
algorithms

Article

An O(log2 N) Fully-Balanced Resampling Algorithm for
Particle Filters on Distributed Memory Architectures

Alessandro Varsi 1,* , Simon Maskell 1 and Paul G. Spirakis 2,3

����������
�������

Citation: Varsi, A.; Maskell, S.;

Spirakis, P.G. An O(log2 N) Fully

Balanced Resampling Algorithm for

Particle Filters on Distributed

Memory Architectures. Algorithms

2021, 14, 342. https://doi.org/

10.3390/a14120342

Academic Editors: Charalampos

Konstantopoulos and Grammati

Pantziou

Received: 20 October 2021

Accepted: 25 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK;
S.Maskell@liverpool.ac.uk

2 Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK; spirakis@liverpool.ac.uk
3 Department of Computer Engineering and Informatics, University of Patras, 26504 Patras, Greece
* Correspondence: Alessandro.Varsi@liverpool.ac.uk

Abstract: Resampling is a well-known statistical algorithm that is commonly applied in the context
of Particle Filters (PFs) in order to perform state estimation for non-linear non-Gaussian dynamic
models. As the models become more complex and accurate, the run-time of PF applications becomes
increasingly slow. Parallel computing can help to address this. However, resampling (and, hence, PFs
as well) necessarily involves a bottleneck, the redistribution step, which is notoriously challenging to
parallelize if using textbook parallel computing techniques. A state-of-the-art redistribution takes
O((log2 N)2) computations on Distributed Memory (DM) architectures, which most supercomputers
adopt, whereas redistribution can be performed in O(log2 N) on Shared Memory (SM) architectures,
such as GPU or mainstream CPUs. In this paper, we propose a novel parallel redistribution for DM
that achieves an O(log2 N) time complexity. We also present empirical results that indicate that our
novel approach outperforms the O((log2 N)2) approach.

Keywords: parallel computing; resampling; Particle Filters; high performance computing; Dis-
tributed Memory; message passing interface

1. Introduction
1.1. Motivation

In several modern applications, it is often necessary to estimate the state of a system,
given a mathematical model for the system and a stream of noisy observations. Particle
Filters (PFs) are typically used in this context. The key idea is to sample N hypotheses
(i.e., particles) from an arbitrary proposal distribution to approximate the probability
density function (pdf) of the true state. However, at some point, the particles experience a
numerical error, called particle degeneracy, which makes the estimates diverge from the
true state. A resampling algorithm is then applied to correct for degeneracy by replacing
the particles that are diverging from the true state with copies of the particles that are
not doing so [1]. This sampling–resampling approach is highly flexible, such that PFs
find application in a wide range of fields, ranging from machine learning [2] to medical
research [3], fault prediction [4], weather forecasting [5], tracking [6] or, broadly speaking,
any domain involving decision making in response to streaming data. Resampling is also
used in other Monte Carlo methods, such as sequential Monte Carlo samplers [7,8] and
PHD filters [9]. For brevity, this paper focuses exclusively on PF contexts.

Modern efforts of making models more detailed have translated to an increasing de-
mand in making PFs more accurate. This demand can be satisfied in several ways, ranging
from applying better proposal distributions [10] to collecting more measurements [11]
and using more particles [12,13]. Using more particles is especially important in settings
where we are more interested in computing the probability that the true state falls within a
certain state-space region, rather than simply estimating its mean [14]. However, the likely
side-effect of any of these approaches is a significant increment to the run-time, and this

Algorithms 2021, 14, 342. https://doi.org/10.3390/a14120342 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-2218-4720
https://orcid.org/0000-0003-1917-2913
https://orcid.org/0000-0001-5396-3749
https://doi.org/10.3390/a14120342
https://doi.org/10.3390/a14120342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14120342
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14120342?type=check_update&version=2

Algorithms 2021, 14, 342 2 of 21

may be critical, especially in real-time applications [12]. Parallel computing becomes
necessary in order to compensate for this side-effect.

