014 0.023 0.006 0.012 0.022 0.005 0.011 0.021

NNI(d) 0.194 0.316 0.374 0.190 0.278 0.325 0.052 0.060 0.070 0.056 0.070 0.080
GDI(d) 0.214 0.348 0.416 0.212 0.313 0.367 0.052 0.061 0.077 0.062 0.073 0.097

It can be seen in Table 1 that the SM method did not perform well on this dataset, and
it could not select a full-sized control group. This fact can be inferred from the high values
of the dissimilarity indices. Although the PSM methods performed well in distribution-
based evaluations (HB, DDI), they under-performed by one order of magnitude in pairwise
similarities (NNI, GDI) compared to the NNM, MMM, WNNEM and WNNSA methods.
The NNM, MMM, WNNEM and WNNSA methods all performed well in the pairwise
evaluations, but in the distribution-based evaluations, the WNNEM and WNNSA methods
slightly outperformed the NNM and MMM methods. Comparing the WNNEM and
WNNSA methods, we can see that the WNNEM method preferred selecting the nearest
neighbours, while the WNNSA method aimed to achieve a global optimum. Across the
four metrics, the WNNSA method scored best on three metrics and only on the NNI index
(emphasizing nearest neighbour selection) scored slightly worse than algorithms that prefer
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nearest neighbour selection. However, this is understandable as WNNSA aims to achieve a
global optimum, not a local optimum. Nevertheless, the difference is marginal.

As the Hansen and Bowers test is the most commonly used overall balance test,
its values are also presented in detail for the 100 datasets in Figure 3. The smaller the
interquartile range of the box is, the less different the control groups are, and the higher
the box is placed, the more similar the selected control groups are to the case group.
Figure 3 clearly shows that the WNNSA method performed the best. Apart from a few
outlier values, it selected the most similar control groups with high confidence. If we
look at the outliers, it also performed better than the other methods. For better visibility,
Figure 3 does not include the results of the SM method as its outlier values were too low.
For the sake of completeness, the results of SM are presented in text format: the first quartile
(Q1) of data for SM is equal to 0.8092, the median of the data (Q2) is equal to 0.9235 and the
third quartile of data (Q3) is equal to 0.9730.

Figure 3. Results of the Hansen and Bowers test in Scenario I. Comparison of the p-values of the
Hansen and Bowers test in case of the nearest neighbour matching (NNM), Mahalanobis metric
matching (MMM), two types of PSM methods (PSM_02, PSM_DYN), the WNNEM method and the
WNNSA method for the 100 datasets in Scenario I.

Since the WNNSA method can be considered an improvement of the WNNEM method,
it is worth comparing the results of these two methods in more detail. For the 100 datasets,
the two methods gave the same results in 48 cases, the WNNEM method found more
similar control groups in nine cases, while the WNNSA method outperformed the WN-
NEM method in 43 cases. In the nine cases where the WNNEM method produced better
results than the WNNSA algorithm; the simulated annealing algorithm incorporated in
the WNNSA method probably did not converge to the optimum. On the 100 datasets, the
WNNEM method resulted in 0.9908± 0.0290 and the WNNSA algorithm in 0.9976± 0.0071
values on average for the Hansen and Bowers test.

Summarizing the results, we can see that when tested on the widely used benchmark
dataset, the WNNSA method was able to more reliably select more similar control groups
than the widely used PSM, the nearest neighbour methods or even the WNNEM method.

5.2. Results of the Scenario II

The dataset presented in Scenario I was based on a widely used, general benchmark
dataset. As the proposed WNNSA method aims to improve the efficiency of the WNNEM
method in a conflicted environment, such a kind of dataset was generated (see Section 4.2)
for the second scenario. This dataset contains fewer descriptive features to better illustrate
the problem arising from conflicting candidates. Additionally, it contains covariates with
negative and positive associations and also nominal, ordinal and continuous variables. As
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this dataset contains negatively associated variables as well, the WNNEM method would
not be able to run on it in its basic form. To perform a full evaluation, the WNNEM method
was modified for this scenario to handle negative covariates. The dimension-wise weight
calculation was extended to include ORi < 1 according to the Equation (2).

