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Abstract: Traditional time-series clustering methods usually perform poorly on high-dimensional
data. However, image clustering using deep learning methods can complete image annotation and
searches in large image databases well. Therefore, this study aimed to propose a deep clustering
model named GW_DC to convert one-dimensional time-series into two-dimensional images and
improve cluster performance for algorithm users. The proposed GW_DC consisted of three processing
stages: the image conversion stage, image enhancement stage, and image clustering stage. In the
image conversion stage, the time series were converted into four kinds of two-dimensional images
by different algorithms, including grayscale images, recurrence plot images, Markov transition
field images, and Gramian Angular Difference Field images; this last one was considered to be the
best by comparison. In the image enhancement stage, the signal components of two-dimensional
images were extracted and processed by wavelet transform to denoise and enhance texture features.
Meanwhile, a deep clustering network, combining convolutional neural networks with K-Means, was
designed for well-learning characteristics and clustering according to the aforementioned enhanced
images. Finally, six UCR datasets were adopted to assess the performance of models. The results
showed that the proposed GW_DC model provided better results.

Keywords: two-dimensional image; Gramian Angular Difference Field; wavelet transform; deep
embedded clustering

1. Introduction

Time-series clustering [1,2], just like time-series classification [3] and time-series pre-
diction [4,5], is one of the data mining methods of time-series. Time-series clustering is
used to extract useful information from the data curve and divide the unmarked data
into different clusters for maximizing the similarity of objects in the same cluster and
the divergence of objects between different clusters [6]. It has been widely applied in
many fields, for example, finance, biomedicine, environment, and so forth. Many kinds of
studies have been conducted on time-series clustering. For example, Huang [7] proposed a
new K-Means-type smooth subspace clustering algorithm for clustering time-series data.
Guijo-Rubio [8] demonstrated that a least-squares polynomial segmentation procedure
could be applied to each time-series to return different-length segments. Then, all the
segments were projected into the same dimensional space, according to the coefficients of
the model. Zhang [9] proposed a fuzzy time-series forecasting model based on multiple
linear regression and time-series clustering for forecasting market prices.

Besides the clustering algorithm itself, distance measurement is another key factor
affecting the clustering performance of time series. Many different distance measurement
methods are adopted and compared for time-series data, including Hausdorff distance [10],
Minkowski [11], hidden Markov model-based distance [12], Euclidean distance [13], and
dynamic time warping (DTW) [14]; the last two are the most widely used [15].

Although many clustering algorithms and distance measurement methods have been
applied together, these traditional clustering methods often have poor classification per-
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formance and usually do not perform well on high-dimensional data. However, image
clustering, according to the value of image pixels, is a key technique for better accom-
plishing image annotation and searching in large image repositories. The aforementioned
clustering can quickly extract obvious features from images and achieve clustering. Due to
the rapid development of deep learning and its inherent characteristics, the deep neural
network is used to transform data into good clustering representation.

The existing deep clustering models for images can be divided into three categories
according to the network structure: based on automatic encoder (AE) methods, based on
CDNN methods, and based on generation model methods. The former can be regarded
as encoders and decoders, which are used for feature mapping and reconstruction, re-
spectively, including deep clustering networks [16], deep embedding networks [17], deep
subspace clustering networks [18], and deep manifold clustering [19]. The methods based
on CDNN have three types of network architectures, including deep belief networks [20],
fully convolutional networks, and convolutional neural networks (CNN). Deep nonpara-
metric clustering [21], deep embedded clustering [22], and discriminatively boosted image
clustering [23] are the classical unsupervised preprocessing network models among these
kinds of methods. Besides the latter, based on variational autoencoder and generative ad-
versarial networks [24], such as variational deep embedding [25] and deep adaptive image
clustering [26], are proposed for clustering and sample generation. Therein, the clustering
method based on CDNN can be used to extract more distinctive features and can cluster
large-scale image datasets. The depth clustering algorithms mentioned above are often
based on two-dimensional images. At present, most time series clustering algorithms are
based on traditional methods and show low accuracy. Therefore, a model based on CDNN
is proposed to convert time series into images and improve the clustering performance by
the depth learning methods.

