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Abstract: The widespread availability of large amounts of genomic data on the SARS-CoV-2 virus,
as a result of the COVID-19 pandemic, has created an opportunity for researchers to analyze the
disease at a level of detail, unlike any virus before it. On the one hand, this will help biologists,
policymakers, and other authorities to make timely and appropriate decisions to control the spread
of the coronavirus. On the other hand, such studies will help to more effectively deal with any
possible future pandemic. Since the SARS-CoV-2 virus contains different variants, each of them
having different mutations, performing any analysis on such data becomes a difficult task, given the
size of the data. It is well known that much of the variation in the SARS-CoV-2 genome happens
disproportionately in the spike region of the genome sequence—the relatively short region which
codes for the spike protein(s). In this paper, we propose a robust feature-vector representation of
biological sequences that, when combined with the appropriate feature selection method, allows
different downstream clustering approaches to perform well on a variety of different measures. We
use such proposed approach with an array of clustering techniques to cluster spike protein sequences
in order to study the behavior of different known variants that are increasing at a very high rate
throughout the world. We use a k-mers based approach first to generate a fixed-length feature vector
representation of the spike sequences. We then show that we can efficiently and effectively cluster
the spike sequences based on the different variants with the appropriate feature selection. Using
a publicly available set of SARS-CoV-2 spike sequences, we perform clustering of these sequences
using both hard and soft clustering methods and show that, with our feature selection methods,
we can achieve higher F1 scores for the clusters and also better clustering quality metrics compared
to baselines.

Keywords: COVID-19; SARS-CoV-2; spike protein sequences; cluster analysis; feature selection;
k-mers

1. Introduction

The virus that causes the COVID-19 disease is called the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2)—a virus whose genomic sequence is being repli-
cated and dispersed across the globe at an extraordinary rate. The genomic sequences of
a virus can be helpful to investigate outbreak dynamics such as spatiotemporal spread,
the size variations of the epidemic over time, and transmission routes. Furthermore, ge-
nomic sequences can help design investigative analyses, drugs and vaccines, and monitor
whether theoretical changes in their effectiveness over time might refer to changes in the
viral genome. Analysis of SARS-CoV-2 genomes can therefore complement, enhance and
support strategies to reduce the burden of COVID-19 [1].

SARS-CoV-2 is a single-stranded RNA-enveloped virus [2]. Its entire genome is char-
acterized by applying an RNA-based metagenomic next-generation sequencing method.
The length of the genome is 29,881 bp (GenBank no. MN908947), encoding 9860 amino
acids [3]. Structural and nonstructural proteins are expressing the gene fragments. Struc-
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tural proteins are encoded by the S, E, M, and N genes, while the ORF region encodes
nonstructural proteins [4] (see Figure 1).

Figure 1. The SARS-CoV-2 genome is roughly 29–30 kb in length, encoding structural and non-
structural proteins. Open reading frame (ORF) 1ab encodes the non-structural proteins, and the four
structural proteins: S (spike), E (envelope), M (membrane), and N (nucleocapsid) are encoded by their
respective genes. The spike region is composed of 3821 base pairs, hence coding for 1274 amino acids.

A key factor involved in infection is the S protein on the surface of the virus [5]. The S
protein of SARS-CoV-2 is similar to other coronaviruses and arbitrates receptor recognition,
fusion, and cell attachment through viral infection [6–8]. The S protein has an essential
role in viral infection that makes it a potential target for vaccine development, antibody-
blocking therapy, and small molecule inhibitors [9]. In addition, the spike region of the
SARS-CoV-2 genome is involved in a disproportionate amount of the genomic variation,
for its length [10] (see, e.g., Table 1). Therefore, mutations that affect the antigenicity of the
S protein are of certain importance [11].

Table 1. Variants information and distribution in the dataset. The S/Gen. column represents the
number of mutations in the S-region/entire genome. The total number of amino acid sequences in
our dataset is 62,657.

Pango Region Labels No. Mutations No. SequencesLineage S-Region/Genome

B.1.1.7 UK [12] Alpha 8/17 13,966
B.1.351 South Africa [12] Beta 9/21 1727
B.1.617.2 India [13] Delta 8/17 7551
P.1 Brazil [14] Gamma 10/21 26,629
B.1.427 California [15] Epsilon 3/5 12,784

Generally, the genetic variations of a virus are grouped into clades, which can also
be called subtypes, genotypes, or groups. To study the evolutionary dynamics of viruses,
building pylogenetic trees out of sequences is common [16]. On the other hand, the number
of available SARS-CoV-2 sequences is huge and still increasing [17]—building trees on
the millions of SARS-CoV-2 sequences would be very expensive and seems impractical.
In these cases, machine learning approaches that have flexibility and scalability could
be useful [18]. Since natural clusters of the sequences are formed by the major clades,
clustering methods would be useful to understand the complexity behind the spread of
COVID-19 in terms of its variation. In addition, by considering the certain importance
of the S protein, we focus on the amino acid (protein) sequences encoded by the spike
region. In this way, we would reduce the dimensionality of data without losing too much
information, reducing the time and storage space required and making visualization of the
data easier [19].

To make use of machine learning approaches, we need to prepare the appropriate
input—numerical (real-valued) vectors—that is compatible with these methods. This
would give us the ability to perform meaningful analytics. As a result, these amino acid
sequences should be converted into numeric characters in a way that preserves some
sequential order information of the amino acids within each sequence. The most prevalent
strategy in this area is one-hot encoding due to its simplicity [10]. Since we need to compute
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pairwise distances (e.g., Euclidean distance), one-hot encoding order preservation would
not be operational [20]. To preserve order information of each sequence while being
amenable to pairwise distance computation, k-mers (length k substrings of each sequence)
are calculated and input to the downstream classification/clustering tasks [20,21] (see
Figure 2).