Figure 4 shows the individual balance values for ordinal and nominal variables. For
the attributes x1 and x2, the NNM method produced the most similar distributions. As
these attributes had only minor influences on the value of the output variable, the WNNSA
method placed less emphasis on their fitting. However, the second-best fit for these
attributes was achieved by the the WNNSA method. Comparing the WNNSA method
to the extended WNNEM method, the distribution of the balance in the case of x1 and
x2 variables is better in the case of the WNNSA method. For attributes x3, x4, x5, x6, the
WNNEM and WNNSA methods chose the same values for all paired individuals. This
is partly because these are binary attributes at which the value-mismatch would result
in a significant discrepancy; furthermore, some of them already had a medium impact
on the outcome variable. That is, they had more effect on the distance calculations. The
NNM method, which performed well on attributes x1 and x2, did not always achieve an
equivalent pairing for these attributes.

In the case of continuous variables (Figure 5), the extended WNNEM method gave the
second worse results. The disadvantage of the WNNEM method in balancing continuous
attributes is due to the local optimization and normalized distance computation. In the
normalized distance calculation, the difference in the values of features with fewer values
resulting in more significant differences in distance; however, a small difference between
the values of the continuous attributes results in a more negligible difference between the
two individuals. As the WNNEM method only selects from the two nearest neighbours,
the WNNEM algorithm involuntarily favours value matching on variables with lower
cardinality. The WNNSA method reduces this bias by working in a larger environment
of the individuals and, thus, better balances the distribution of continuous feature values.
In this way, the WNNSA method was able to improve the fit of the WNNEM method
significantly, and on attribute x7 it achieved the best fit. It also achieved a good result
on attribute x8. Considering the results of Figures 4 and 5 together, the WNNSA method
achieved the best result for five out of eight attributes, the second-best match for two
attributes, and the third best match for one attribute.

Figure 4. Similarities of the case and control groups on ordinal and binary attributes in Scenario
II. Distributions of the Chi-square p-values calculated for ordinal (x1, x2) and binary (x3, x4, x5, x6)
covariates separately, based on all simulations in Scenario II.
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Figure 5. Distribution of continuous covariates in Scenario II. Distribution of the t-test p-values
calculated for each covariate separately based on all simulations in Scenario II.

Table 2 shows the values of the group-level similarity and distance measures for
Scenario II. The quality measures were calculated based on the result of the control group
selections performed on the 100 datasets. It can be seen that the SM method yielded the
worst results in most cases, analogously to Scenario I. Comparing the performance of
the PSM-based methods with the nearest-neighbour based approaches, we can see that
they perform similarly (PSM_DYN) or slightly worse (PSM_02) for the distribution-based
indices (HB, DDI). However, they gave significantly worse results for the pairwise similarity
indices (NNI, GDI). Comparing the results of the NNM, MMM, WNNEM and WNNSA
methods, we can see that they produced similarly good results for all metrics, although the
WNNSA method slightly outperformed the other methods. Comparing the WNNEM and
WNNSA methods, the results are similar to Scenario I, but the differences between the two
methods are more significant in this case.

Table 2. Measures for evaluating the group-level similarities of case and control groups in Scenario II. HB(p) denotes the
p-value of the Hansen and Bowers test, DDI(d) represents the dissimilarity value of the Distribution Dissimilarity Index,
NNI(d) stands for the dissimilarity value of the Nearest Neighbour Index, and GDI(d) is the dissimilarity value of the Global
Dissimilarity Index. In the case of HB(p), the higher value is better, while in the case of DDI(d), NNI(d) and GDI(d), the
lower value is better.