For improving the performance of time-series clustering, four image feature repre-
sentation methods were demonstrated to convert one-dimensional time-series into two-
dimensional images, and the deep clustering network (DC), leveraging autoencoder, and
K-Means were designed for feature learning and clustering. Therefore, the deep clustering
model, named the GW_DC, was proposed in this study. First, time-series were converted
into four kinds of two-dimensional images: grayscale images, recurrence plot (RP) images,
Markov transition field (MTF) images, and Gramian Angular Difference Field (GADF)
images. Then, for better cluster performance, wavelet transform was applied to extract and
process the different signal components of the two-dimensional image for removing noise
and enhancing the texture features of the images. Finally, the features of the enhanced
images were represented by the autoencoder of the GW_DC, and the clustering process
was completed by the clustering layer in the network. To verify the performance of the
proposed GW_DC model, six UCR datasets were applied, and the clustering results were
employed to reverse verify the characterization effects of different two-dimensional images.
The comparative analysis revealed that the clustering results of GADF images were the
best, and the proposed GW_DC model showed a better clustering effect than other deep
clustering models.

2. Methodology

The proposed GW_DC model could convert the original time-series into two-dimensional
images and then classify them into some groups. For comparison, time-series were con-
verted into grayscale images, RP images, MTF images, and GADF images. Meanwhile, the
deep clustering network was employed for classifying these enhanced two-dimensional
images, and the convolution kernel factorization method was introduced into the DC
network for reducing the number of parameters and improving the clustering performance.
The frame of the proposed GW-DC model, depicted in Figure 1, consisted of three stages:
the image conversion stage, image enhancement stage, and image clustering stage.
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characterization effect was selected in this study. 

In the image enhancement stage, the wavelet transform algorithm was used to en-
hance the texture features of the transformed two-dimensional images. The resolution of 
the images was regarded as the measurement standard of image decomposition, and the 
image signals were decomposed into high-frequency subband and low-frequency sub-
band. The high-frequency subband was expanded, and the low-frequency subband was 
scaled for strengthening the change details of the time-series and enhancing the contrast 
ratio. Then, the processed signal components were reconstructed to obtain the enhanced 
images. 

In the image clustering stage, a new deep clustering network DC was proposed to 
improve the clustering effect. In this stage, the DC network based on CNN was designed 
to learn and represent the features of two-dimensional images. Then, the obtained features 
were clustered by the K-Means algorithm, and the cross-entropy (CE) [27] was introduced 
as the loss function to optimize the DC network. 
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one-dimensional data were transformed into two-dimensional images. Time-series data 
were converted into four two-dimensional images, including grayscale images, RP im-
ages, MTF images, and GADF images. The clustering results according to different kinds 
of two-dimensional images were compared and analyzed to determine the best character-
ization effects of the aforementioned images. Four two-dimensional image representation 
methods were described in this section. 

2.1.1. Conversion from Time-Series into Grayscale Image 
The time-series of length 𝑐 could be expressed as 𝒛 = (𝑧 , 𝑧 , … , 𝑧 ). Then, for reduc-

ing the dimension of time-series, piecewise aggregation approximation (PAA) was 

Figure 1. The frame of the GW-DC model.

In the image conversion stage, the time-series was transformed into four kinds of
two-dimensional images for expanding data volume and enhancing generalization abil-
ity, including grayscale images, RP images, MTF images, and GADF images. The low-
dimensional features were mapped to a high-dimensional space for amplifying the feature
attributes and improving the clustering effect. Through comparison, GADF with the best
characterization effect was selected in this study.

In the image enhancement stage, the wavelet transform algorithm was used to enhance
the texture features of the transformed two-dimensional images. The resolution of the
images was regarded as the measurement standard of image decomposition, and the image
signals were decomposed into high-frequency subband and low-frequency subband. The
high-frequency subband was expanded, and the low-frequency subband was scaled for
strengthening the change details of the time-series and enhancing the contrast ratio. Then,
the processed signal components were reconstructed to obtain the enhanced images.

In the image clustering stage, a new deep clustering network DC was proposed to
improve the clustering effect. In this stage, the DC network based on CNN was designed
to learn and represent the features of two-dimensional images. Then, the obtained features
were clustered by the K-Means algorithm, and the cross-entropy (CE) [27] was introduced
as the loss function to optimize the DC network.