1.2. Problem Definition and Related Work

Although the particles can be sampled in embarrassingly parallel fashion, resampling
is hard to parallelize globally, i.e., in such a way that the result for P > 1 processing
units (or cores, as referred to in this paper) is identical to that achieved using a single
core. This is because of the difficulties in parallelizing the constituent redistribution step,
whose textbook implementation achieves an O(N) time complexity on one core. In order
to bypass the need to parallelize resampling, one could use multiple PFs in parallel, each
performing resampling locally, i.e., when each core performs resampling independently
without considering the content of the other cores’ particles. However, this approach has
shown accuracy, scalability and model-dependent applicability issues [15–17].

On Shared Memory (SM) architectures, it has been shown that a global redistribution
of the particles takes O(log2 N) computations by using a static load balancing approach,
in which, all cores perform independently up to N binary searches in order to achieve a
perfect workload balance. Examples are found in [12,13,18,19] on GPU and mainstream
CPUs. High Performance Computing (HPC) applications, however, need to use Distributed
Memory (DM) architectures to overcome the limitations in modern SM of a low memory
capacity and Degree Of Parallelism (DOP).

On DM, parallelization is more complicated, as the cores cannot directly access the
other cores’ memory without exchanging messages. Three master–worker solutions for DM
(along with mixed versions of them) are presented in [20]: Centralized Resampling (C-R),
Resampling with Proportional Allocation (RPA) and Resampling with Non-proportional
Allocation (RNA). C-R performs resampling globally, but here, a central-unit gathers the
particles from all cores, performs redistribution sequentially and scatters the result back
to the cores, making this algorithm scale as O(N). RPA also performs global resampling,
but the network topology is randomized, as the redistribution is partly or potentially
entirely (worst-case) centralized to one or a few cores, leading to a strongly data-dependent
run-time and an O(N) time complexity in the worst-case. RNA has a simpler central
unit and communication pattern than RPA, but sacrifices accuracy, as local resampling
is performed. For the routing, RNA could use RPA or a ring topology, where the cores
cyclically exchange a user-defined number of particles with their neighbors, though such
an approach risks redundant communication. These master–worker approaches have
been used, re-interpreted or mixed in recent work, such as in [17,21–24]. In [17,24,25], it is
shown that such strategies may have accuracy or scalability issues, especially for a highly
unbalanced workload, large N or DOP. In this paper, we then consider only fully-balanced
solutions, which we define as follows.

Definition 1. A fully-balanced redistribution meets the following requests:

• All cores perform the same pre-agreed tasks (i.e., no central unit(s) are involved) to balance the
workload evenly;

• The number of messages for the load balancing is data-independent in order to guarantee a
stable run-time, as often required in real-time applications;

• The redistribution of the particles is performed globally in order to ensure the same output
of sequential redistribution and that no speed–accuracy trade-off is made when the DOP
increases.

In [26], it has been shown that redistribution can be parallelized in a fully-balanced
fashion on DM by using a divide-and-conquer approach that recursively sorts and splits the
particles. Since Bitonic Sort [27–29] is performed O(log2 N) times, the achieved time com-
plexity is O((log2 N)3). In [17], sort is also employed recursively in a dynamic scheduler for
RPA/RNA. In [30], the time complexity is reduced to O((log2 N)2) by showing that Bitonic
Sort is only needed once. In [25], this new idea is ported from MapReduce to the Message

Algorithms 2021, 14, 342 3 of 21

Passing Interface (MPI) and then further optimized in [7]. However, the data movement in
this fully-balanced redistribution is still the bottleneck, especially for high DOP.

1.3. Our Results

This paper proposes a novel fully-balanced approach for DM that achieves an O(log2 N)
time complexity and improves on the redistribution algorithms described in [7,25]. Our
experimental results demonstrate that our novel redistribution is approximately eight times
faster than the O((log2 N)2) ones on a cluster of 256 cores.