Figure 2. Example of 4-mers of the amino acid sequence “VLPLVFVFVFM”.

In this work, we propose a robust feature-vector representation of biological sequences
based on k-mers that, when combined with the appropriate feature selection, allows many
different downstream clustering approaches to perform well on a variety different measures.
This results in fast and efficient clustering methods to cluster the spike amino acid sequences
of SARS-CoV-2. We demonstrate that our method performs considerably better than the
baseline approach (called one-hot embedding), and the variants are clustered into unique
clusters with high F1 score as a result, among other quality metrics. The following are the
contributions of this paper:

1. For efficient sequence clustering, we propose an embedding based on k-mers, and
show that the downstream clustering methods cluster the variants with a high F1
score, among other quality metrics.

2. We performed experiments using different clustering algorithms and feature selection
approaches and show the trade-off between the clustering quality and the runtime
for these methods.

3. We use both hard and soft clustering approaches to study the behavior of different
coronavirus variants in detail.

4. After comparison of our k-mers based algorithm with the baseline embedding method
called one-hot embedding (OHE), we show that our proposed model is able to cluster
the variants with higher clustering quality.

The rest of the paper is organized as follows: Section 2 contains related work of our
approach. Our proposed approach is detailed in Section 3. A description of the datasets
used are given in Section 4. We provide a detailed discussion about the results in Section 5,
and then we conclude our paper in Section 6.

2. Literature Review

Performing different data analytics tasks on sequences has been done successfully by
different researchers previously [20,22]. However, most studies require the sequences to be
aligned [10,23,24]. The aligned sequences are used to generate fixed length numerical em-
beddings, which can then be used for tasks such as classification and clustering [20,25,26].
Since the dimensionality of data are another problem while dealing with larger sized
sequences, using approximate methods to compute the similarity between two sequences is
a popular approach [21,27,28]. The fixed-length numerical embedding methods have been
successfully used in literature for other applications such as predicting missing values in
graphs [29], text analytics [30–32], biology [21,27,33], graph analytics [34,35], classification
of electroencephalography and electromyography sequences [36,37], detecting security
attacks in networks [38], and electricity consumption in smart grids [39]. The conditional



Algorithms 2021, 14, 348 4 of 21

dependencies between variables is also important to study so that their importance can be
analyzed in detail [40].

Due to the availability of large-scale sequence data for the SARS-CoV-2 virus, an
accurate and effective clustering method is needed to further analyze this disease, so
as to better understand the dynamics and diversity of this virus. To classify different
coronavirus hosts, authors in [10] suggest a one-hot encoding-based method that uses
spike sequences alone. Their study reveals that they achieved excellent prediction accuracy
considering just the spike portion of the genome sequence instead of using the entire
sequence. Using this idea and a kernel method, Ali et al. in [20] accomplish higher accuracy
than in [10], in the classification of different variants of SARS-CoV-2 in humans. Successful
analysis of different variants leads to designing efficient strategy regarding the vaccination
distribution [41–44].

3. Proposed Approach

In this section, we discuss our proposed approach in detail. We start with the de-
scription of one-hot embedding (OHE) and k-mers generation from the spike sequences.
We then describe how we generated the feature vector representation from the k-mers
information. After that, we discuss different feature selection methods in detail. Finally,
we detail how we applied clustering approaches on the final feature vector representation.

3.1. One-Hot Embedding Generation

The one-hot embedding [45] is an orthogonal encoding. These embedding arrange-
ments regularly assume there is no prior knowledge about domain information of amino
acids. Given a sequence of amino acids “VLPLVFVFVFM”, to convert the sequence to a
feature vector representation, we generate binary vectors proportional to the number of
amino acids in the sequence. Each of these binary vectors includes 1 when any of the amino
acids appear, otherwise 0. In addition, a final feature vector representation would be the
concatenation of these vectors.

3.2. k-mers Generation

Given a spike sequence, the first step is to compute all possible k-mers. The total
number of k-mers that we can generate for a spike sequence is described as follows:

N − k + 1 , (1)

where N is the length of the spike sequence (N = 1274 for our dataset). The variable k is a
user-defined parameter (we took k = 3 using standard validation set approach [46]). For
an example of how to generate k-mers, see Figure 2.

3.3. Fixed-Length Feature Vector Generation

Since most of the machine learning (ML) models work with a fixed-length feature
vector representation, we need to convert the k-mers information into such vectors. For this
purpose, we generate a feature vector Φk for a given spike sequence a (i.e., Φk(a)). Given
an alphabet Σ (characters representing amino acids in the spike sequence), the length of
Φk(a) will be equal to the number of possible k-mers of a. More formally,

Φk(a) = |Σ|k . (2)

Since we have 21 unique characters in Σ (namely ACDEFGHIKLMNPQRSTVWXY),
the length of each frequency vector is 213 = 9261.

3.4. Low Dimensional Representation

Since the dimensionality of the data is high after obtaining the fixed length feature vector
representation, we apply different supervised and unsupervised methods to obtain a low
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dimensional representation of data to avoid the problem of the curse of dimensionality [39,47].
Each of the methods for obtaining a low dimensional representation of data is discussed below.

3.4.1. Random Fourier Features

The first method that we use is an approximate kernel method called random Fourier
features (RFF) [48]. It is an unsupervised approach, which maps the input data to a
randomized low dimensional feature space (Euclidean inner product space) to get an
approximate representation of data in lower dimensions D from the original dimensions d.
More formally:

z : Rd → RD . (3)

In this way, we approximate the inner product between a pair of transformed points.
More formally:

f (x, y) = 〈φ(x), φ(y)〉 ≈ z(x)′z(y) . (4)

In Equation (4), z is low dimensional (unlike the lifting φ). Now, z acts as the ap-
proximate low dimensional embedding for the original data. We can use z as an input for
different ML tasks like clustering and classification.