2.1. Image Conversion Stage

For well retaining the time correlation and frequency structure of the time-series,
one-dimensional data were transformed into two-dimensional images. Time-series data
were converted into four two-dimensional images, including grayscale images, RP images,
MTF images, and GADF images. The clustering results according to different kinds of two-
dimensional images were compared and analyzed to determine the best characterization
effects of the aforementioned images. Four two-dimensional image representation methods
were described in this section.

2.1.1. Conversion from Time-Series into Grayscale Image

The time-series of length c could be expressed as z = (z1, z2, . . . , zc). Then, for
reducing the dimension of time-series, piecewise aggregation approximation (PAA) was
adopted to compress time-series z and a new smooth time-series curve was generated. The
generated time-series could be expressed as v = (v1, v2, . . . , vm), where m is the length of
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time-series v. The dimension of time-series z was compressed into m, with m < c. The
reduction factor a is

a =
c
m

(1)

vi =
1
a ∑a∗i

j=a∗(i−1)+1 zi (1 ≤ i ≤ c) (2)

M =

 0 · · · vm − v1
...

. . .
...

v1 − vm · · · 0

 (3)

where each row in the matrix contained every timestamp of the time-series, and each
column was the transpose representation of the corresponding row for expanding the
matrix data with redundancy features.

Then the data matrix was transformed into the gray value matrix (GVM), the corre-
sponding gray value was obtained by using the maximum and minimum normalization
method [28]. Six time-series datasets from the UCR website were applied to verify the
performance of the model and visual display. The samples of four time-series datasets
were converted into gray images. The visualization effect is shown in Figure 2.
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The grayscale images intuitively present the general changes of different datasets. For
example, the grayscale variation of the SonyAIBORobotSurface2 dataset is relatively flat,
while the BME dataset shows a tendency to mutate.

2.1.2. Conversion from Time-Series into RP Images

RP was a time-time signal processing method that could be used to show the peri-
odicity of trajectory in the phase space and reveal the internal structure of the time-series.
It consisted of two-time axes, a black dot, and a white dot. The black dot indicated that
recursion occurred in the state corresponding to the horizontal axis and vertical axis, and
the white dot indicated that recursion did not occur. The key to constructing the RP image
was to reconstruct the phase space, which needed to select the appropriate delay coefficient,
embedding dimension, and threshold for reconstructing the time-domain information in
the original phase space and promoting the signals to a higher dimension.

The transformation of the RP was divided into three steps, which were described
as follows.

Step 1. For time-series z, the sampling interval was determined to be τ. The appropri-
ate embedding dimension k was determined through relevant theoretical calculation, and
the time-series s was reconstructed. The reconstructed power system is

si =
(

zi, zi+τ , . . . , zi+(k−1)τ

)
(4)

s = (s1, s2, . . . , se) (5)
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The length e of time-series s is

e = c− (k− 1)τ (6)

where c is the length of time-series z.
Step 2. The calculation of the distance between point i and point j in the reconstructed

phase space is
Di,j =

∣∣∣∣si − sj
∣∣∣∣∀i, j ∈ {1, . . . , e} (7)

where ||· || represents the L2 norm.
Step 3. The calculation of the recursive value is

Ri,j = θ
(
ε− Di,j

)
(8)

∀i, j ∈ {1, . . . , e}

where, Ri,j is a square matrix with the size of e× e, e is equal to the vector numbers of z, ε
is the threshold, and θ(·) represents the Heaviside function. The calculation of θ(·) is

θ( f ) =
{

0 f < 0
1 f ≥ 0

(9)

The effect of converting samples from different datasets into RP images is shown in
Figure 3.
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Figure 3. The effect of converting time-series into Recurrence Plot.

The RP images clearly show the changes of different datasets through the arrangement
of black and white blocks. For example, the SyntheticControl dataset generally presents a
drift trend. The RP images of the UMD appear in large black areas and show a mutation
mode, which is caused by the rapid change of data.

2.1.3. Conversion from Time-Series into MTF Images

The MTF method transformed one-dimensional time-series into two-dimensional
images by constructing the discrete quantile of the Markov matrix and encoding the
transition probability field. The MTF was obtained by adding the time position related to
the first-order Markov chain. It provided an inverse operation to map the images back to
the original signals, making the images easy to realize the visual representation.

