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Abstract: Systematic decision making in engineering requires appropriate models. In this article,
we introduce a regression method for enhancing the predictive power of a model by exploiting
expert knowledge in the form of shape constraints, or more specifically, monotonicity constraints.
Incorporating such information is particularly useful when the available datasets are small or do
not cover the entire input space, as is often the case in manufacturing applications. We set up the
regression subject to the considered monotonicity constraints as a semi-infinite optimization problem,
and propose an adaptive solution algorithm. The method is applicable in multiple dimensions and
can be extended to more general shape constraints. It was tested and validated on two real-world
manufacturing processes, namely, laser glass bending and press hardening of sheet metal. It was
found that the resulting models both complied well with the expert’s monotonicity knowledge and
predicted the training data accurately. The suggested approach led to lower root-mean-squared
errors than comparative methods from the literature for the sparse datasets considered in this work.

Keywords: monotonic regression; manufacturing; informed machine learning; expert knowledge;
semi-infinite optimization; shape constraints

1. Introduction

Systematic decision making in manufacturing—such as finding optimal parameter
settings for a manufacturing process—requires appropriate models for that process. In
particular, such models have to be sufficiently accurate, and at the same time, sufficiently
quick at evaluating. In principle, for many industrial processes, precise simulation models
based on detailed physical modeling can be built. Yet, these so-called white-box models
are typically too slow to be of any practical use in exploring the process parameter space
and in eventually finding optimal process parameters (online and offline). In this respect,
machine learning models can be very useful surrogates with short runtimes.

Conventional machine learning models are purely data-based (so-called black-box
models). Accordingly, the predictive power of such models is generally bad if the under-
lying training data D = {(xl , tl) : l ∈ {1, . . . , N}} are insufficient. Unfortunately, such
data insufficiencies occur quite often, and they can come in one of the following forms: On
the one hand, the available datasets can be too small and have too little variance in the
input data points x1, . . . , xN . This problem frequently occurs in manufacturing [1] because
varying the process parameters beyond well-tested operating windows is usually costly.
On the other hand, the output data t1, . . . , tN can be too noisy.
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Aside from potentially insufficient data, however, one often also has additional knowl-
edge about the relation between the input variables and the responses to be learned. Such
extra knowledge about the considered process is referred to as expert knowledge in the
following. In [2], the interactions of users with software was tracked to capture their expert
knowledge in a general form as training data for a classification problem. In [3], expert
knowledge was used in the form of a specific algebraic relation between input and output
to solve a parameter estimation problem with artificial neural networks. Such informed
machine learning [4] techniques beneficially combine expert knowledge and data to build
hybrid or gray-box models [5–12], which predict the responses more accurately than purely
data-based models. In other words, by using informed machine learning techniques, one
can compensate data insufficiencies with expert knowledge.

An important and common type of expert knowledge is prior information about the
monotonicity behavior of the unknown functional relationship x 7→ y(x) to be learned. A
large variety of concrete application examples with monotonicity knowledge can be found
in ([13], Section 4.1) and ([14], Section 1), for instance. The present article exclusively
deals with regression under such monotonicity requirements. For classification under
monotonicity constraints, see, e.g., [14,15]. Along with convexity constraints, monotonicity
constraints are probably the most intensively studied shape constraints [16] in the literature,
and correspondingly, there exist plenty of different approaches to incorporate monotonicity
knowledge in a machine learning model. See [17] for an extensive overview. Very roughly,
these approaches can be categorized according to when the monotonicity knowledge is
taken into account: in or only after the training phase. In the terminology of [4], this
corresponds to the distinction between knowledge integration in the learning algorithm or
in the final hypothesis.

A lot of methods—especially from the mathematical statistics literature, such
as [18–24]—incorporate monotonicity knowledge only after training. These articles start
with a purely data-based initial model, which in general does not satisfy the monotonic-
ity requirements, and then monotonize this initial model according to a suitable mono-
tonization procedure, such as projection [18–20,24], rearrangement [22,23,25] or tilting [21].
Among other things, it is shown in the mentioned articles that, in spite of noise in the out-
put data, the arising monotonized models are close to the true relationship for sufficiently
large training datasets. Summarizing, these articles show that for large datasets, noise in
the output data can be compensated by monotonization to a certain extent.

In contrast to that, in some works, such as [13,17,26–29], monotonicity knowledge
was incorporated already in training. In these articles, the monotonicity requirements
were added as constraints—either hard [17,26,28,29] or soft [13,26]—to the data-based
optimization of the model parameters. In [13,28], probabilistic monotonicity notions are
used. In [26–29], support vector regressors in the linear-programming or the more standard
quadratic-programming form, Gaussian process regressors or neural network models were
considered, and the monotonicity of these models was enforced by constraints on the
model derivatives at predefined sampling points [26,28,29] or on the model increments
between predefined pairs of sampling points [27].

