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Abstract: Short text classification is an important problem of natural language processing (NLP),
and graph neural networks (GNNs) have been successfully used to solve different NLP problems.
However, few studies employ GNN for short text classification, and most of the existing graph-based
models ignore sequential information (e.g., word orders) in each document. In this work, we propose
an improved sequence-based feature propagation scheme, which fully uses word representation and
document-level word interaction and overcomes the limitations of textual features in short texts. On
this basis, we utilize this propagation scheme to construct a lightweight model, sequential GNN
(SGNN), and its extended model, ESGNN. Specifically, we build individual graphs for each document
in the short text corpus based on word co-occurrence and use a bidirectional long short-term memory
network (Bi-LSTM) to extract the sequential features of each document; therefore, word nodes in
the document graph retain contextual information. Furthermore, two different simplified graph
convolutional networks (GCNs) are used to learn word representations based on their local structures.
Finally, word nodes combined with sequential information and local information are incorporated as
the document representation. Extensive experiments on seven benchmark datasets demonstrate the
effectiveness of our method.

Keywords: graph neural networks; short text classification; sequential features

1. Introduction

With the rapid development of network information technology, a large amount of
short text data, such as book/movie reviews, online news, and product introductions, are
increasingly generated on the Internet [1–3]. The existence of such unstructured data pro-
vides huge resources for data processing and management to mine useful information [4].
Automatic classification of these short text data is one of the most important tasks in NLP
and it is a key prerequisite for the development of applications in different domains, such
as news categorization, sentiment analysis, question-answer systems, dialogue systems,
and query intent classification [5–8].

Traditional machine learning methods have initially been leveraged to solve the
problem of short text classification [9]. Compared with long texts, short texts have fewer
words and less descriptive information, which are sparse [10]. However, text representation
obtained by feature engineering in this method is high-dimensional and highly sparse,
each word is independent, ignoring the contextual relationship in the text, and the feature
expression ability is very weak [11–13], which has a great impact on the accuracy of short
text classification. Traditional machine learning methods cannot meet the needs of short
text classification.

To obtain better features of textual data, distributed representation models [14] and
deep learning models (e.g., convolutional and recurrent neural networks) [15,16] have
been used to learn text data representations [17,18]. The word embedding obtained from
the distributed representation models [19,20], such as Word2Vec [21,22] and GloVe [23],
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has strong feature expression ability, which helps the existing linear classifier models to
significantly improve performance. Convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) are typical representatives of deep learning models. CNNs is a
variation on the multilayer perceptron, uses two-dimensional matrices and is very effective
in computer vision, such as the application of electroencephalogram signals in medical
area [24,25]. RNNs are suitable for processing sequential data and has been widely used
in Maximum Power Point Tracking, parameter estimators for induction motors and so
on [26,27]. Moreover, they both can better learn sentence and document representation.
TextCNN uses an one-dimensional convolution layer and k-max-pooling layer to capture
the key information similar to n-gram features in the text, and the key point is to capture
the local correlation in the text [28]. RNN-based models regard text as a word sequence,
aiming to capture word correlation and text structure, and better express contextual infor-
mation [29]. As CNN and RNN prioritize locality and sequentiality, which can capture
the semantic information on the local continuous word sequence in the document [30],
these deep learning models have been widely used in short text classification. Compared
with traditional text classification models, these models provide better results and achieve
significant improvement [17,31]. Additionally, in recent years, with the development of pre-
trained language models, people use large-scale pre-trained models for text classification.
For example, many studies use pre-training Bert to promote text classification [32,33].