3.4.2. Least Absolute Shrinkage and Selection Operator (LASSO) Regression

LASSO regression is a supervised method that can be used for efficient feature se-
lection. It is a type of regularized linear regression variant. It is a specific case of the
penalized least squares regression with an L1 penalty function. By combining the good
qualities of ridge regression [49,50] and subset selection, LASSO can improve both model
interpretability, and prediction accuracy [51]. LASSO regression tries to minimize the
following objective function:

min(Sum of square residuals + α× |slope|) , (5)

where α× |slope| is the penalty term. In LASSO regression, we take the absolute value of
the slope in the penalty term rather than the square (as in ridge regression [50]). This helps
to reduce the slope of useless variables exactly equal to zero.

3.4.3. Boruta

The last feature selection method that we are using is Boruta. It is a supervised
method that is made around the random forest (RF) classification algorithm. It works
by creating shadow features so that the features do not compete among themselves, but
rather they compete with a randomized version of them [52]. It captures the nonlinear
relationships and interactions using the RF algorithm. It then extracts the importance of
each feature (corresponding to the class label) and only keeps the features that are above a
specific threshold of importance. The threshold is defined as the highest feature importance
recorded among the shadow features.

3.5. Clustering Methods

In this paper, we use five different clustering methods (both hard and soft clustering
approaches) namely k-means [53], k-modes [54], fuzzy c-means [55,56], agglomerative hier-
archical clustering, and hierarchical density-based spatial clustering of applications with
noise (HDBSCAN) [57,58] (note that this is a soft clustering approach). For the k-means and
k-modes, default parameters are used. For the fuzzy c-means, the clustering criterion used
to aggregate subsets is a generalized least-squares objective function. For agglomerative
hierarchical clustering, a bottom-up approach is applied, which is acknowledged as the
agglomerative method. Since the bottom-up procedure starts from anywhere in the central
point of the hierarchy and the lower part of the hierarchy is developed by a less expensive
method such as partitional clustering, it can reduce the computational cost [59].

HDBSCAN is not just density-based spatial clustering of applications with noise
(DBSCAN) but switches it into a hierarchical clustering algorithm and then obtains a flat
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clustering based in the solidity of clusters. HDBSCAN is robust to parameter choice and
can discover clusters of differing densities (unlike DBSCAN) [58].

3.6. Optimal Number of Clusters

We determined the optimal number of clusters using the elbow method [60]. It can
fit the model with a number of clusters k ranging from 2 to 14. As a quality measure,
“distortion” is used, which measures the sum of squared distances from each point to its
center. Figure 3 shows the distortion score for several values of k. We also plot the training
runtime (in seconds) to see the trade-off between the distortion score and the runtime. We
use the knee point detection algorithm (KPDA) [60] to determine the optimal number of
clusters. Note that, based on results shown in Figure 3, the perfect number of clusters is
4. However, we choose k = 5 for all hard clustering approaches because we have five
different variants in our data (see Table 1). The KPDA chose 4 as the best initial number
of clusters due to the Beta variant not being well-represented in the data (see Table 1).
However, to give a fair chance to the Beta variant to form its own cluster, we choose 5 as
the number of clusters.

Figure 3. The distortion score (blue line) for different numbers of clusters using k-means. The dashed
green line shows the runtime (in s). The dashed black line shows the optimal number of clusters
computed using the Elbow method [60].

4. Experimental Setup

In this section, first, we provide information associated with the dataset. Then, with
the benefit of the t-distributed stochastic neighbor embedding (t-SNE) [61], we try to
reduce dimensions with nonlinear relationships to find any natural hidden clustering
in the data. This data analysis step helps us to obtain basic knowledge about differ-
ent variants. As a baseline, we use k-mers based frequency vectors without applying
any feature selection to perform clustering using k-means, k-modes, fuzzy, hierarchical,
and density-based spatial (HDBSCAN) algorithms. All experiments are performed on a
Core i5 system running the Windows operating system, 32 GB memory, and a 2.4 GHz
processor. Implementation of the algorithms is done in Python, and the code is avail-
able online (https://github.com/sarwanpasha/COVID_19_Community_Detection_For_
Variants/tree/main/Results (accessed on 15 October 2021)). Our pre-processed data are
also available online (https://drive.google.com/drive/folders/1-YmIM8ipFpj-glr9hSF3
t6VuofrpgWUa?usp=sharing (accessed on 20 November 2021)), which can be used after
agreeing to the terms and conditions of GISAID (https://www.gisaid.org/ (accessed on 20
November 2021)). The code of HDBSCAN is taken from [58]. The code for fuzzy c-means
is also available online (https://github.com/omadson/fuzzy-c-means (accessed on 20
November 2021)).

https://github.com/sarwanpasha/COVID_19_Community_Detection_For_Variants/tree/main/Results
https://github.com/sarwanpasha/COVID_19_Community_Detection_For_Variants/tree/main/Results
https://drive.google.com/drive/folders/1-YmIM8ipFpj-glr9hSF3t6VuofrpgWUa?usp=sharing
https://drive.google.com/drive/folders/1-YmIM8ipFpj-glr9hSF3t6VuofrpgWUa?usp=sharing
https://www.gisaid.org/
https://github.com/omadson/fuzzy-c-means
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4.1. Dataset Statistics

Our dataset is the (aligned) amino acid sequences (spike region only) of the SARS-CoV-
2 proteome. The dataset is publicly available on the GISAID website (https://www.gisaid.
org/ (accessed on 20 November 2021)), which is the largest known database of SARS-CoV-2
sequences. Table 1 shows more information related to the dataset. There are the five most
common variants, namely Alpha, Beta, Delta, Gamma, and Epsilon. The fourth column of
Table 1 shows the number of mutations that occurred in a spike protein over the number of
total mutations (in the whole genome) for each variant, e.g., for the Alpha variant, there
are 17 mutations in the whole genome, and eight of these mutations are in the spike region.
In our dataset, we have 62,657 amino acid sequences (after removing missing values).