A disadvantage of the projection- and rearrangement-based approaches [22–24] from
the point of view of manufacturing applications is that these methods are tailored to large
datasets. Another disadvantage of these approaches is that the resulting models typically
exhibit distinctive kinks, which are almost always unphysical. Additionally, the models
resulting from the multidimensional rearrangement method by [23] are not guaranteed to
be monotonic when trained on small datasets. A drawback of the tilting approach from [21]
is that it is formulated and validated only for one-dimensional input spaces (intervals in
R). Accordingly, naively extending the non-adaptive discretization scheme from [21] to
higher dimensions would result in long computation times. A downside of the in-training
methods from [26,28,29] is that the sampling points at which the monotonicity constraints
are imposed have to be chosen in advance (even though they need not coincide with the
training data points).
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With the method proposed in the present article, we address the aforementioned issues
and shortcomings. In Section 2, our methodology for monotonic regression using semi-
infinite optimization is introduced. It incorporates the monotonicity knowledge during
training. Specifically, polynomial regression models are assumed for the input–output
relationships to be learned. Since there is no after-training monotonization step in the
method, our models are smooth, and in particular, do not exhibit kinks. Also, due to the
employed adaptive discretization scheme, the method is computationally efficient also in
higher dimensions. To our knowledge, such an adaptive scheme has not been applied to
solve monotonic regression problems before, especially not in situations with sparse data.
In Section 4, the method is validated by means of two applications to real-world processes
which are both introduced in Section 3, namely, laser glass bending and press hardening of
sheet metal. It turns out that the adaptive semi-infinite optimization approach to monotonic
regression is better suited for the considered applications with their small datasets and the
resulting models are more accurate than those obtained with the comparative approaches
from the literature.

2. Semi-Infinite Optimization Approach to Monotonic Regression

In this section, our semi-infinite optimization approach to monotonic regression is
introduced. It will be referred to as the SIAMOR method later on for brevity.

2.1. Semi-Infinite Optimization Formulation of Monotonic Regression

In our approach to monotonic regression, polynomial models

x 7→ ŷw(x) = ∑
|α|≤m

wαxα ∈ R (1)

are used for all input–output relationships x 7→ y(x) to be learned. In the above relation (1),
the sum extends over all d-dimensional multi-indices ([30], Section 1) α = (α1, . . . , αd) ∈ Nd

0
with degree |α| := α1 + · · ·+ αd less than or equal to some total degree m ∈ N. The terms
xα := xα1

1 · · · x
αd
d are the monomials in d variables of degrees less than or equal to m, and wα

are the corresponding model parameters to be tuned by regression. Since there are exactly

Nm =
m

∑
k=0

(
k + d− 1

d− 1

)
=

(
m + d

m

)
(2)

d-dimensional monomials of degrees less than or equal to m, the polynomial regression
model (1) can be equivalently written as

ŷw(x) =
Nm

∑
i=1

wiφi(x) = w>φ(x), (3)

where the basis functions φ1, . . . , φNm constitute any enumeration of the d-dimensional
monomials of degrees less than or equal to m, while w := (w1, . . . , wNm)

> and φ(x) :=
(φ1(x), . . . , φNm(x))>.

Standard polynomial regression without regularization ([31], Section 2.1) is about
solving the unconstrained optimization problem:

min
w∈W

1
2

N

∑
l=1

(
ŷw(xl)− tl

)2, (4)

or in other words, about optimally adapting the model parameters wi ∈ [−r, r] of the
polynomial model (3) to the available dataset D = {(xl , tl) : l ∈ {1, . . . , N}} containing
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N points. In the above relation, the monomial coefficients are allowed to vary in the
compact hyperbox

W = {w ∈ RNm : −r ≤ wi ≤ r for all i ∈ {1, . . . , Nm}} (5)

with some large but finite r > 0. Since W is compact and non-empty, and since the mean-
squared error objective function of (4) is continuous, the standard polynomial regression
problem (4) for any given dataset D has a solution w (which is unique if, for instance, an
`2-regularization term is added).

In general, however, the resulting model x 7→ ŷw(x) does not necessarily exhibit
the monotonicity behavior an expert expects for the underlying true physical relationship
x 7→ y(x). In order to enforce the expected monotonicity behavior, the following constraints
on the signs of the partial derivatives ∂xj ŷw(x) are added to the unconstrained standard
regression problem (4):

σj · ∂xj ŷw(x) ≥ 0 for all j ∈ J and x ∈ X. (6)

The numbers σj ∈ {−1, 0, 1} indicate the expected monotonicity behavior for each coordi-
nate direction j ∈ {1, . . . , d}:
• σj = 1 and σj = −1 indicate that x 7→ y(x) is expected to be, respectively, monotoni-

cally increasing or decreasing in the jth coordinate direction;
• σj = 0 indicates that one has no monotonicity knowledge in the jth coordinate

direction.