The calculation process of the MTF could be divided into the following three steps.
Step 1. The data signals were discretized. First, the original time-series z with length c

were divided into Q bins, and each data point belonged to a unique qi(i ∈ {1, 2, . . . , Q}).



Algorithms 2021, 14, 349 6 of 15

Step 2. The Markov transition matrix W with the size of Q×Q was constructed. Wi,j
was determined by the adjacent frequency of a point between two quantiles qi and qj, and
its calculation formula is

Wi,j = ∑
∀x∈qi ,∀y∈qj,x+1=y

1

∑Q
j=1 Wi,j

(10)

Step 3. The time dependence was added to the transition probability matrix W, and
the Markov transition field Mϑ with the size of c× c was constructed. Mϑ[i, j] represents
the transition probability from qi to qj, and the calculation of Mϑ[i, j] is

Mϑ =

 Wi,j
∣∣x1 ∈ qi, x1 ∈ qj · · · Wi,j

∣∣x1 ∈ qi, xn ∈ qj
...

. . .
...

Wi,j
∣∣xn ∈ qi, x1 ∈ qj · · · Wi,j

∣∣xn ∈ qi, xn ∈ qj

 (11)

To better manage the graph and improve the operation efficiency, the principle of
PAA was applied to this stage to reduce the size of the MTF matrix, and Mϑ was gridded
and averaged.

The effect of converting the time-series into MTF images is described in Figure 4.
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The MTF images intuitively show the change law through the variation of colors. And
the trends in MTF images are similar to grayscale images and RP images.

2.1.4. Conversion from Time-Series to Gramian Angular Difference Field

The Gramian Angular Field (GAF) method was used to transform the scaled one-
dimensional time-series into a polar coordinate system and construct the objective mapping
between one-dimensional time-series and two-dimensional space. Then, the GAF method
could be divided into two implementation methods according to the calculation angle
between different time points, including Gramian Angular Summation Field (GASF) and
GADF. A GAF image was a graphical representation of a Gramian matrix in which each
element was the superposition of directions between different time intervals, and the polar
coordinate system was used to retain the time correlation.

The conversion processes of GASF and GADF were similar, and the conversion process
of GADF was as follows.

Step 1. One-dimensional time-series were scaled numerically. The time-series in the
Cartesian coordinate system was scaled to [−1, 1] interval and the calculation of time series
scaling is

z̃i =
(zi −max(z)) + (zi −min(z))

max(z)−min(z)
, z̃i ∈ [−1, 1] (12)

Step 2. The scaled sequence data z̃i were transformed from a Cartesian coordinate
system to a polar coordinate system in which the value was regarded as the cosine of the
included angle, the timestamp was treated as the radius, and the arccos function was used
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for mapping. This method retained the time dependence through the r coordinate, and the
coordinate transformation equations is{

∅l = arccos(z̃i), −1 ≤ z̃i ≤ 1, z̃i ∈ z̃
rl =

tl
γ tl ∈ γ

(13)

where, tl is the time stamp, and γ is a constant factor to regularize the span of the polar
coordinate system.

Step 3. The GADF matrix was obtained by the trigonometric function transformation
of two angular differences. The calculation of the GADF matrix is

GADF =

 0 · · · sin(∅1 −∅n)
...

. . .
...

sin(∅n −∅1) · · · 0

 (14)

Similar to other image characterization methods mentioned earlier, the PAA method
was used to retain the sequence trend and reduce the sequence size at this stage.

The effect of converting the time-series into GADF images is described in Figure 5.
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Figure 5. The effect of converting the time-series into GADF images.

The GADF images reveal the temporal correlation between data pairs and preserve
the spatial variation law intuitively. And the variation in GADF images is roughly the same
as that of the abovementioned three image representation methods.

2.2. Image Enhancement Stage

The multi-resolution decomposition of wavelet transform was used to perform multi-
stage two-dimensional discrete wavelet transform on the images by low-pass and high-pass
filters. Then, the image signals were decomposed into low-frequency and high-frequency
components. In the images, most of the noise and some edge details belonged to the
high-frequency subband, while the low-frequency subband was mainly characterized as
the approximate signals of the images. The high-frequency and low-frequency subband
were processed by different methods to enhance the images, including reducing noise,
improving contrast, and strengthening details. Then, the reconstructed image was obtained
by inverse discrete wavelet transform on the processed components.