4.2. Data Visualization

By using the t-SNE approach, we plotted the data to 2D real vectors to find any hidden
clustering in the data. Figure 4a shows the t-SNE plot for the GISAID dataset (before
applying any feature selection). The goal here is to show how well different variants
are forming clusters. Since the colors could change randomly because t-SNE is a non-
deterministic algorithm just like k-means, we may not have same color for a given variant
every time. Different variants in the scatter plot can be easily visualized. Even though we
cannot see clear separate clusters for each of those variants, small clusters are obvious for
different variants. This evaluation for such data reveals that using any clustering algorithm
directly will give us good results, and some data preprocessing is curtailed for efficiently
clustering the variants.

By visualizing the GISAID dataset using t-SNE, more clear clusters are visible after
applying three different feature selection methods. In Figure 4b–d, we apply different
feature selection methods, namely Boruta, LASSO, and RFF, respectively. We can observe
that the clustering is purer for Boruta and LASSO regression but not for RFF. This behavior
shows that the supervised methods (LASSO regression and Boruta) are able to preserve the
patterns in the data more effectively as compared to the unsupervised RFF. Note that, after
feature selection, some data points are still isolated from the big clusters. This behavior
shows that, although those isolated data points belong to a certain cluster, they may be
potential candidates for developing into a new variant.

(a) Original (b) Boruta (c) LASSO (d) RFF

Figure 4. t-SNE plots for the original data and for different feature selection methods applied on the original data.

4.3. Evaluation Metrics

The goal of validating the quality of clustering methods is the assessment of the similarity
of objects in the same cluster and, at the same time, the dissimilarity of objects in different
clusters by using a pairwise difference of between- and within-cluster distances [62,63]. We
evaluate our models using the following clustering evaluation methods: F1 score (weighted),
silhouette coefficient, Calinski–Harabasz index, and Davies–Bouldin index.

4.3.1. F1 Score

The weighted F1 score is used to measure the quality of clustering algorithms for
different experimental settings. Since we do not have the ground truth for each cluster, we
take the majority variant in each cluster as its class label and compute a weighted F1 score.

https://www.gisaid.org/
https://www.gisaid.org/


Algorithms 2021, 14, 348 8 of 21

4.3.2. Silhouette Coefficient

The silhouette coefficient [64] is used when the model should be evaluated by itself
and without any ground truth labels, and a model with well-defined clusters will have a
higher silhouette coefficient. The silhouette coefficient is:

s =
b− a

max{b, a} , (6)

where a is the average distance between a sample and all other data points in the same
class and b is the average distance between a sample and all other data points in the next
closest cluster.

4.3.3. Calinski–Harabasz Index

The Calinski–Harabasz index [65] assesses a clustering based on the mean between
and inside cluster sum of squares, and a model with better defined clusters will have a
higher Calinski–Harabasz index. For a set of data E of size nE which has been clustered
into k clusters, the Calinski–Harabasz index is defined as the ratio of the between-clusters
dispersion (the sum of distances squared) mean and the within-clusters dispersion:

tr(Bk)

tr(Wk)
× (nE − k)

(k− 1)
, (7)

where tr(Bk) is the trace of the between cluster dispersion matrix, tr(Wk) is the trace of
the within-group dispersion matrix, E is a set of data, nE is the size of data, and k is the
number of clusters.

4.3.4. Davies–Bouldin Index

The Davies–Bouldin index [66] is another metric to validate models that do not have
any ground truth labels. The Davies–Bouldin (DB) index of a clustering C is defined as:

DB(C) =
1
|C|

|C|
∑
i=1

maxj≤|C|,j 6=iDij , (8)

where Dij is the ratio of the “within-to-between cluster distance” of the ith and jth clusters.
For each cluster, we essentially compute the worst case ratio (Dij) of a within-to-between
cluster distance between it and any other cluster, and then take the average. Thus, by
minimizing this index, we can make sure that clusters are the most separate from each
other. Hence the DB index is smaller when the clustering result is better.

5. Results and Discussion

In this section, we report the results for all clustering approaches without and with
feature selection methods. We use the weighted F1 score to assess the performance of
clustering. Since we do not have labels available for clusters, we label each cluster using the
variant that has most of its sequences in that cluster (e.g., we give the label “Alpha” to that
cluster if most of the sequences belong to the Alpha variant). Now, we calculate the F1 score
(weighted) for each cluster individually using these given labels. For different methods, the
weighted F1 scores are provided in Table 2. Note that we did not mention the F1 scores for
HDBSCAN since it is an overlapping clustering approach. From the results, we can observe
that LASSO regression is more consistent as compared to Boruta to efficiently cluster all
variants. One interesting pattern we can observe is the pure clusters of some variants in the
case of RFF. It shows that RFF is able to cluster some variants very efficiently. However, it
fails to generalize over all variants. In terms of different clustering methods, k-means and
k-modes are performing better and able to generalize more on all variants as compared to
the other clustering methods.