Also, J := {j ∈ {1, . . . , d} : σj 6= 0} is the set of all directions for which a monotonicity
constraint is imposed, and the vector

σ := (σ1, . . . , σd)

is referred to as the monotonicity signature of the relationship x 7→ y(x). Finally, X ⊂ Rd is
the (continuous) subset of the input space on which the polynomial model (1) is supposed
to be a reasonable prediction for x 7→ y(x). In this work, X was chosen to be identical
with the range covered by the input training data points x1, . . . , xN . I.e., X is the compact
hyperbox

X = [a1, b1]× · · · × [ad, bd] (7)

with aj := minl=1,...,N xl,j and bj := maxl=1,...,N xl,j and with xl,j denoting the jth component
of the lth input data point xl . Writing

f (w) :=
1
2

N

∑
l=1

(ŷw(xl)− tl)
2 and gj(w, x) := σj · ∂xj ŷw(x) (8)

for brevity, our monotonic regression problem (4)–(6) takes the neat and simple form

min
w∈W

f (w) s.t. gj(w, x) ≥ 0 for all j ∈ J and x ∈ X. (9)

Since the input set X is continuous and hence contains infinitely many points x, the
monotonic regression problem (9) features infinitely many inequality constraints. Conse-
quently, (9) is a semi-infinite optimization problem [32–36] (or more precisely, a standard
semi-infinite optimization problem, as opposed to a generalized one). It is well-known that
any semi-infinite problem—and, in particular, the monotonic regression problem (9)—can
be equivalently rewritten as a bi-level optimization problem [35,37,38], namely,

min
w∈W

f (w) s.t. min
x∈X

gj(w, x) ≥ 0 for all j ∈ J. (10)
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Commonly, the minimization subproblems in the constraints of (10) are called lower-level
problems of (9).

2.2. Adaptive Solution Strategy

Since the feasible set of (9) is compact (by the finiteness of the parameter r in (5))
and non-empty (it contains w := 0 ∈ RNm ), the monotonic regression problem (9) has a
solution by virtue of the Weierstraß extreme-value theorem. In order to compute such a
solution of (9), a variant of the adaptive, iterative discretization algorithm by [39] is used.
In a nutshell, the idea is the following: the infinite index set X of the original regression
problem (9) is iteratively replaced by discretizations, that is, finite subsets Xk ⊂ X, and
these discretizations are adaptively refined from iteration to iteration. In that manner, in
every iteration k one obtains the ordinary (finite) optimization problem

min
w∈W

f (w) s.t. gj(w, x) ≥ 0 for all j ∈ J and x ∈ Xk (11)

featuring only finitely many inequality constraints. As usual, we refer to (11) as the kth
discretized problem. In each iteration k, two steps are performed, namely, an optimization
step and an adaptive refinement step. In the optimization step, a solution wk of the kth
discretized problem (11) is computed. In the refinement step, for each direction j ∈ J, a
point xk,j ∈ X is computed at which the jth monotonicity constraint at w = wk is violated
most. In more precise terms, for every j ∈ J, an approximate solution xk,j of the global
optimization problem

min
x∈X

gj(wk, x) (12)

is computed. All the points xk,j for which a monotonicity violation occurs are then added
to the current discretization Xk in order to obtain the new discretization Xk+1. If no more
monotonicity violations occur, the iteration is stopped. As usual, (12) is referred to as the
(k, j)th lower-level problem in the following.

With regard to the practical implementation of the above solution strategy, it is im-
portant to observe that the discretized problems (11) are standard convex quadratic pro-
grams [40]. Indeed, by inserting (3) into (8) and using the design matrix Φ with entries
Φli := φi(xl), one obtains

f (w) =
1
2
‖Φw− t‖2

2 =
1
2

w>Φ>Φw− t>Φw +
1
2

t>t.

Consequently, the objective function of (11) is indeed quadratic and convex with respect
to w. It is not strictly convex, though, in the sparse-data case N < Nm considered in
this paper. (Indeed, the kernel of the matrix Φ>Φ ∈ RNm×Nm is equal to the kernel of
Φ ∈ RN×Nm , and an N × Nm matrix with N < Nm has a non-trivial kernel, of course.)
Also, in view of

gj(w, x) = σj · ∂xj ŷw(x) = σj ·w>
(
∂xj φ(x)

)
, (13)

the constraints of (11) are indeed linear with respect to w.
With regard to the practical implementation, it is also important to observe that

the objective functions x 7→ gj(wk, x) of the lower-level problems (12) are non-convex
polynomials and therefore in general have several local minima. Consequently, (12) needs
to be solved numerically with a global optimization solver.

2.3. Algorithm and Implementation Details

In the following, our adaptive discretization algorithm is described in detail. As
has already been pointed out above, it is a variant of the general algorithm developed
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by ([39], Section 2), and it is explained after Algorithm 1 how our variant differs from its
prototype [39].

Algorithm 1 Adaptive discretization algorithm for monotonic regression.

Choose a coarse (but non-empty) rectangular grid X0 in X. Set k = 0 and iterate over k.
1. Solve the kth discretized problem (11) to obtain optimal model parameters wk ∈W.
2. Solve the (k, j)th lower-level problem (12) approximately for every j ∈ J to find

approximate global minimizers xk,j ∈ X. Add those of the points xk,j for which
substantial monotonicity violations occur, i.e., for which

gj(wk, xk,j) < −ε j,

to the current discretization Xk and go to Step 1 with k = k + 1. If for none of the
points xk,j substantial monotonicity violations occur, go to Step 3.

3. Check for monotonicity violations on a fixed, fine rectangular reference grid Xref ⊂ X.
If there are no such violations, that is, if

gj(wk, x) ≥ −ε j

for all j ∈ J and x ∈ Xref, then terminate. Else, for every direction j with violations,
add the reference grid point xk,j

ref with the largest violation to Xk and go to Step 1 with
k = k + 1.