The rest of the paper is organized as follows: in Section 2, we briefly describe PFs,
with a particular emphasis on resampling (and redistribution). In Section 3, we give brief
information about DM and MPI. In Section 4, we describe our novel parallel redistribution
in detail and include proof of its algorithmic complexity. In Section 5, we show the
numerical results for redistribution first, and then for a PF example. In Section 6, we outline
our conclusions and give recommendations for future work.

2. Sequential Importance Resampling

In this section, we briefly describe Sequential Importance Resampling (SIR), one of
the most common variants of PFs [1].

PFs employ the Importance Sampling (IS) principle to estimate the true state Xt ∈ RM

of a system. IS uses an arbitrary proposal distribution q(Xt|Xt−1) to randomly generate
xt ∈ RN×M, a population of N statistically independent hypotheses for the state, called
particles. Each particle xi

t is then weighted by an unnormalized importance weight wi
t ∈ R

∀i = 0, 1, ..., N − 1, which is computed based on the resemblance between xi
t and Xt. In

this way, xt approximates the posterior of the true state.
To weight each particle correctly, at every time step t, we collect Yt ∈ RMy , a set

of measurable quantities that are related to Xt by some pdf. At the initial time t = 0,
no measurement has been collected, so the particles are initially drawn from the initial
distribution q0(X0) = p0(X0) and weighted equally as 1/N. Then, for any time step
t = 1, 2, ..., TPF, measurements are collected, and each particle is drawn from the proposal
distribution as follows:

xi
t ∼ q(xi

t|xi
t−1, Yt) (1)

and weighted by

wi
t = wi

t−1
p(xi

t|xi
t−1)p(Yt|xi

t)

q(xi
t|xi

t−1, Yt)
(2)

where p(xi
t|xi

t−1) and p(Yt|xi
t) are known from the model. The IS step performs (1) and (2)

in sequence. Then, to effectively represent the pdf of the state, the weights are normalized
as follows:

w̃i
t = wi

t/ ∑N−1
z=0 wz

t (3)

However, the side effect of using IS is degeneracy, a phenomenon that (within a few
iterations) makes all weights but one decrease towards 0. The variance of the weights is
indeed proven to increase at every t [1]. The most popular strategy for tackling degeneracy
is to perform resampling, a task that regenerates the particle population by deleting the
particles with low weights and duplicating those with high weights. In SIR, resampling is
performed if the Effective Sample Size (ESS)

Ne f f = 1/ ∑N−1
i=0 (w̃i

t)
2 (4)

decreases below an arbitrary threshold, which is commonly set to N
2 .

Algorithms 2021, 14, 342 4 of 21

Several resampling schemes exist [31] and can be described as comprising three steps.
The first step is to process the normalized weights w̃ to generate ncopies ∈ ZN whose i-th
element, ncopiesi, defines how many times the i-th particle must be copied, such that

∑N−1
i=0 ncopiesi = N (5)

The second step is redistribution, which involves duplicating each particle xi as many
times as ncopiesi. A textbook redistribution is described by Algorithm 1, which we refer
to as Sequential Redistribution (S-R). This algorithm achieves an O(N) time complexity
on a single core as (5) holds. A practical example for N = 8 particles is shown in Figure 1.
In the final step of resampling, all weights are reset to 1

N .

Algorithm 1 Sequential Redistribution (S-R)
Input: x, ncopies, N
Output: xnew

1: z← 0
2: for j← 0; j < N; j← j + 1 do
3: for k← 0; k < ncopiesj; k← k + 1 do
4: xz

new ← xj, z← z + 1
5: end for
6: end for

Ax A

0ncopies 0

B

3

C

0

D

0

E

4

F

0

G

1

H

0

Bxnew B B B E E E E G

Figure 1. S-R—example for N = 8. Each xi is actually a real vector, but is marked with a capital letter
for brevity.