In recent years, GNNs have attracted wide attention [30,34]. GNNs can effectively deal
with tasks with rich relational structures and preserve the global structural information of
graphs [35]. Moreover, GNNs have recently been used in text classification since GNNs
can model complex semantic structures and perform well in handling complex network
structures [36,37]. TextRank [38] was the earliest graph-based model that applies graph
structures to NLP, representing a natural language text as a graph. Nodes in the graph can
represent various types of text units, such as words and collocations, whereas edges can
be used to represent different types of relationships between any nodes, such as lexical or
semantic relationships. There are two main methods to generate graph structures from
complex corpora. One method is to build a large single text graph for the corpus according
to the word co-occurrence and document word relationships in the whole corpus. The
graph includes word nodes and document nodes. Then, under the supervision of known
document node labels, the text classification problem is transformed into the document
node classification problem in the large graph, such as TextGCN [35], HyperGAT [39], and
TensorGCN [40]. The other method generates small individual graphs for each document
in the corpus, such as semantic and syntactic dependency graphs. The words of each
document are the nodes of the graph and convert the text classification problem using a
graph classification problem, such as S-LSTM [37], the model of [36], and TextING [41].

However, all of these graph-based studies focus on the classification of long texts, and
none of them applied GNN to short text classification. Graph-based methods outperform
traditional models in long texts because GNNs can capture the global word co-occurrence
relationship of nonconsecutive and long-distance semantics in a corpus [42]. However,
due to the short length of short texts and limitations of textual features, extracting only the
structural features of text graphs limits the ability of text representation. For example, the
performance of TextGCN is worse than that of a CNN or RNN on MR [35]. In addition,
most graph-based methods ignore the continuous semantic information in each document
of the corpus, which is very important to NLP tasks, such as sentiment analysis [43].
Specifically, graph-based methods update the node representation by aggregating the
features of neighbor nodes in parallel [44], which only extracts the local features of the
document or word nodes, and the contextual information and sequential features of the
document are often ignored.

In this work, to address the above issues, we aim to build a GNN model based on
the sequential feature propagation scheme while capturing the sequential information and
structural information of each document in the corpus and obtain a more accurate text
representation for short text classification. Towards this end, we propose an improved
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sequence-based feature propagation scheme that can better analyze textual features, and
we propose a new GNN-based method for short text classification, termed SGNN. First,
we train each document in the short text corpus as individual graphs, which use sliding
windows to model the contextual structure of words and transform text classification
into graph classification. Meanwhile, the pre-trained word embedding is used as the
semantic feature of words. Second, according to the distinctive sequential information of the
document, we use Bi-LSTM to extract the contextual feature of each word in the document
to update the word node representation for each document graph. Compared with previous
graph-based models, the sequential information of the document is considered in the
feature matrix of each document graph. Third, a simplified GCN is used to aggregate the
neighbor features of each word node to learn word representations based on their local
structures. Finally, the sufficiently updated word nodes are incorporated as document
representations. In addition, we extend the model, termed ESGNN, which retains some
initial contextual features in the aggregation process of simplified GCN and effectively
alleviates the problem of over-smoothing. In total, our method uses the semantic features
of the pretrained word embedding to extract the sequential features and structural features
of each document in turn, which increases the feature exchange between words in the
document and overcomes the limitations of textual features in short texts. Moreover, since
test documents are not mandatory in training, thus we are inductive learning, in which text
representation of new documents can be easily obtained using the trained model [41]. We
also conduct extensive experiments on seven benchmark datasets, and the results show the
effectiveness of our method for short text classification. The overall structure of the model
is shown in Figure 1 and the novelty of our work compared with other proposals is shown
in Table 1. The main contributions to this paper are summarized as follows:

1. We propose an improved sequence-based feature propagation scheme. Each doc-
ument in the corpus is trained as an individual graph, and the sequential features
and local features of words in each document are learned, which contributes to the
analysis of textual features.

2. We propose new GNN-based models, SGNN and ESGNN, for short text classification,
combining the Bi-LSTM network and simplified GCNs, which can better understand
document semantics and generate more accurate text representation.

3. We conduct extensive experiments on seven short text classification datasets with
different sentence lengths, and the results show that our approach outperforms state-
of-the-art text classification methods.
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Figure 1. The whole framework of our method.

Table 1. The novelty of our work compared with other proposals.

Models Sequential Information Structural Information Inductive Learning

Bi-LSTM
√ √

TextGCN
√

TensorGCN
√ √

S-LSTM
√ √

TextING
√ √ √

Our Model
√ √ √
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The rest of the paper is organized as follows. First, Section 2 introduces our method in
detail, which includes graph construction and our proposed models. Second, we describe
seven datasets for short text classification, baseline models and experimental settings in
detail in Section 3. Section 4 shows the overall test performance of our models and baseline
models and reports the experimental results in detail. Finally, we summarize this research
and discuss the prospects of future research in Section 5.