NNM MMM SM

min avg max min avg max min avg max

HB(p) 0.432 0.968 1.000 0.686 0.974 1.000 0.140 0.724 0.995
DDI(d) 0.034 0.061 0.093 0.035 0.058 0.084 0.617 0.710 0.800

NNI(d) 0.300 0.325 0.362 0.289 0.305 0.331 0.718 0.789 0.858
GDI(d) 0.043 0.058 0.081 0.054 0.071 0.107 0.637 0.728 0.815

PSM_02 PSM_DYN WNNEM WNNSA

min avg max min avg max min avg max min avg max

HB(p) 0.523 0.941 1.000 0.729 0.960 1.000 0.769 0.969 1.000 0.815 0.991 1.000
DDI(d) 0.062 0.102 0.162 0.050 0.072 0.102 0.032 0.056 0.078 0.034 0.052 0.071

NNI(d) 0.591 0.661 0.705 0.528 0.640 0.678 0.285 0.303 0.321 0.300 0.318 0.335
GDI(d) 0.314 0.411 0.463 0.279 0.376 0.446 0.035 0.046 0.057 0.043 0.056 0.069
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The effectiveness of the WNNSA method is also clearly observable in Figure 6. The
advantage of the WNNSA method is more pronounced in this conflicting environment since
the interquartile range of the associated box plot is much smaller than the interquartile
range of the box plot of the modified WNNEM method. At the same time, the top of
both box diagrams is at a similar level. In addition, it can be seen, that although the
extended WNNEM method performs slightly better than the PSM methods in the conflict
environment, a more significant quality improvement occurs when the WNNSA method is
used. Figure 6 also illustrates that, although the NNM and MMM methods also performed
well on this dataset, the result of the WNNSA method outperforms them. The results of
the SM method are only given in text format: Q1 = 0.6105, Q2 = 0.7810, and Q3 = 0.9093.

Figure 6. Results of Hansen and Bowers tests in Scenario II. Comparison of the p-values of the
Hansen and Bowers test in case of the nearest neighbour matching (NNM), Mahalanobis metric
matching (MMM), two types of PSM methods (PSM_02, PSM_DYN), the WNNEM method, and the
WNNSA method for the 100 datasets in Scenario II.

Comparing the WNNEM and WNNSA methods, it can be seen that the WNNSA
method achieved significantly better results than the WNNEM method for the dataset
presented in Scenario II. The main reason of this is that there are more conflict cases
in this dataset, which the WNNSA method is more efficient in resolving. In 21 out of
100 datasets, the two methods achieved equally good results. In 6 cases, the WNNEM
algorithm resulted in more similar control groups than the WNNSA algorithm. However,
the WNNSA algorithm outperformed the WNNEM algorithm on 73 datasets. The WNNEM
method resulted in 0.9690± 0.0479 and the WNNSA algorithm in 0.9917± 0.0236 values
on average for the Hansen and Bowers test.

6. Conclusions

Observational studies are widely applied data analysis methods in life sciences, in
which the quality of the results is mainly determined by the control group selection process.
The more similar the selected control group and the case group are to each other, the more
reliable the result of the analysis is.

In this paper, an optimized k-nearest neighbours-based control group selection method,
called Weighted Nearest Neighbours Control Group Selection with Simulated Annealing
(WNNSA), was proposed. The WNNSA method applies simulated annealing to find
the best pairing of treated individuals and candidates for selecting for the control group.
The optimization is performed in the original feature space of the objects and not in the
compressed space of the balancing scores, as the widely applied PSM method does. Fur-
thermore, in contrast to the WNNEM method, optimization is performed on a global level.
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The efficiency of the WNNSA method was presented by Monte Carlo simulations.
Simulation results confirmed that the WNNSA method could outperform the stratified
matching-based control group selection method, the nearest neighbour matching, the Maha-
lanobis metric matching, the WNNEM method, and the widely applied greedy propensity
score matching method in feature spaces where only a few covariates characterize indi-
viduals, and the covariates can only take a few values. In this restricted feature space,
numerous conflicted situations may arise in the selection of similar individuals, which can
be effectively handled by the proposed WNNSA algorithm.
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