We note that all resampling schemes require redistribution, independently of the
chosen strategy to perform the first step. Since we focus on proposing a novel fully-balanced
redistribution, to perform the first step, we focus on using systematic resampling [31],
which is also known as Minimum Variance Resampling (MVR) [7,25,26,30]. The key idea
of MVR is to first compute the cumulative density function of w̃t, cdf ∈ RN+1, as follows:

cdfi = ∑i−1
z=0 w̃z ∀i = 0, 1, 2, ..., N (6)

a random variable u ∼ Uniform[0, 1) is then sampled, such that each ncopiesi can then be
calculated as follows:

ncopiesi = dcdfi+1 − ue − dcdfi − ue (7)

where the brackets represent the ceiling function (e.g., d3.3e = 4).
After resampling, a new estimate of Xt is computed as

Ξt = E(Xt) = ∑N−1
i=0 wi

tx
i
t (8)

3. Distributed Memory Architectures

DM is a type of parallel system that is inherently different to SM. In this environment,
the memory is distributed over the cores and each core can only directly access its own private
memory. The exchange of information stored in the memory of the other cores is achieved

Algorithms 2021, 14, 342 5 of 21

by sending/receiving explicit messages through a common communication network (see
Figure 2).

Memory

Core 0

Memory

Core 1

Memory

Core P − 1

Common communication network

Figure 2. Distributed memory architecture.

DM provides several advantages over SM, such as: scalable and larger DOP; scalable
and larger memory; memory contention (and other issues that stem from multiple cores
accessing the same addresses in memory) not being a concern on DM. The main disadvan-
tage of DM is the cost of communication and the consequent data movement. This can
affect the speed-up relative to a single core implementation.

Any Application Programming Interface (API) for DM could be used. We choose
MPI, since its intuitive syntax means it is arguably the most popular API for DM. MPI
is also used in several referenced works on parallel redistribution for DM [7,17,22,23,25].
In MPI, the P cores are uniquely identified by a rank p = 0, 1, ..., P − 1, connected via
communicators, and use explicit communication routines, e.g., MPI_Sendrecv, to exchange
messages of arbitrary size.

Most algorithms that we implement in this paper use the divide-and-conquer paradigm.
Therefore, we recommend using a power-of-two number of cores to balance the commu-
nication between them. For the same reason, the number of particles N should also be a
power-of-two. In this case, the particles x and every array related to them, e.g., w, ncopies
etc., can then be evenly split between the cores. Every core then always owns exactly n = N

P
elements of all arrays, whose global indexes are spread over the cores in increasing order.
This means that, given a certain N, P pair, the i-th particle (where i ∈ [0, N− 1]) will always
belong to the same core with rank p =

⌊
i
n

⌋
. More precisely, while all equations in this

paper use global indexes for simplicity, each core p actually uses a local index j ∈ [0, n− 1]
to address arrays and achieve parallelism, knowing that each j corresponds to global index
i = j + pn. The space complexity is then O(N

P) for any P ≤ N.

4. Novel O(log2 N) fully-balanced Redistribution

In this section, we prove how it is possible to redistribute N particles in O(log2 N)
parallel time on DM by using a novel fully-balanced redistribution algorithm, which we
name Rotational Nearly Sort and Split (RoSS) redistribution. We also provide details on
how to implement RoSS on MPI. We refer any reader who is interested in the description
of the resulting algorithms to Algorithms 2–5.

Algorithms 2021, 14, 342 6 of 21

Algorithm 2 Rotational Nearly Sort

Input: x, ncopies, N, P, n = N
P , p

Output: x, ncopies
1: x, ncopies, zeros←S-NS(x, ncopies, n), see Algorithm 3
2: shifts← Exclusive_Cumulative_Sum(zeros)
3: if P < N then perform leaf stage of the binary tree
4: partner ← (p− 1) & (P− 1), i.e., the neighbor
5: if shifts & (n− 1) > 0 then
6: for j← 0; j < n; j← j + 1 do
7: if j < shifts & (n− 1) then
8: Send xj, ncopiesj to partner, ncopiesj ← 0
9: else