In addition, the results of other clustering validation metrics of Table 3 (silhouette
coefficient, Calinski–Harabasz index, and Davies–Bouldin index) signify that for k-mers
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feature vectors and without using any feature selection methods, the fuzzy clustering
method has acceptable results, which is a high silhouette coefficient score, high Calinski–
Harabasz index and low Davies–Bouldin index, but higher running time (bold rows in
Table 3). Interestingly, using k-mers and applying the fuzzy clustering method with the
Boruta feature selection method give even better results in terms of the three different
metrics and running time. Other acceptable performances that validate the effectiveness
of using k-mers and feature selection methods regarding clustering quality and running
time are related to the combination of k-means clustering and LASSO feature selection
method and fuzzy clustering and RFF feature selection method. In addition, we can see
that there is a trade-off between the quality of clustering and runtime between k-means
and Fuzzy clustering methods. Moreover, comparing the results of using k-mers with
the results of using one-hot embedding feature vectors shows that k-means and LASSO
feature selection method has a high silhouette coefficient, high Calinski–Harabasz index
score and low Davies–Bouldin index, and the lowest runtime. However, in general, the
improvement in quality of clustering and runtimes are observable when we compare using
one-hot encoding and k-mers, the same metrics for k-means clustering and the LASSO
feature selection method, and other different clustering methods given in Table 3.

In terms of studying the behavior of different known variants, we are interested to
see if there is any similarity between variants, that is, if two different variants can form
a single cluster. Since we can observe from Table 2 that almost all variants apart from
the Beta variant form separate clusters (for some experimental settings), it is evident that
these variants are not directly related to each other. From this analysis, we can conclude
that, for example, designing a single vaccination for all variants may not be appropriate.
Another point was to see if a single variant could make more than one cluster. The idea of
this analysis was to observe if a new variant could be developed from an existing variant.
For this purpose, we used the soft clustering approach HDBSCAN. We can observe in
Figures 5 and 6 that there are certain small clusters appearing in the data. They may be
potential candidates for a developing new coronavirus variant.

Table 2. Variant-wise F1 (weighted) score with mean, standard deviation (S.D.), and runtime for different clustering methods
with number of clusters = 5. Best values are shown in bold.

Embed. Algorithm
F1 Score (Weighted) for Different Variants

Runtime (s)
Alpha Beta Delta Gamma Epsilon Mean S.D.

OHE

k-means 0.36 0.05 0.70 0.46 0.68 0.45 0.27 553.95
k-means + Boruta 0.62 0.05 0.84 0.98 0.69 0.64 0.36 20.01
k-means + LASSO 0.50 0.05 0.70 0.69 0.68 0.52 0.28 61.78
k-means + RFF 0.98 0.0 0.29 0.99 0.99 0.65 0.47 28.02

k-modes 0.98 0.01 0.99 0.98 0.90 0.77 0.43 198,926.91
k-modes + Boruta 0.99 0.01 0.80 0.98 0.77 0.71 0.40 6646.35
k-modes + LASSO 0.98 0.05 0.56 0.98 0.75 0.66 0.39 36,435.04
k-modes + RFF 0.99 0.0 0.23 0.99 0.99 0.64 0.49 1370.85

Fuzzy 0.96 0.01 0.68 0.98 0.80 0.69 0.40 29,193.81
Fuzzy + Boruta 0.60 0.26 0.61 0.98 0.68 0.63 0.26 664.19
Fuzzy + LASSO 0.96 0.01 0.74 0.98 0.80 0.70 0.40 3958.60
Fuzzy + RFF 0.44 0.0 0.0 1.00 1.00 0.49 0.50 395.95

Hierarchical 0.55 0.04 0.69 0.70 0.68 0.53 0.28 106,092.34
Hierarchical + Boruta 0.59 0.25 0.60 0.99 0.67 0.62 0.26 2761.91
Hierarchical + LASSO 0.55 0.04 0.19 0.70 0.56 0.41 0.28 8650.66
Hierarchical + RFF 0.98 0.00 0.29 0.98 0.98 0.65 0.47 2542.87
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Table 2. Cont.

Embed. Algorithm
F1 Score (Weighted) for Different Variants

Runtime (s)
Alpha Beta Delta Gamma Epsilon Mean S.D.

k-mers

k-means 0.4 0.15 0.61 0.69 0.44 0.45 0.21 66.43
k-means + Boruta 0.42 0.10 0.61 0.69 0.65 0.50 0.24 15.77
k-means + LASSO 0.99 0.007 0.84 0.99 0.77 0.72 0.41 9.56
k-means + RFF 1.00 0.0 0.28 1.00 1.00 0.66 0.48 8.65

k-modes 0.99 0.005 0.87 0.99 0.77 0.73 0.42 17,580.25
k-modes + Boruta 0.99 0.31 0.86 0.99 0.85 0.81 0.28 2965.03
k-modes + LASSO 0.99 0.17 0.99 0.99 0.07 0.63 0.47 784.20
k-modes + RFF 1.00 0.00 0.0 0.61 1.00 0.52 0.50 794.56

Fuzzy 0.35 0.10 0.61 0.69 0.44 0.44 0.23 2358.84
Fuzzy + Boruta 0.36 0.15 0.61 0.69 0.44 0.45 0.21 230.17
Fuzzy + LASSO 0.99 0.31 0.65 0.99 0.82 0.76 0.29 94.36
Fuzzy + RFF 0.44 0.0 0.0 1.00 0.0 0.29 0.44 460.82

Hierarchical 0.32 0.10 0.58 0.70 0.46 0.43 0.23 9934.57
Hierarchical + Boruta 0.36 0.14 0.63 0.68 0.46 0.45 0.22 1908.75
Hierarchical + LASSO 0.99 0.58 0.58 0.99 0.83 0.80 0.21 713.07
Hierarchical + RFF 1.00 0.00 0.28 1.00 1.00 0.66 0.48 1120.14

Table 3. Clustering quality metrics for different clustering methods with number of clusters = 5. Best values are shown
in bold.