2. Methods

In this section, the detailed method is introduced. First, we detail how to construct
individual document graphs for each document in the short text corpus. Second, we
describe our proposed SGNN model and its extended ESGNN model in detail. Third, we
detail how to predict the label for a given text according to the learned representations
of documents.

2.1. Graph Construction

We constructed individual graphs for each document in the short text corpus. We
represented words as nodes and the co-occurrence relationship between words as edges,
denoted as G = (V, E), where V is the set of nodes and E is the set of edges. First,
we preprocessed the text, including cleaning and tokenizing [28], to obtain the word
sequence S1. Second, we removed the stop words, including the stop words of NLTK (http:
//www.nltk.org/) (accessed on 30 November 2021) and the words with word frequencies
less than 5 in the corpus, to obtain the word sequence S2. Third, a fixed-size sliding window
(length = 4 at default) was used to generate edges according to word co-occurrence on
word sequences S1. If the word in the sliding window does not appear in the S2 sequence,
then delete the node and corresponding edge in the graph. Finally, the embedding of nodes
in each document graph were initialized with word embedding, denoted as X ∈ R |V|×d,
where d is the embedding dimension. An example of constructing a document graph is
shown in Figure 2.
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after preprocessing and after removing the stop words, respectively. We set the sliding window size k = 2 in the figure for
convenience. A and X represent adjacency matrix and feature matrix, respectively.

2.2. SGNN Model and ESGNN Model

With the continuous development of GNNs, GCNs are a simple and widely used
message passing algorithm for semi-supervised classification [45]. In one message passing
layer, GCNs propagate the features of nodes through average aggregation and transform
the features of nodes by linear mapping. Its equation is

http://www.nltk.org/
http://www.nltk.org/
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Â = D̂−
1
2

(
A + I|V|

)
D̂−

1
2 (1)

X′ = σ
(

ÂXW
)

(2)

where I|V| is the identity matrix, Â = D̂−
1
2

(
A + I|V|

)
D̂−

1
2 is the symmetrically normalized

adjacency matrix with self-loops, with the diagonal degree matrix D̂ij = ∑k

(
A + I|V|

)
ik

, W

is the trainable weight matrix, σ is the activation function, such as ReLU, and X ∈ R|V|×d

and X′ ∈ R|V|×d are the feature matrices of the current layer and next layer, respec-
tively [41].

Recently, it has been found that by decoupling the GCN’s feature transformation
and propagation and removing the nonlinearities between GCN layers, the improved
GCN is more efficient than the traditional GCN in many tasks [46,47]. Inspired by the
above research, we propose SGNN and ESGNN models for short text classification. The
model architecture is shown in Figure 3. Since Bi-LSTM can capture bidirectional semantic
dependencies, it can well model the sequential information of documents. Therefore,
for each document in the short text corpus, Bi-LSTM is used to extract the contextual
information between words, learn the unique word representations of each document,
and then update the feature matrix of the document graph. Then, we use the simplified
GCN to aggregate the features of neighboring nodes on average and update the word node
representation. The formulas of the SGNN model are as follows:

H(0) = Bi− LSTM(X) (3)

HL+1 = ÂH(L) (4)
where H(L) ∈ R|V|×d is the feature matrix of the hidden layer.
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In addition, we extend our model with a branch ESGNN, where in the process of node
aggregation, through set α = 0.1, 0.2 . . ., the initial contextual feature of words is preserved.
The formula of the ESGNN is as follows:

HL+1 = (1− α)ÂH(L) + αH(0) (5)

2.3. Document Classification

After the word nodes of each document were fully updated, we used global maximum
pooling to extract features from the output of the last SGNN or ESGNN layer and obtain
the graph-level representation of each document.
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Xdoc = MaxPooling
(

HL
)

(6)

where Xdoc ∈ RdL
and L are the layer numbers of the SGNN or the ESGNN model. Finally,

the label of the document is predicted by feeding the graph-level embedding Xdoc into a
so f tmax layer:

yi = so f tmax(XdocWlinear + b) (7)

where Wlinear and b are weights and bias, respectively. The goal of training is to minimize
the cross-entropy loss between ground truth label y and predicted label yi.

loss = −ylogyi (8)

3. Materials and Experiments

In this section, we describe our datasets, baseline models, and experimental settings
in detail.