In contrast to [39], the algorithm above does not require exact solutions of the (non-
convex) lower-level problems. Indeed, Step 2 of Algorithm 1 only requires finding an
approximate solution. Also, slight constraint violations are tolerated (Step 2 and 3), and
a feasibility check on a reference grid (Step 3) is performed before termination. Without
the feasibility check on the reference grid, it could happen that the algorithm—because
of the merely approximate solutions of the lower-level problems—terminates at models
ŷwk which do not satisfy the imposed monotonicity constraints sufficiently well. Another
difference to the algorithm from [39] is that there there are several lower-level problems in
each iteration in this work and not just one, because monotonicity is enforced in multiple
coordinate directions in general.

In our specific applications, the parameters inherent in Algorithm 1 were chosen as
follows. The degrees m of the polynomial models in this work were chosen as the largest
possible values that did not result in an overfit, because increasing m enhances the model’s
accuracy in general. In this respect, the number of model parameters was allowed to exceed
the number of data points (Nm ≥ N), since the constraints represent additional information
supplementing the data. As for the parameter r in (5), one only has to make sure that it is
so large that the resulting box constraints in the discretized problems (11) actually do not
restrain the solutions wk (Step 1 of Algorithm 1). In other words, r should be so large that
relaxing or even dropping the pertaining box constraints does not improve the minimizer
computed for (11) anymore. In the specific applications considered here, r = 105 turned
out to meet this requirement. As for the tolerances ε j (Steps 2 and 3 of Algorithm 1), a
monotonicity violation of 1 % of the ranges covered by the in- and output training data
was allowed for:

ε j = 0.01
maxl=1,...,N tl −minl=1,...,N tl

maxl=1,...,N xl,j −minl=1,...,N xl,j
. (14)

And finally, concerning the reference grid Xref in the finalization step (Step 3 of Algorithm 1),
twenty values per input dimension, equidistantly distributed from the lower to the upper
bound along each direction, were used.

Algorithm 1 was implemented in Python and the package sklearn was used for the
numerical representation of the models. Since the discretized problems (11) are standard
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convex quadratic programs, a solver tailored to that specific problem class was used,
namely, quadprog [41]. It can solve quadratic programs with hundreds of variables and
thousands of constraints in just a few seconds because it efficiently exploits the simple
structure of the problem. Since, on the other hand, the lower-level problems (12) are global
optimization problems with possibly several local minima, a suitable global optimization
solver was required. We chose the solver scipy.optimize.shgo [42], which employs a
simplicial homology strategy, and which, in our applications, turned out to be a good
compromise between speed and reliability. For the problems considered in this article,
shgo’s internal local optimization was configured to occur in every iteration, to multi-start
from a Sobol set of 100·d points and to be executed using the algorithm L-BFGS-B with
analytical gradients.

3. Applications in Manufacturing

In this section, two real-world manufacturing applications are described to which our
monotonic regression algorithm was applied.

3.1. Laser Glass Bending

A first application example is laser glass bending. In the industrial standard process
of glass bending [43], a flat glass specimen is placed in a furnace with furnace temperature
Tf, and then the heated specimen is bent at a designated edge driven by gravity. As an
additional feature, a laser can be added to the industrial standard process in order to
specifically heat up the critical region of the flat glass around the bending edge, and thus
to speed up the process and achieve smaller bending radii [44,45]. The laser can generally
scribe in arbitrary directions. In the process considered here, however, the laser path is
restricted to three straight lines parallel to the bending edge. While the middle line defines
the bending edge, the two outer lines are at a fixed distance ∆l/2 = 5.75 mm in each
direction to it. The laser spot moves along this path in multiple cycles with the number
of cycles denoted by nc. The scribing speed and the power of the laser are kept constant.
A mechanical stop below the bending edge guarantees that the bending angle does not
exceed 90◦. An illustration of the laser glass bending process is shown in Figure 1.

The goal of the glass bending process considered here is to obtain bent glass parts
with a prescribed bending angle. In order to achieve such a pre-defined bending angle, the
process operator has to find suitable combinations of the two process parameters Tf and nc,
which is usually done based on experience. A more systematic approach, however, is to set
up an appropriate model of the bending angle y := β as a function of the process variables

x := (x1, x2) := (Tf, nc) ∈ X, (15)

where X ⊂ R2 is the rectangular set with the bounds specified in Table 1. In particular,
such a model should allow sufficiently precise real-time predictions in order to support the
process operator in quickly searching the parameter space X for optimal process parameter
settings. Since SIAMOR models are polynomial by construction, they perfectly satisfy
this real-time requirement. In contrast, a repeated evaluation of finite-element simulation
models of the glass-bending process is too time-consuming to be of any practical use in
quickly exploring the parameter space.