Embedding Algorithm

Different Metrics for Different Variants

Runtime (s)Silhouette
Coefficient

Calinski–
Harabasz Index

Davies–Bouldin
Index

OHE

k-means 0.48 13,089.36 1.38 553.95
k-means + Boruta 0.34 17,478.82 1.4 20.01
k-means +
LASSO

0.48 13,112.61 1.38 61.78

k-means + RFF 0.25 4855.80 2.04 28.02

k-modes 0.26 6626.82 2.59 198,926.91
k-modes + Boruta 0.33 13,146.09 1.89 6646.35
k-modes +
LASSO

0.28 9596.01 1.92 36,435.04

k-modes + RFF −0.15 1389.75 1.07 1370.85

Fuzzy 0.27 8821.95 2.13 29,193.81
Fuzzy + Boruta 0.33 13,397.80 1.89 664.19
Fuzzy + LASSO 0.26 8663.69 2.17 3958.60
Fuzzy + RFF 0.19 12,069.50 1.09 395.95

Hierarchical 0.44 10,516.02 1.84 106,092.34
Hierarchical +
Boruta

0.32 13,324.79 1.60 2761.91

Hierarchical +
LASSO

0.42 10,529.10 1.61 8650.66

Hierarchical +
RFF

0.26 5010.25 1.00 2542.87
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Table 3. Cont.

Embedding Algorithm

Different Metrics for Different Variants

Runtime (s)Silhouette
Coefficient

Calinski–
Harabasz Index

Davies–Bouldin
Index

k-mers

k-means 0.75 329,866.74 0.45 66.43
k-means + Boruta 0.76 342,083.63 0.43 15.77
k-means +
LASSO

0.42 17,269.34 1.52 9.56

k-means + RFF 0.25 5251.93 1.55 8.65

k-modes 0.05 10,257.1 7.11 17,580.25
k-modes + Boruta 0.07 12,058.15 6.52 2965.03
k-modes +
LASSO

0.42 15,704.43 1.54 784.20

k-modes + RFF −0.15 13,66.91 1.07 794.56

Fuzzy 0.75 329,410.74 0.44 2358.84
Fuzzy + Boruta 0.76 341,678.01 0.43 230.17
Fuzzy + LASSO 0.41 15,010.79 2.58 94.36
Fuzzy + RFF 0.19 13,293.96 0.99 460.82

Hierarchical 0.72 284,726.92 0.47 9934.57
Hierarchical +
Boruta

0.73 280,129.56 0.42 1908.75

Hierarchical +
LASSO

0.41 15,218.95 2.03 713.07

Hierarchical +
RFF

0.26 5258.43 1.00 1120.14

5.1. Contingency Tables

After evaluating the clustering methods using different metrics, we compute the
contingency tables for variants versus clusters for different clustering approaches. The
contingency tables for different clustering methods and feature selection approaches (using
k-mers and one-hot embedding) are given in Tables 4–19. In Table 4, we can observe
that k-modes without applying any feature selection is outperforming k-means and also
the other two clustering algorithms from Table 6. In Tables 8 and 10, we can observe
that RFF is giving pure clusters for some of the variants but performing poorly on the
other variants. For LASSO regression in Tables 12 and 14, we can observe that clusters
started to become pure immediately when we apply LASSO regression. This shows the
effectiveness of this feature selection method for the clustering of spike sequences. Similarly,
in Tables 16 and 18, we can see that Boruta is not giving many pure clusters (apart from
k-modes). This shows that Boruta fails to generalize over different clustering approaches
and different variants. Comparing these results of contingency tables for k-mers with the
results of one-hot embedding, improvement of k-mers results are obvious in terms of purity
of clustering. In addition, we can see that, even with using one-hot embedding, using the
feature selection methods improves the clustering purity. In addition, in Tables 5 and 7,
without using any feature selection methods, we can see that k-modes is outperforming
the other clustering algorithms. In Tables 9 and 11, clear clusters as a result of clustering
methods and RFF can prove the effectiveness of this feature selection method. The results
of applying different clustering algorithms and using LASSO feature selection method in
Tables 13 and 15 also show the enhancements in terms of clustering quality, but, compared
to RFF, it is not significant. The same pattern is observable in Tables 17 and 19, which are the
results of using the Boruta feature selection method, showing weakness in generalization
over different clustering approaches and different variants.
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Table 4. Contingency tables of variants vs. clusters (no feature selection, k-mers) with number of
clusters = 5.

Variant
k-means (Cluster IDs) k-modes (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 1512 8762 2926 680 86 8 11,492 284 330 1852
Beta 295 601 626 172 33 64 9 1604 31 19

Epsilon 956 7848 3155 638 187 0 1 8532 613 3638
Delta 2706 2605 1342 868 30 0 1 3192 3491 867

Gamma 682 22,140 3016 741 50 26,519 7 7 61 35

Table 5. Contingency tables of variants vs. clusters (no feature selection, one-hot embedding) with
number of clusters = 5.

Variant
k-means (Cluster IDs) k-modes (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 52 9716 1601 2165 432 11,235 13 2316 25 377
Beta 24 650 1011 18 24 5 81 30 29 1582

Epsilon 427 7972 223 3626 536 8 0 4111 18 8647
Delta 5 2800 484 1201 3061 3 0 3988 3490 70

Gamma 513 23,032 1425 70 1589 6 26,502 114 0 7

Table 6. Contingency tables of variants vs. clusters (no feature selection, k-mers) with number of
clusters = 5.

Variant
Fuzzy (Cluster IDs) Hierarchical (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 666 1515 78 2945 8762 1772 3442 650 8036 66
Beta 171 279 31 627 601 501 491 164 544 27

Epsilon 637 942 186 3172 7847 1166 3804 636 6994 184
Delta 839 2725 28 1354 2605 2997 1292 827 2411 24

Gamma 739 669 47 3034 22,140 865 3501 734 21,484 45

Table 7. Contingency tables of variants vs. clusters (no feature selection, one-hot embedding) with
number of clusters = 5.