3.1. Datasets

We conducted experiments on seven short text datasets, including R8, R52, MR, Search-
Snippets, SMS, and Biomedical. The detailed description of each dataset is listed below.

• R52 and R8 are two subsets of the Reuters 21,578 dataset (http://disi.unitn.it/moschitti/
corpora.htm) (accessed on 30 November 2021). R8 has 8 categories, which were split
to 5485 training and 2189 test documents. R52 has 52 categories, which were split to
6532 training and 2568 test documents.

• Ag News (http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html) (ac-
cessed on 30 November 2021) is a news dataset from [48], which consists of the
following four topics: World, Sports, Business and Sci/Tech. We randomly selected
4000 items from each category to form a dataset for the experiment. In our experiment
we called it Ag News Sub.

• MR (https://github.com/mnqu/PTE/tree/master/data/mr) (accessed on 30 Novem-
ber 2021) is a movie review dataset for binary sentiment classification, where each
review contains only one sentence [49]. The corpus has 5331 positive and 5331 negative
reviews. We used the same training and test set division methods as [50].

• SearchSnippets (http://jwebpro.sourceforge.net/data-web-snippets.tar.gz) (accessed
on 30 November 2021) dataset is released by [51], which contains 12,340 documents. It
is composed of the search results which based on 8 different domains terms in search
engines, including business, computer, health, education, etc.

• SMS (http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/) (accessed on
30 November 2021) is a binary classification dataset collected for short message spam
research, which contains 5574 pieces of English, real and unencrypted messages.

• Biomedical is built by [52] from an internationally renowned biomedical platform
BioASQ (http://participants-area.bioasq.org/) (accessed on 30 November 2021) and
contains 20,000 documents. It consists of 20 categories of titles of the papers that
belong to the MeSH theme as the dataset.

We first preprocessed all the datasets by cleaning and tokenizing text as [28]. Then,
we deleted stop words defined in NLTK and low-frequency words that appeared less than
5 times for R8, R52, and Ag news sub. For the other four datasets, we did not delete words
after cleaning and tokenizing raw text because the documents were very short, so word
sequence S1 and word sequence S2 were the same. The statistics of the datasets are shown
in Table 2.

http://disi.unitn.it/moschitti/corpora.htm
http://disi.unitn.it/moschitti/corpora.htm
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://github.com/mnqu/PTE/tree/master/data/mr
http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://participants-area.bioasq.org/
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Table 2. Statistics of datasets.

Datasets Doc Train Test Classes Avg Length Max Length

R52 9100 6532 2568 52 69.82 612
R8 7674 5485 2189 8 65.72 520

Ag News Sub 16,000 11,200 4800 4 28.11 146
MR 10,662 7108 3554 2 20.39 56

SearchSnippets 12,340 8636 3704 8 18.10 50
SMS 5574 3900 1674 2 17.11 190

Biomedical 20,000 14,000 6000 20 12.88 53

3.2. Baselines

In the experiment, we compared our methods with the different state-of-the-art models.
The models used in the experiment are as follows.

• TextCNN [28]: We implemented TextCNN, which uses pretrained word embedding
and fine-tuning during the training process, and we set the kernals’ size with (3, 4, 5).

• Bi-LSTM [29]: a bidirectional LSTM that is commonly used in text classification. We
input pretrained word embedding to Bi-LSTM.

• Fasttext [52]: A simple and efficient text classification method that takes the average
of all word embedding as document representation and then feeds the document
representation into a linear classifier. We evaluated it without bigrams.

• SWEM: A simple word embedding model proposed by [53], and in our experiment,
we used SWEM-concat and obtained the final text representation through two fully
connected layers.