As generating experimental training data from the real process is cumbersome, a two-
dimensional finite-element model was set up to generate data numerically. The simulation
of the process was based on a coupled thermo-mechanical problem with finite deformation.
Since the CO2 laser used in the process operates in the opaque wavelength spectrum of
glass, the heat supply was modeled as a surface flux into the deforming sheet. In this
two-dimensional setting, the heat was assumed to be deposited instantaneously along
the thickness direction and also instantaneously on all three laser lines. Radiation effects
were ignored, and heat conduction inside the glass was described by the classical Fourier
law with the heat conductivity obtained experimentally via laser flash analysis. In view
of the relevant relaxation and process time scales for the applied temperature range, the
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mechanical behavior of the glass was described by a simple Maxwell-type visco-elastic
law. The deformation due to gravity is heavily affected by the pronounced temperature
dependence of the viscosity above the glass transition, which was described in our models
using the Williams–Landel–Ferry approximation [46]. The generation of the simulated data
was conducted using the commercial finite-element code Abaqus©. It was used to create a
training dataset comprising 25 data points sampled on a 2D rectangular grid. The values
used for the two degrees of freedom (five for Tf and five for nc) were placed equidistantly
from the lower to the upper bounds given in Table 1.

Within these ranges and for the laser configuration described above, process experts
expect the following monotonicity behavior: the bending angle y = β should increase
monotonically with increasing glass temperature in the critical region, and thus with
increasing Tf and nc. In other words, the monotonicity signature σ of the bending angle y
as a function of the inputs x from (15) is expected to be

σ = (σ1, σ2) = (1, 1). (16)

Figure 1. Side view of the laser glass bending process. Symbols: Tf—furnace temperature, ∆l—
distance between the left- and right-most laser line, β—bending angle. Lengths are given in mm.

Table 1. Ranges for the process variables of laser glass bending.

Variable Min Max Phys. Unit

Tf 480 560 ◦C
nc 40 50 —

3.2. Forming and Press Hardening of Sheet Metal

Another application example is press hardening [47]. In the experimental setup
considered here, a blank is placed in a chamber furnace with a furnace temperature Tf
above 900 ◦C. After heating the blank, an industrial robot transports it with handling time
th into the cooled forming tool. In the following, the extra handling time ∆th = th − 10 s is
used instead, with 10 s being the minimum time the robot takes to move the blank from
the furnace to the press. The final combined forming and quenching step allows for the
variation of the press force Fp and the quenching time tq. Afterwards, the formed part is
transferred by the industrial robot to a deposition table for further cooling. An illustration
of the process chain is shown in Figure 2.

The goal of the press hardening process considered in this work is to obtain a formed
metal part with a prescribed hardness level, where the hardness is measured in units of the
Vickers hardness number (unit symbol HV). In order to achieve such a pre-defined hardness,
the process operator has to find suitable combinations of the four process parameters
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Tf, ∆th, Fp, tq. And for that purpose, in turn, an appropriate model is needed for the
hardness y of the formed part (at distinguished measurement points on the surface of the
part) as a function of the process variables

x := (x1, . . . , x4) := (Tf, ∆th, Fp, tq) ∈ X, (17)

where X ⊂ R4 is the hypercuboid set with the bounds specified in Table 2. In particular,
such a model has to allow sufficiently accurate real-time predictions in order to help the
process operator in quickly searching the parameter space X for optimal process parameter
settings. Since SIAMOR models are polynomial by construction, they perfectly satisfy this
real-time requirement. In contrast, due to the four-dimensional parameter space, already a
single evaluation of a representative finite-element simulation model of the press-hardening
process is prohibitively time-consuming to be of any practical use in quickly exploring the
parameter space.

As in the case of glass bending, experiments for the press hardening process are expen-
sive because they usually require manual adjustments, which tend to be time-consuming.
Additionally, the local hardness measurements at the chosen measurement points on the
surface of the quenched part are time-consuming as well. This is why the training data
base we used is rather small. It contains 60 points resulting from a design of experiments
with the four process variables Tf, ∆th, Fp and tq ranging between the bounds in Table 2,
along with the corresponding hardness values at six local measurement points (referred to
as MP1, . . . , MP6 in the following).

In order to compensate this data shortage, expert knowledge is brought into play. An
expert for press hardening expects the hardness to decrease monotonically with ∆th and
to increase monotonically with Tf as well as with tq. In other words, the monotonicity
signature σ of the hardness y (at any given measurement point) as a function of the inputs
x from (17) is expected to be

σ = (σ1, . . . , σ4) = (1,−1, 0, 1). (18)

In fact, a press hardening expert expects even a bit more, namely that the hardness should
grow in a sigmoid-like manner with Tf and that it grows concavely towards saturation
with increasing tq. All these requirements result from qualitative physical considerations
and are supported by empirical experience.

Figure 2. Side view of the press hardening process [47] indicating the considered process steps.
Symbols: Tf—furnace temperature, th—handling time, Fp—press force, tq—quenching time.

Table 2. Ranges for the process variables of press hardening.

Variable Min Max Phys. Unit

Tf 871 933 ◦C
∆th 0 4 s
Fp 1750 2250 kN
tq 2 6 s
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4. Results and Discussion

In this section, we describe the results of our semi-infinite adaptive optimization
approach to monotonic regression (SIAMOR) in the industrial processes described in
Section 3, and compare them to the results of other approaches to incorporating monotonic-
ity knowledge, which are well-known from the literature.