The two-dimensional image signals were filtered in horizontal and vertical direc-
tions for realizing the two-dimensional wavelet multi-resolution decomposition. First,
the signals of the images were decomposed according to the line for obtaining the low-
frequency component L and high-frequency component H in the horizontal direction.
Then, the columns of the transformed data were decomposed to obtain the low-frequency
components (LL, HL) and high-frequency components (LH, HH) in four directions. The
reconstructed images could be obtained by inverse discrete wavelet transform in the oppo-
site direction. The aforementioned process of image decomposition and reconstruction is
described in Figure 6.
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Figure 6. The frame of the RPM-K-Means model.

The LL subband was an approximate representation obtained using a low-pass
wavelet filter. The HL subband was obtained using a low-pass wavelet filter and a high-
pass wavelet filter, which showed the singularity of the image in the horizontal direction.
The LH subband was obtained using the aforementioned two filters and represented the
singular characteristics of the image in the vertical direction. The HH subband, obtained
using a high-pass wavelet filter, indicated the diagonal edge characteristics of the images.
Different measures were taken for the low-frequency and high-frequency components
to improve the contrast of the images and strengthen the texture details in the images.
If the low-frequency coefficient was greater than 250, it was multiplied by 0.75. If the
high-frequency coefficient was less than 150, it was multiplied by 1.25. The aforementioned
process is depicted in Figure 7.
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2.3. Image Clustering Stage

In this stage, an unsupervised deep clustering network DC was designed and applied.
The target of the DC network was to define a parametric nonlinear mapping from the data
space to the low-dimensional feature space, and complete clustering in the low-dimensional
space. Following the idea of the DEC model and the inception network, a deep clustering
network DC was designed. The DC included an improved autoencoder for feature learning
and a clustering layer for clustering.

In the feature learning stage, the autoencoder-incorporated convolution kernel fac-
torization method was trained to learn the mapping parameters from the data space to
the feature space. The asymmetric convolution kernel factorization was first proposed by
Szegedy [29] and its application effect in the CNN network was demonstrated. According
to the convolution kernel factorization, the convolution kernel of 3 ∗ 3 was replaced by 1 ∗ 3
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and 3 ∗ 1 for reducing the number of parameters, and the obtained receptive field was not
reduced. Meanwhile, the symmetric structure of samples was obtained after enhancement,
and the model could learn more valuable representations. The structural parameters of the
improved autoencoder are shown in Figure 8.
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Figure 8. The network of the autoencoder.

The improved autoencoder consisted of an encoder and a decoder. The encoder stored
the parameters of the learned feature representation, and the decoder was employed to
reconstruct the data. The encoder was composed of 10 layers, and the number of its
channels was 3, 32, 32, 32, 16, 16, 16, 8, 8, and 8, respectively. The small 3 ∗ 1 receptive field
was set in the first convolution layer, followed by the second convolution layer with a 1 ∗ 3
effective receptive field. Then, the convolution kernels of 3 ∗ 3 and 5 ∗ 5 were subsequently
added to obtain comprehensive distinctive features. The first three convolution layers
were followed by batch normalization (BN) and max pooling. The flattening operation
for learned feature representation was performed at the end of the encoder. The decoder
consisted of 10 layers, and the number of its channels was 3, 8, 8, 8, 16, 16, 16, 32, 32, and
32, respectively. The decoder network contained four convolution layers with weight, as
shown in Figure 8. The first three convolution layers of the decoder were followed by BN
and upsampling operation. Relu non-linearity was applied to every convolution layer.
Then, the numerical probability of the predicted output was mapped to [0, 1]. The process
of the DC is depicted in Figure 9.