• TextGCN: A graph-based text classification model proposed by [35], which builds a
single large graph for the whole corpus and converts text classification into a node
classification task based on GCN.

• TensorGCN: A graph-based text classification model in [40], which uses semantic and
syntactic contextual information.

• HeteGCN [54]: A model unites the best aspects of predictive text embedding and
TextGCN together.

• S-LSTM [37]: A model that treats each sentence or document as a graph and uses
repeated steps to exchange local and global information between word nodes at the
same time.

• TextING [41]: This model builds individual graphs for each document and uses a
gated graph neural network to learn word interactions at the text level.

3.3. Experiment Settings

For all the datasets, we randomly split the training set into a ratio of 9:1 for actual
training and validation. We used pretrained 300-dimensional GloVe (http://nlp.stanford.
edu/data/glove.6B.zip) (accessed on 30 November 2021) word embedding as the input
features, whereas the out-of-vocabulary (OOV) words were set to 0. We referred to [55]
and used a maximum sentence length as the truncation for SearchSnippets, Biomedical,
and MR, whereas Ag New Sub and SMS were set to 50, and R8 and R52 were set to 100.
Empirically, the batch size of our model was 32, the number of layers and the hidden length
of Bi-LSTM were 2 and 128, respectively, the learning rate was 0.002 with the Adam [4,56]
optimizer, and the dropout rate was 0.5. For learning SGNN and ESGNN, we trained the
model for 100 epochs with an early stopping strategy. For baseline models, we used the
default parameter settings as in their original papers or implementations. For models using
pretrained word embedding, we used 300-dimensional GloVe word embedding.

http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
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4. Results and Discussion

In this section, we describe experimental results in detail, and to further analyze
our models, we explore the influence of different parameters on the model’s ability in
the experiment.

4.1. Test Performance

Tables 3 and 4 show the test accuracy and test macro-f1 of all baselines and our two
models for all datasets, respectively. We can see that our model achieves optimal results
on all datasets, especially for datasets with short average text lengths, such as Ag news
sub, MR, Searchsnippets, SMS, and Biomedical. SSGNN has performed better than other
baselines, which proves the effectiveness of our method on short text datasets. In addition,
ESGNN performs better than SGNN, which shows that the feature extraction ability of
the model is more powerful for short text classification. Moreover, we also evaluate the
model efficiency by the training time of per epoch, as shown in Table 5; it can be seen
that in addition to TextGCN, our method shows better advantages compared with other
GNN-based methods, which may be because TextGCN builds a large corpus graph and
only captures the structural information of each document.

Table 3. Test accuracy (%) for various models on different datasets. We ran all models 10 times and reported the
average ± standard deviation as the experimental result. Best results are shown in bold.

Models R8 R52 Agnewssub MR Searchsnippets SMS Biomedical

TextCNN 95.71 ± 0.52 87.59 ± 0.48 88.74 ± 0.16 77.75 ± 0.72 89.52 ± 0.35 99.03 ± 0.05 73.08 ± 0.33
Bi-LSTM 96.31 ± 0.33 90.54 ± 0.91 87.68 ± 0.35 77.68 ± 0.86 84.81 ± 1.40 98.77 ± 0.10 63.42 ± 0.97
fastText 96.13 ± 0.21 92.81 ± 0.09 88.22 ± 0.04 75.14 ± 0.20 88.56 ± 0.12 98.84 ± 0.06 65.17 ± 0.22
SWEM 95.32 ± 0.26 92.94 ± 0.24 87.77 ± 0.05 76.65 ± 0.63 87.36 ± 0.32 98.33 ± 0.11 68.97 ± 0.20

TextGCN 97.07 ± 0.10 93.56 ± 0.18 87.55 ± 0.10 76.74 ± 0.20 83.49 ± 0.20 98.30 ± 0.05 69.67 ± 0.20
TensorGCN 98.04 ± 0.08 95.05 ± 0.11 - 77.91 ± 0.07 - - -

S-LSTM 97.67 ± 0.14 94.92 ± 0.19 88.21 ± 0.38 77.75 ± 0.31 87.54 ± 0.33 98.60 ± 0.08 73.77 ± 0.20
TextING 98.04 ± 0.25 95.48 ± 0.19 89.24 ± 0.20 79.82 ± 0.20 87.03 ± 0.43 98.89 ± 0.19 73.88 ± 0.50