4.1. Informed Machine Learning Models for Laser Glass Bending

To begin with, the SIAMOR method was validated on a 1D subset of the data for
laser glass bending, namely, the subset of all data points for which nc = 50. This means
that, out of the 25 data points, five points remained for training. First of all, ordinary
unconstrained regression techniques were tried (see Figure 3a). A polynomial model of
degree m = 3 (solid line) and a Gaussian process regressor [31] (GPR, dashed line) did
not comply with the monotonicity knowledge at high Tf. A radial basis function (RBF)
kernel was used for the GPR. This non-parametric model is always a reasonable choice
for simulated data because it accurately reproduces the data themselves if the noise-level
parameter is kept small. For all GPR models in this work, that parameter was set to 10−5.
Next, the polynomial model was regularized in a ridge regression (dotted line), where
the squared `2-norm λ‖w‖2

2 with a regularization weight λ was added to the objective
function in (4). λ = 0.003 was chosen, which was roughly the minimum necessary value to
achieve monotonicity. However, the resulting model does not predict the data very well.
Thus, all three models from Figure 3a were unsatisfactory.

Figure 3. 1D regression for laser glass bending (nc = 50). (a) Unconstrained regression. Solid: polynomial model (m = 3),
dashed: Gaussian process regression (GPR) with RBF kernel (noise level 10−5), dotted: polynomial ridge regression (m = 3,
λ = 0.003). (b) Monotonic regression, with the solid line resulting from the SIAMOR method (see Sections 2.1–2.3) with
degree m = 5. The projection [24] (dash-dotted) and rearrangement [22] (dotted) methods were fed with the dashed GPR
curve as a non-monotonic reference predictor.

As a next step, the monotonicity requirement with respect to Tf was brought to bear,
and monotonic regression with the SIAMOR method (m = 5) was used (see Figure 3b) and
compared to the rearrangement [22] and to the monotonic projection [24] of the Gaussian
process regressor from Figure 3a. As mentioned before, both comparative methods are
based on a non-monotonic pre-trained reference predictor. This makes them fundamentally
different to the SIAMOR method, which imposes the monotonicity already in the training
phase. The projection was calculated as described in the Appendix A with |G| = 80 grid
points. For the rearrangement method, the R package monreg was invoked from Python
using the package rpy2. The degree m of the polynomial ansatz (1) used in the SIAMOR
method was chosen as described in Section 2.3. For the specific case considered here, the
curve started to vary unreasonably (albeit still monotonically) between the data points for
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m ≥ 6, and therefore m = 5 was chosen. The SIAMOR algorithm was initialized with five
equidistant constraint locations in X0, and it converged in iteration 5 with a total number
of nine constraints. The locations of the constraints are marked in Figure 3b by the gray,
vertical lines. The adaptive algorithm automatically places the non-initial constraints in
the non-monotonic region at high Tf. In terms of the root-mean-squared error

RMSE =

√√√√ 1
N

N

∑
l=1

(
ŷ(xl)− tl

)2 (19)

on the training data, the SIAMOR model fits the data best; see Table 3. Another advantage
of the SIAMOR model is that it is continuously differentiable, whereas the rearrangement
and projection models exhibit (slight) unphysical kinks, which are typical for these meth-
ods [22]. And finally, the rearrangement and the projection models, for temperatures higher
than 540 ◦C, both predict bending angles larger than 90◦, which is unphysical due to the
mechanical stop used in the glass bending process. In contrast, the predictions of the
SIAMOR model do not (significantly) exceed 90◦.

After these calculations on a 1D subset, the full 2D dataset of the considered laser
glass bending process with its 25 data points was used. The results are shown in Figure 4.
Again, part (a) of the figure displays an unconstrained Gaussian process regressor for
comparison. The RBF kernel contained one length scale parameter per input dimension,
and sklearn correctly adjusted these hyperparameters using L-BFGS-B. I.e., the employed
length scales maximize the log-likelihood function of the model. Nevertheless, the model is
unsatisfactory because it exhibits a bump in the rear right corner of the plot, contradicting
the monotonicity knowledge.

Figure 4b shows the 2D monotonic projection of the GPR with the monotonicity
requirements (16) with respect to Tf and nc. It was calculated according to the Appendix A
on a rectangular grid G consisting of 402 points (40 values per input dimension). The
resulting model looks generally reasonable, and in particular, satisfies the monotonicity
specifications, but it exhibits kinks and plateaus. The most conspicuous kink starts at about
Tf = 546 ◦C, nc = 50 and proceeds towards the front right. The rearrangement method
by [23] was not used for comparison here because for small datasets in d > 1, it does not
guarantee monotonicity.

Table 3. Root-mean-squared deviations (RMSE) of the monotonic regression models from the training
data for laser glass bending (1D).

Monotonic Regression Type RMSE [◦]

projection [24] 1.3822
rearrangement [22] 1.8432
SIAMOR 1.1598
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Figure 4. 2D regression for laser glass bending, where the markers represent the employed training data. (a) Gaussian
process regression (non-monotonic) with a multi-length-scale RBF kernel (noise level 10−5); (b) projection [24] of GPR;
(c) monotonic regression of a polynomial model (m = 7) using the SIAMOR method (see Sections 2.1–2.3).