After pre-training, the decoder layers were discarded and the encoder was employed
as the initial mapping between the data space and the feature space. The output of the
encoder was used as the input of the clustering layer, and the feature data were clustered
using the K-Means algorithm. Meanwhile, the CE was cited as the loss function Lce to
optimize the objective function. The loss function Lce is

Lce = −
n

∑
i=1

y(i)· log y̌(i) +
(

1− y(i)
)
· log

(
1− y̌(i)

)
(15)
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where, y(i) represents the real label, y̌ denotes the predicted probability that the current
sample label is 1, and (1− y̌) is the predicted probability that the current sample label
is 0. Lce is the total loss function of n samples and represents the difference between the
ground truth and predicted values.
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3. Experiment and Results
3.1. Datasets and Evaluation Index

To verify the performance of the proposed model, six time-series datasets shown
in Table 1 were adopted from the UCR time-series website. The length of these datasets
ranged from 150 to 15, and the classes of these datasets ranged from 2 to 6. The values of
these datasets were normalized using Equation (11) for clustering analysis. The training
and test sets of each dataset were provided directly by the UCR time-series website. The
specific descriptions of the six datasets are shown in Table 1.

Table 1. Description of datasets.

Dataset Description Train Size Test Size Length Classes

BME Beef spectrograms, from pure beef and beef
adulterated with varying degrees of offal. 30 150 128 3

CBF The data for each class is standard normal noise
plus different offset terms. 30 900 128 3

SmoothSubspace
Each time-series contains a continuous subspace

spanning 5 continuous timestamps, which is used
to test whether smooth subspace can be extracted.

150 150 15 3

SonyAIBORobotSurface2 This dataset contains different accelerometers for
robot walking in cement or carpet/field. 27 953 65 2

SyntheticControl
Six different categories of control charts, including
normal, cyclic, increasing trend, decreasing trend,

upward shift, and downward shift.
300 300 60 6

UMD A synthetic dataset with three types: upper, lower,
and no bells arising at the initial or final cycle. 36 144 150 3

To evaluate the clustering effect of the proposed GW-DC model, normalized mutual
information (NMI) [30] and unsupervised clustering accuracy (ACC) were employed to
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measure the clustering results. Hence, NMI was selected to measure the similarity in
different data distributions, and its calculation formula is

NMI(X; Y) =
2I(X; Y)

H(X) + H(Y)
(16)

where mutual information I(X; Y) represents the variation of the clustering information
X, given the class information Y. H represents the entropy, and NMI(X; Y) ∈ [0, 1]. The
greater the value of NMI, the greater the correlation between data and classes.

The mutual information of clustering is

I(X; Y) = ∑
k

∑
b

P(Xk, Yb) log
P(Xk, Yb)

P(Xk)P(Yb)
(17)

where P(Xk, Yb) is the probability that the sample belongs to both class Xk and class Yb.
P(Xk) represents the probability that the sample belongs to the class Xk, and P(Yb) is
similar to P(Xk). The greater the value of mutual information, the greater the degree of
correlation between the data and the category.

The calculation of ACC is

ACC = max
t

∑n
i=1 1

{
y(i) = t

(
y̌(i)
)}

n
(18)

where, y(i) and y̌(i) represent the real label and the predicted label of sample i respectively.
t denotes all possible one-to-one mappings between clusters and labels.

3.2. Conversion Result of Two-Dimensional Images

The time-series were converted into four kinds of two-dimensional images, including
grayscale images, RP images, MTF images, and GADF images. The clustering results of
the next stage were used to determine the best image feature representation method. The
six public datasets were converted into four kinds of two-dimensional images, and wavelet
transform was applied to enhance the obtained images. Then, the proposed DC network
was used to cluster according to the enhanced images. The clustering index NMI (%) is
shown in Table 2.

Table 2. The clustering results according to four kinds of images.

Image Type BME CBF SmoothSubspace SonyABR-obotSface2 SyntheticControl UMD

Grayscale 91.18 44.32 22.89 23.50 26.26 41.50
RP 33.14 58.30 39.13 27.12 65.63 33.93

MTF 38.54 53.26 12.74 21.88 51.08 12.29
GADF 91.18 54.77 42.43 25.74 71.45 46.53

The CBF and SonyAIBORobotSurface2 datasets had the best clustering results accord-
ing to the RP images, only 4% and 2% higher than that for GADF images, respectively. The
BME dataset had the best clustering effect according to the grayscale images and GADF
images, and their results were 91.18%. The other datasets had the best clustering results
according to GADF images. Comprehensively, the GADF representation method had a
better representation effect, and this method was selected for image feature representation.