Variant
Fuzzy (Cluster IDs) Hierarchical (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 629 11,005 2101 226 5 2845 8651 32 244 2194
Beta 213 508 19 987 0 1002 605 18 35 67

Epsilon 713 16 3597 8458 0 520 7324 426 457 4057
Delta 3419 74 1042 3016 0 1168 2547 2 2479 1355

Gamma 1590 262 88 61 24,628 2008 22,333 497 1522 269
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Table 8. Contingency tables of variants vs. clusters (random Fourier feature selection, k-mers) with
number of clusters = 5.

Variant
k-means (Cluster IDs) k-modes (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 0 12,603 0 1363 0 12,603 0 0 1363 0
Beta 0 1727 0 0 0 1727 0 0 0 0

Epsilon 0 10,348 0 0 2436 10,348 0 2436 0 0
Delta 0 7551 0 0 0 7551 0 0 0 0

Gamma 13,076 12,569 984 0 0 25,632 13 0 0 984

Table 9. Contingency tables of variants vs. clusters (random Fourier feature selection, one-hot
embedding) with number of clusters = 5.

Variant
k-means (Cluster IDs) k-modes (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 0 0 0 1363 12,603 12,603 0 0 0 1363
Beta 0 0 0 0 1727 1727 0 0 0 0

Epsilon 0 2436 0 0 10,348 10,348 0 2436 0 0
Delta 0 0 637 0 6914 7551 0 0 0 0

Gamma 13,076 0 984 0 12,569 25,632 13 0 984 0

Table 10. Contingency tables of variants vs. clusters (random Fourier feature selection, k-mers) with
number of clusters = 5.

Variant
Fuzzy (Cluster IDs) Hierarchical (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 0 0 0 13,966 0 12,603 0 0 1363 0
Beta 0 0 0 1727 0 1727 0 0 0 0

Epsilon 0 0 0 12,784 0 10,348 0 2436 0 0
Delta 0 0 0 7551 0 7551 0 0 0 0

Gamma 0 0 0 13,553 13,076 12,569 13,076 0 0 984

Table 11. Contingency tables of variants vs. clusters (random Fourier feature selection, one-hot
embedding) with number of clusters = 5.

Variant
Fuzzy (Cluster IDs) Hierarchical (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 0 0 0 13,966 0 12,603 0 0 1363 0
Beta 0 0 0 1727 0 1727 0 0 0 0

Epsilon 0 0 0 12,784 0 10,348 0 2436 0 0
Delta 0 0 0 7551 0 7551 0 0 0 0

Gamma 0 0 0 13,269 13,360 12,569 13,076 0 0 984
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Table 12. Contingency tables of variants vs. clusters (LASSO feature selection, k-mers) with number
of clusters = 5.

Variant
k-means (Cluster IDs) k-modes (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 303 11,365 383 1909 6 8 10,958 282 2660 58
Beta 1551 4 148 23 1 65 9 1617 12 24

Epsilon 8536 1 671 3576 0 0 1 12,000 112 671
Delta 3098 0 3693 760 0 0 0 3121 19 4411

Gamma 16 13 198 36 26,366 26,577 7 7 0 38

Table 13. Contingency tables of variants vs. clusters (LASSO feature selection, one-hot embedding)
with number of clusters = 5.

Variant
k-means (Cluster IDs) k-modes (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 53 9716 431 2165 1601 11,208 2295 13 63 387
Beta 24 650 24 18 1011 3 28 76 28 1592

Epsilon 427 7972 536 3626 223 4 3981 0 427 8372
Delta 41 4015 0 9 34,864 41 4015 0 9 3486

Gamma 514 23,031 1586 70 1428 5 114 25,989 514 7

Table 14. Contingency tables of variants vs. clusters (LASSO feature selection, k-mers) with number
of clusters = 5.

Variant
Fuzzy (Cluster IDs) Hierarchical (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 1344 5 12,042 362 213 1967 606 30 11,345 18
Beta 99 1 6 440 1181 24 1667 6 22 8

Epsilon 3220 0 0 780 8784 3667 509 8582 26 0
Delta 4464 0 0 543 2544 3892 245 3367 40 7

Gamma 202 26,169 16 232 10 12 1053 1 11 25,552

Table 15. Contingency tables of variants vs. clusters (LASSO feature selection, one-hot embedding)
with number of clusters = 5.

Variant
Fuzzy (Cluster IDs) Hierarchical (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 2079 11,051 604 227 5 2671 8521 32 2635 107
Beta 19 476 214 1018 0 92 566 18 1031 20

Epsilon 3525 15 712 8532 0 4650 7218 426 457 33
Delta 1040 70 3385 3056 0 4189 2473 2 690 197

Gamma 87 251 799 75 25,417 352 22,158 497 2155 1467
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Table 16. Contingency tables of variants vs. clusters (Boruta feature selection, k-mers) with number
of clusters = 5.

Variant
k-means (Cluster IDs) k-modes (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 8762 86 2925 680 1513 11,403 7 184 1823 549
Beta 601 33 626 172 295 6 6 640 1060 15

Epsilon 7848 187 3155 638 956 1 0 11,170 947 666
Delta 2605 30 1342 868 2706 0 0 2894 690 3967

Gamma 22,140 50 3016 741 682 6 25,428 6 1128 61

Table 17. Contingency tables of variants vs. clusters (Boruta feature selection, one-hot embedding)
with number of clusters = 5.