SGNN 98.09 ± 0.08 95.46 ± 0.15 89.57 ± 0.25 80.58 ± 0.18 90.68 ± 0.32 99.22 ± 0.11 74.92 ± 0.34
ESGNN 98.23 ± 0.09 95.72 ± 0.16 89.66 ± 0.18 80.93 ± 0.14 90.80 ± 0.21 99.31 ± 0.06 75.34 ± 0.36

Table 4. Test Macro-F1 (%) for various models on different datasets. We ran all models 10 times and reported the average as
the experimental result. Best results are shown in bold.

Models R8 R52 Agnewssub MR Searchsnippets SMS Biomedical

TextCNN 93.24 60.93 88.14 77.25 88.12 97.21 71.95
Bi-LSTM 93.68 63.10 87.06 77.13 83.62 96.91 60.08
fastText 90.76 57.98 88.10 74.45 87.33 95.67 60.55
SWEM 89.29 48.27 86.98 75.67 87.06 95.42 68.19

TextGCN 93.38 67.79 86.88 76.24 82.74 95.62 69.76

HeteGCN 92.33 66.53 - 75.62 - - -
S-LSTM 93.80 73.33 87.44 76.96 86.63 96.03 71.53
TextING 93.62 73.38 88.89 79.02 86.26 97.19 72.14

ESGNN 94.31 74.54 88.95 79.83 89.10 97.87 73.02

Table 5. Training time (minutes) per epoch of GNN-based models.

Dataset TextGCN TensorGCN S-LSTM TextING SGNN ESGNN

MR 1.72 3.34 8.09 2.58 2.42 2.50
R52 2.64 4.32 10.65 4.98 3.19 3.24
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We note that TextGCN based on a large corpus graph model performs better than
traditional models such as CNN and RNN in R8 and R52. This may be because the
average texts length of R8 and R52 is relatively long. TextGCN can capture global word
co-occurrence in the long-distance corpus by constructing a single large graph and take
advantage of GCN in dealing with complex network structure to learn more accurate
representations of document nodes. We also note that S-LSTM and TextING based on small
graphs perform better than traditional models, which may be because traditional models
lack long-distance and non-consecutive word interactions [41]. In addition, they also
perform better than TextGCN based on a large corpus graph model. This may be because
small graph excludes a large number of words that are far away in the text and have little
relationship with the current words [36] to learn more accurate text representation in a
specific context, so the generalization ability of the model is further improved. Additionally,
both of them make use of the advantage of pretrained word embedding and achieve
better results.

Our model performs better than the traditional models and also better than the most
advanced graph models, such as S-LSTM and TextING. This may be because our model
first captures the continuous semantic information of the document to well model the
sequential information of the document, which is considered in the feature matrix of each
document graph. In addition, taking advantage of small graphs, local structure features of
word nodes are extracted by using the dependency relationship between the word nodes
in the document. In summary, our method uses the semantic features of the pretrained
word embedding and document-level word interaction, which extracts the sequential
information and structural information of each document, to improve the classification
accuracy. It has powerful feature extraction and text representation abilities and achieves
better classification performance in short text classification.

4.2. Combine with Bert

One of the advantages of the pre-trained model is that it can obtain contextual dynamic
word embedding, which shows better results than the static word embedding in NLP
tasks [32]. Therefore, we use Bert instead of Bi-LSTM as the input of the model to explore
the combination ability of our method with Bert, which is called C-Bert. The formulas of
the C-Bert model are as follows:

Xbert = Bert(S) (9)

HL+1 = (1− α)ÂH(L) + αXbert (10)

where S is the word sequence of each document in the short text corpus.
The experimental results are shown in Table 6. It shows that Bert is better than our

model on the five datasets except for Searchsnippets and Biomedical, which may be because
of the words out of vocabulary. Moreover, we can find that in addition to SMS, the C-
Bert model shows better results than Bert, which proves the effectiveness of our feature
propagation scheme.