Figure 4c displays the corresponding response surface of a polynomial model of
the form (1) with degree m = 7 trained with SIAMOR. For m = 7 there are Nm = 36
model parameters. The discretization X0 was initialized with a rectangular grid using five
equidistant values per dimension. The algorithm converged in iteration 11 with 69 final
constraints. The resulting model is smoother than the one in Figure 4b, and it predicts
the training data more accurately. Indeed, the corresponding RMSE values are 1.2518◦ for
projection and 0.6607◦ for SIAMOR.

4.2. Informed Machine Learning Models for Forming and Press Hardening

As in the glass bending case, the SIAMOR method was first validated on a 1D subset of
the data for the press hardening process. Namely, only those data points with Fp = 2250 kN,
∆th = 4 s and tq = 2 s were considered. These specifications are met by six data points, and
these were used to train the models shown in Figure 5. The data are not monotonic due to
experimental noise. However, they reflect the expected sigmoid-like behavior mentioned
in Section 3.2, and this extends to the monotonized models. An unconstrained polynomial
with m = 3 was chosen as the reference model to be monotonized for the comparative
methods from the literature. Degrees lower than that resulted in larger deviations from
the data and degrees higher than that resulted in overfitting. Thus, out of all models
of the form (1), the hyperparameter choice m = 3 yielded the lowest RMSE values for



Algorithms 2021, 14, 345 13 of 18

projection and rearrangement. For the monotonic regression with SIAMOR, m = 6 and
five equidistant initial constraint locations in X0 were chosen. It converged in iteration 8
with a total of 12 monotonicity constraints. In terms of the root-mean-squared error, the
SIAMOR model predicts the training data more accurately, as can be seen in Table 4. The
reason is that the rearrangement- and projection-based models are dragged away from the
data by the underlying reference model, especially at high Tf.

Table 4. Root-mean-squared deviations (RMSE) of the monotonic regression models from the training
data for forming and press hardening of sheet metal (1D).

Monotonic Regression Type RMSE [HV]

projection [24] 5.0893
rearrangement [22] 4.8346
SIAMOR 3.3583

Figure 5. 1D regression for forming and press hardening of sheet metal (Fp = 2250 kN, ∆th = 4 s,
tq = 2 s). Dashed: (non-monotonic) polynomial of degree m = 3 as the reference model, dash-
dotted: projection [24], dotted: rearrangement [22], solid: SIAMOR (see Sections 2.1–2.3) with degree
m = 6. The projection and rearrangement methods were fed with the dashed polynomial curve as
non-monotonic reference predictor.

After these 1D considerations, the SIAMOR method was validated on the full 4D
dataset of the press hardening process. Polynomial models with degree m = 3 were used
for unconstrained regression and monotonic projection, and polynomials with m = 6
were used for the SIAMOR method. The resulting models are visualized in the surface
plots in Figure 6. The unconstrained model from Figure 6a clearly shows non-monotonic
predictions with respect to ∆th. Furthermore, the hardness slightly decreases with the
furnace temperature at Tf close to 930 ◦C, which is not the behavior expected by the process
expert either. Figure 6b shows the monotonic projection of the unconstrained model. It
was computed according to the Appendix A on a grid G consisting of 404 points. The
monotonic projection exhibits the kinks that are characteristic of that method, and it yields
an RMSE of 28.84 HV on the entire dataset.

With an overall RMSE of 10.14 HV, the model resulting from SIAMOR is more accurate
for this application. A corresponding response surface is displayed in Figure 6c. In keeping
with (18), monotonicity was required with respect to Tf (increasing), ∆th (decreasing) and
tq (increasing). As m = 6, there are Nm = 210 model parameters and the dicretization X0

was initialized with a grid using four equidistant values per dimension. The algorithm
converged in iteration 246 with 1372 final constraints. Our first try was with only two
monotonicity requirements (namely, with respect to Tf and tq). We observed, however,
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that the final number of iterations decreased when the third monotonicity requirement
was added. Thus, the monotonicity requirements in each direction promoted each other
numerically within the algorithm and for the used data. This reduction in the number
of iterations was not accompanied by a decrease in total calculation time because more
lower-level problems have to be solved when there are more monotonicity directions.

With SIAMOR, monotonicity was achieved in all three input dimensions where it
was required. See, e.g., Figure 6c, which is the monotonic counterpart of Figure 6a. A
comparison of Figure 6a–c clearly shows how incorporating monotonicity expert knowl-
edge helps compensate data shortages. Indeed, taking no monotonicity constraints into
account at all (Figure 6a), we obtained an unexpected hardness minimum with respect
to ∆th at ∆th ≈ 2.5 s and small Tf. This also resulted in unnecessarily low predictions of
the monotonic projection for small Tf and ∆th ' 1.5 s in Figure 6b. The SIAMOR model
(Figure 6c), by contrast, predicted more reasonable hardness values in this range without
needing additional data, because it integrated the available monotonicity knowledge in the
training phase.

Figure 6. 4D regression for forming and press hardening of sheet metal using polynomial models (Fp = 2250 kN, tq = 2 s).
The markers represent those training points matching the specification of the corresponding plane in the input space.
(a) Unconstrained m = 3, (b) projection [24] of unconstrained m = 3, (c) SIAMOR m = 6.