The time-series of six datasets were transformed into two-dimensional images by the
GADF, and the obtained images were denoised and enhanced by the wavelet transform
method. To visualize the effect of image enhancement, the original two-dimensional images
(shown in Line 1) and the enhanced images (shown in Line 2) of six datasets were displayed,
as shown in Figure 10a–f.
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Ten images in each dataset were randomly selected for comparative display. In the
enhanced images, the blurred noise points were reduced, and the contour edge was clearer
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than the original images. The texture features of the images were enhanced by the wavelet
transform method.

3.3. Comparative Analysis of Clustering Results

To verify the robustness of the proposed model, the clustering results of the GW-DC
were compared with those of five other clustering models, including Stacked Autoencoder
(SAE) +K-Means, Autoencoder (AE) +K-Means, AE_Conv +K-Means, DEC, and DEC_FCN.
AE_Conv +K-Means was the structure that replaced the fully connected layer (FCL) in
AE with the convolutional layer. DEC_FCN referred to the structure that replaced the
convolutional layer in DEC models with FCLS. The index NMI (%) and ACC (%) were
employed to measure the clustering effect. The comparative results of different models are
shown in Table 3.

Table 3. Results of different deep clustering models.

Dataset SAE +K-Means [31] AE +K-Means [32] AE_Conv +K-Means

Index NMI ACC NMI ACC NMI ACC

BME 22.37 55.56 20.62 50.69 16.27 55.56
CBF 27.69 51.08 23.24 48.39 26.89 58.47

SmoothSubspce 6.21 50.00 8.13 50.83 19.64 75.00
SonyAIBORobotSurface2 24.29 71.43 0.19 67.22 13.34 64.29

SyntheticControl 35.71 47.50 15.68 28.12 15.78 39.58
UMD 26.78 52.78 14.30 46.53 18.63 55.56

Dataset DEC [22] DEC_FCN GW_DC

Index NMI ACC NMI ACC NMI ACC

BME 46.69 58.33 44.54 52.78 91.18 61.13
CBF 30.32 76.88 32.77 63.44 54.77 80.65

SmoothSubspce 28.01 53.33 23.37 51.67 42.43 65.00
SonyAIBORobotSurface2 30.17 79.08 14.30 76.02 25.74 77.04

SyntheticControl 24.72 53.33 52.82 40.00 71.45 66.67
UMD 33.74 63.89 16.46 66.67 46.53 75.00

Compared with the AE +K-Means model, the NMI and clustering accuracy of the
AE_Conv +K-Means model on five datasets were improved, and the maximum difference
in NMI and accuracy were 13.15% and 24.17%, respectively. Comparing the results of
the DEC and the DEC_FCN, the DEC model with convolutional layers displayed a better
clustering effect. Besides, the SonyAIBORobotSurface2 dataset had a higher clustering
effect on the DEC model with NMI and accuracy of 30.17% and 79.08%, respectively. In the
other five datasets, the NMI index of the GW-DC model was significantly higher than that
of DEC, and the maximum difference reached 44.49%. Through comparative analysis of
clustering indexes, the GW-DC model showed a better clustering effect than that of other
deep clustering models.

4. Conclusions

To solve the problem of low clustering accuracy and difficulty in expanding to large
datasets, we proposed to convert time-series datasets into two-dimensional images and de-
signed a deep clustering network to improve the effect of unsupervised clustering. Through
comparative analysis, the GADF images showed the best characterization effect among the
four image representation methods. This method could map the low-dimensional data to
the high-dimensional space for revealing the time correlation of the data. Therefore, the
main contributions in this study were the integration of the GADF transformation method
and wavelet transform as well as the design of the DC network for clustering according to
enhanced two-dimensional images. The wavelet transform method, applied in the image
enhancement stage, could enhance the texture features of two-dimensional images and
enlarge the relevant attributes of the data (Figure 10). Then, in the clustering stage, the DC
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network based on CNN was designed and used to learn the characteristics of images, and
the K-Means algorithm was applied for unsupervised clustering. The convolution kernel
factorization method was introduced to reduce the amount of parameter calculation and
improve clustering performance. The CE was cited as the loss function to optimize the
objective function. Through experimental analysis, the proposed GW-DC model showed a
better clustering effect than other models; the comparison result is described in Section 3.3,
and the maximum difference in NMI reached 44.49%.
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