Table 6. Comparison of models based on Bert.

Models R8 R52 Agnewssub MR Searchsnippets SMS Biomedical

ESGNN 98.23 ± 0.09 95.72 ± 0.16 89.66 ± 0.18 80.93 ± 0.14 90.80 ± 0.21 99.31 ± 0.06 75.34 ± 0.36
BERT 98.07 ± 0.13 95.79 ± 0.07 90.02 ± 0.23 85.86 ± 0.16 90.15 ± 0.11 99.40 ± 0.05 72.60 ± 0.33

C-BERT 98.28 ± 0.39 96.52 ± 0.85 90.36 ± 0.40 86.06 ± 0.73 90.43 ± 0.60 99.36 ± 0.08 74.15 ± 0.66

4.3. Parameter Sensitivity Analysis
4.3.1. Graph Layers

Figure 4 shows the test performance of our two models using different graph layers
on MR and Searchsnippets. The results reveal that when L = 1, the test results of the two
datasets are optimal, which shows that the models capture the textual features of each
document in the short text corpus well. However, with the increase in the number of layers,
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both of the models present a different downward trend in different datasets. This may
be because of the short average text length in a short text corpus; for word nodes in each
document graph, too much received information from high-order neighbors will make the
word nodes become overly smooth, which inhibits the generalization ability of the model.
In addition, ESGNN performs better than SGNN with the number of layers increasing,
which indicates that in the process of node aggregation, preserving proper initial contextual
feature information is helpful to alleviate the over-smoothing problem.
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4.3.2. Slide Window Sizes

Figure 5 shows the effect of different window sizes on the performance of the SGNN
model in MR and Searchsnippets. The generalization ability of the model increases with
increasing window size, and each word node has more neighbors, which increases the
scope of feature exchange to learn the representation of word nodes more accurately. For
both datasets, the model obtains the best results when the window size is equal to 4.
However, when the window size is larger than 4, the performance of different datasets
shows a different downward trend. This may be because large window sizes may not
introduce very close edges for word nodes, resulting in excessive feature exchange.
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4.3.3. Probability of α

Figure 6 shows the effect of using different values of α on the performance of the
ESGNN model in R52 and Biomedical. The results show that when the α value increases,
the trend is similar to window sizes, and the optimum typically lies within α ∈ [0.2, 0.3]
but slightly changes for different datasets. The value should be adjusted according to
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the dataset since the average text length of different datasets is different, and different
document graphs exhibit different neighborhood structures [57,58]. In addition, compared
with SGNN (the dotted orange line in the figure), we note that too small or too large
values will affect the structure information during aggregation, which reduces the feature
extraction ability of the ESGNN model.
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4.3.4. Proportions of Training Data

GCNs can perform well with a low label rate during training [45]; therefore, to test
the robustness of the model for semi-supervised tasks [59], we use different proportions of
training datasets to test graph-based models. For MR and SMS, we reduce the training data
to 1%, 2.5%, 5%, 10%, 15% and 20%, respectively. Figure 7 shows the test results of ESGNN,
SGNN, TextING, S-LSTM, and TextGCN. We note that with the increase in training data,
our ESGNN and SGNN models perform better than TextING, S-LSTM, and TextGCN in
most cases. The extraction of sequential features also helps to generate a more accurate
representation for the word nodes of the test set, which do not appear in the training set,
and gives our model stronger feature extraction and text representation abilities in limited
training labeled documents.
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5. Conclusions

In this work, we propose an improved sequence-based feature propagation scheme
that can better analyze textual features. We also propose a new GNN-based method for
short text classification, termed SGNN, and its extended model, ESGNN. Each document in
the short text corpus is trained as an individual graph; our two models extract the sequential
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features and structural features of each document in turn from the semantic features
of words, which increases the feature exchange between words in the document and
overcomes the limitations of textual features in short texts, and the accuracy of short text
classification is improved. Moreover, experimental results suggest the strong robustness of
our models to less training data compared with other graph-based models. In future work,
we will explore more effective feature propagation schemes and propose more effective
models to improve the adaptability of the model to different classification tasks in NLP.
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