For the SIAMOR plots in Figure 7, ∆th was reduced to 0 s. This figure shows that
monotonicity is also achieved with respect to tq. Without having explicitly demanded it,
the hardness y shows the expected concave growth towards saturation with respect to tq in
Figure 7a. An additional increase in Fp leads to Figure 7b, where the sign of the second
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derivative of y with respect to the quenching time tq changes along the Tf-axis. I.e., the
model changes its convexity properties in this direction and increases convexly instead
of concavely with tq at high Tf, ∆th = 0 s and Fp = 2250 kN. This contradicts the process
expert’s expectations. A possible way out is to measure additional data (e.g., in the rear left
corner of Figure 7b), which is elaborate and costly, however. Another possible way out is
to add the concavity requirement ∂2

x4
ŷw(x) ≤ 0 for all x ∈ X with respect to the x4 = tq

direction to the monotonicity constraints (6) used exclusively so far. In order to solve the
resulting constrained regression problem, one can use the same adaptive semi-infinite
solution strategy, which was already used for the monotonicity constraints alone.

Figure 7. Response surfaces of 4D monotonic regression with SIAMOR (m = 6) for forming and press hardening of sheet
metal (∆th = 0 s). The markers represent those training points matching the specifications of the corresponding planes in
the input space. (a) Fp = 1750 kN, (b) Fp = 2250 kN.

5. Conclusions and Outlook

In this article, a proof of concept was conducted for the method of semi-infinite opti-
mization with an adaptive discretization scheme to solve monotonic regression problems
(SIAMOR). The method generates continuously differentiable models, and its use in multi-
ple dimensions is straightforward. Polynomial models were used, but the method is not
restricted to this type of model, even though it is numerically favorable because polynomial
models lead to convex quadratic discretized problems. The monotonic regression technique
was validated by means of two real-world applications from manufacturing. It resulted in
predictions that complied very well with expert knowledge and that compensated for the
lack of data to a certain extent. At least for the small datasets considered here, the resulting
models predicted the training data more accurately than models based on the well-known
projection or rearrangement methods from the literature.

While the present article is confined to regression under monotonicity constraints,
semi-infinite optimization can also be exploited to treat other types of shape constraints
such as concavity constraints, for instance. In fact, the shape constraints can be quite
arbitrary, in principle. Additionally, this is only one of several aspects in the field of
potential research on the method opened up by this work. Others are the testing of
SIAMOR in combination with different model types, datasets or industrial processes.
When using Gaussian process regressors instead of the polynomial models employed here,
one can try out and compare various kernel types. Additionally, the SIAMOR method can
be extended to locally varying monotonicity requirements (i.e., σj = σj(x)).

Another possible direction of future research is to systematically investigate how
to speed up the solution of the global lower-level problems. When more complex mod-
els or shape constraints are used, this will be particularly important. The solution of
multiple lower-level problems and the final feasibility test on the reference grid can be
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parallelized to reduce the calculation time, for example. A rigorous investigation of the
convergence properties and the asymptotic properties of the SIAMOR method and its
possible generalizations is left to future research as well.
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Appendix A. Computing Monotonic Projections

In order to validate our semi-infinite optimization approach to monotonic regression,
it is compared, among other things, to the projection-based monotonization approach
by [24]. As has been pointed out in Section 1, the projection method starts out from a
purely data-based initial model ŷ 0 (a Gaussian process regressor in the case of [24]) and
then replaces this initial model by the monotonic projection ŷ of ŷ 0. I.e., ŷ : X → R is the
monotonic square-integrable function with monotonicity signature σ that is closest to ŷ 0

in the L2-norm.
In order to numerically compute this monotonic projection ŷ, the original procedure

proposed in [24] is not used here, though. Instead, the conceptually and computationally
simpler methodology from [48] is employed. In this methodology, the input space X is
discretized with a fine rectangular grid G. Then, the corresponding discrete monotonic
projection (ŷ(x))x∈G, that is, the solution of the constrained optimization problem

min
z∈RG

∑
x∈G

(
z(x)− ŷ 0(x)

)2 s.t. σj ·
(
z(x + hjej)− z(x)

)
≥ 0 for all j ∈ J

and all x ∈ G for which x + hjej ∈ G
(A1)

is computed. In the above relation, RG is the |G|-dimensional vector space of all R-valued
functions z = (z(x))x∈G defined on the discrete set G, hj > 0 indicates the distance of
adjacent grid points in the jth coordinate direction, and ej ∈ Rd is the jth canonical unit
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vector. It is shown in [48] that the extension of (ŷ(x))x∈G to a grid-constant function on
the whole of X is a good approximation of the monotonic projection ŷ, if only the grid is
fine enough and the initial model ŷ 0 is continuous, for instance. In contrast to [24], these
approximation results from [48] also feature rates of convergence.

Since both the objective function and the constraints of (A1) are convex with respect
to z, the problem (A1) is a convex program. We used cvxopt [49] to solve these problems
because it offers a sparse matrix type to represent the large coefficient and constraint
matrices for d > 1. Alternatively, the discrete monotonic projection problems can also be
solved using any of the more sophisticated computational methods from ([50], Section 2.3),
([51], Section 4.1), or [52–56]. However, for the number of input dimensions considered
here, our direct computational method is sufficient.
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