Variant
k-means (Cluster IDs) k-modes (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 10 368 1586 9901 2101 1829 7 552 188 11,390
Beta 22 12 1022 652 19 1060 6 15 640 6

Epsilon 5 624 218 8351 3586 951 0 671 11,161 1
Delta 0 3073 476 2988 1014 695 0 3970 2886 0

Gamma 25,015 95 1417 34 68 1131 25,425 61 6 6

Table 18. Contingency tables of variants vs. clusters (Boruta feature selection, k-mers) with number
of clusters = 5.

Variant
Fuzzy (Cluster IDs) Hierarchical (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 668 1513 78 2945 8762 9373 702 2641 1198 52
Beta 171 297 31 627 601 823 170 457 254 23

Epsilon 637 943 186 3170 7848 8419 644 2949 591 181
Delta 851 2713 28 1354 2605 2847 879 1563 2245 17

Gamma 739 669 47 3034 22,140 22,955 743 2330 560 41

Table 19. Contingency tables of variants vs. clusters (Boruta feature selection, one-hot embedding)
with number of clusters = 5.

Variant
Fuzzy (Cluster IDs) Hierarchical (Cluster IDs)

0 1 2 3 4 0 1 2 3 4

Alpha 2172 11,083 438 268 5 1977 1585 543 9839 22
Beta 26 46 103 1552 0 898 7 198 623 1

Epsilon 3682 4 656 8442 0 546 2983 641 8613 1
Delta 1049 37 3269 3196 0 949 1235 2635 2731 1

Gamma 96 29 389 139 25,976 1703 26 2017 1192 21,691

5.2. HDBSCAN Clustering

After doing an analysis on hard clustering algorithms, we evaluate the performance
of the soft clustering approach (HDBSCAN) in this section. To evaluate HDBSCAN, we
use the t-SNE approach to plot the original variants from our data and compare them with
clusters we obtained after applying HDBSCAN. Since this is a soft clustering approach
(overlapping allowed), there were a large number of clusters inferred for different feature
selection methods (see Table 20 for the number of clusters). Therefore, we use t-SNE to
plot the clusters to visually observe the patterns before and after clustering. Figure 5
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shows the comparison of the t-SNE plot on the original data versus t-SNE plots for the
clustering results after applying HDBSCAN. Since overlapping is allowed in this setting,
we cannot see any pure clusters as compared to the original t-SNE plot. An interesting
finding from such a result is that not all sequences corresponding to a specific variant
are similar. This means that a small cluster of sequences that initially belong to a certain
variant can make another subgroup, which could eventually lead to the developing of
a new variant. Therefore, using such overlapping clustering approach, we can visually
observe if a group of sequences is diverging from its parent variant. Biologists and other
decision-making authorities can then take relevant measures to deal with such scenarios.
The t-SNE plots for different feature selection methods are given in Figure 6.

Table 20. Number of clusters for HDBSCAN clustering with different feature selection methods.

Algorithm Number of Clusters

HDBSCAN 2016
HDBSCAN + Boruta 1419
HDBSCAN + LASSO 1838
HDBSCAN + RFF 1947

(a) Original Data. (b) HDBSCAN (no feature selection).

Figure 5. (a) t-SNE plots for the original variants as labels; (b) t-SNE plot with labels obtained after
applying HDBSCAN without any feature selection method on the frequency vectors.

(a) No Feat. Selection (b) Boruta (c) LASSO (d) RFF

Figure 6. t-SNE plots for HDBSCAN without and with feature selection methods.

5.3. Runtime Comparison

After applying different clustering methods and feature selection algorithms on the
spike sequences, we observe that k-means and k-modes are performing better than the other
clustering methods in terms of weighted F1 score and k-means and fuzzy in terms of other
clustering quality metrics. However, it is also important to study the effect of runtime for
these clustering approaches so that we can evaluate the trade-off between the F1 score and
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the runtime. For this purpose, we compute the runtime of different clustering algorithms
for both one-hot embedding and k-mer feature vectors without and with feature selection
methods. Figure 7 shows the runtime for all five clustering methods without applying any
feature selection on the data. We can observe that applying k-modes is very expensive in
terms of runtime and k-means takes the least amount of time to execute. Similar behavior
is observed in Figure 8–10 for RFF, Boruta, and LASSO regression, respectively. This
behavior shows that, although k-modes and fuzzy are performing better in terms of F1
score and clustering quality metrics, k-modes is an outlier in terms of runtime, and fuzzy is
more expensive than k-means. This behavior also shows the effectiveness of the k-means
algorithm in terms of F1 score, clustering quality metrics, and also in terms of runtime.
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Figure 7. Runtime for different clustering methods (no feature selection method). The x-axis shows
number of clusters.
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Figure 8. Runtime for different clustering methods (random Fourier feature selection). The x-axis
shows number of clusters.
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Figure 9. Runtime for different clustering methods (Boruta feature selection). The x-axis shows
number of clusters.
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Figure 10. Runtime for different clustering methods (LASSO feature selection). The x-axis shows
number of clusters.

6. Conclusions

We propose a feature vector representation and a set of feature selection methods
to eliminate the less important features, allowing many different clustering methods to
cluster SARS-CoV-2 spike protein sequences with high F1 scores and other quality metrics.
We show that runtime is also an important factor while clustering the coronavirus spike
sequences. The k-means algorithm is able to generalize over all variants in terms of
clustering purity and also in the least amount of runtime. One possible future work is to
use more data for the analysis. Testing out additional clustering methods could be another
direction. Additional quality metrics such as clustering entropy is another idea. Using deep
learning on even bigger data could give us some interesting insights. Another interesting
extension is to compute other feature vector representations, e.g., based on minimizers,
which can be done without the need for aligning the sequences. This would allow us to
use all of this clustering machinery to study unaligned (even unassembled) sequencing
reads of intra-host viral populations to unveil the interesting dynamics at this scale.
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