10: Shift particle to the left by shifts & (n− 1)
11: end if
12: end for
13: shifts← shifts− shifts & (n− 1)
14: Send shifts to partner
15: else
16: Send arrays of 0s to partner (Message to reject)
17: end if
18: Accept or reject the received particles and shifts
19: end if
20: for k← 1; k ≤ log2 P; k← k + 1 do binary tree
21: partner ← (p− 2k−1) & (P− 1)
22: if shifts & n2k−1 > 0 then
23: for j← 0; j < n; j← j + 1 do
24: Send xj, ncopiesj to partner, ncopiesj ← 0
25: end for
26: shifts← shifts− shifts & n2k−1

27: Send shifts to partner
28: else
29: Send arrays of 0s to partner (Message to reject)
30: end if
31: Accept or reject the received particles and shifts
32: end for

Algorithm 3 Sequential Nearly Sort (S-NS)
Input: x, ncopies, n
Output: xnew, ncopiesnew, zeros

1: l ← 0, r ← n− 1
2: for j← 0; j < n; j← j + 1 do
3: if ncopiesj > 0 then
4: ncopiesl

new ← ncopiesj, xl
new ← xj, l ← l + 1

5: else
6: ncopiesr

new ← ncopiesj, xr
new ← xj, r ← r− 1

7: end if
8: end for
9: zeros← n− l

Algorithms 2021, 14, 342 7 of 21

Algorithm 4 Rotational Split

Input: x, ncopies, N, P, n = N
P , p

Output: x, ncopies
1: csum← Cumulative_Sum(N, P, ncopies)
2: min_shiftsj ← csumj − ncopiesj − j− np, ∀j < n if ncopiesj > 0; −np makes −j global
3: max_shiftsj ← csumj − j− 1− np, ∀j < n if ncopiesj > 0
4: for k← 1; k ≤ log2 P; k← k + 1 do binary tree

5: partner←
(

p + P
2k

)
&(P− 1)

6: for j← 0; j < n; j← j + 1 do
7: if max_shiftsj & N2−k > 0 then
8: if min_shiftsj & N2−k > 0 then
9: copies_to_sendj ← ncopiesj, ncopiesj ← 0

10: else
11: copies_to_sendj ← (csumj − j− N2−k − np)
12: ncopiesj ← ncopiesj − copies_to_sendj

13: end if
14: starter ← csumj − copies_to_sendj, if xj is the first particle to send
15: Send xj, copies_to_sendj to partner and send starter too if xj is the first

particle to send
16: else
17: Send 0s to partner (Message to reject)
18: end if
19: end for
20: Accept or reject the received particles and starter, reset starter to 0 if all particles

are sent and none is accepted
21: csum0 ← starter + ncopies0, csumj ← csumj−1 + ncopiesj ∀j = 1, 2, ..., n− 1
22: Update min_shifts and max_shifts as in steps 2 and 3
23: end for
24: if P < N then perform leaf stage of the binary tree
25: for j← n− 1; j ≥ 0; j← j− 1 do
26: if csumj > (p + 1)n then
27: copies_to_sendj ← min(csumj − (p + 1)n, ncopiesj)

28: ncopiesj ← ncopiesj − copies_to_sendj

29: Send xj, copies_to_sendi to partner
30: else
31: Send 0s to partner (Message to reject)
32: end if
33: if min_shiftsj > 0 then
34: Shift particle to the right by min_shiftsj

35: end if
36: end for
37: Accept or reject the received particles
38: end if

Algorithm 5 Rotational Nearly Sort and Split (RoSS) Redistribution

Input: x, ncopies, N, P, n = N
P , p

Output: x
1: if P > 1 then
2: x, ncopies←Rotational_Nearly_Sort(x, ncopies, N, P, n, p), (9) now holds
3: x, ncopies←Rotational_Split(x, ncopies, N, P, n, p), (11) now holds
4: end if
5: x← S-R(x, ncopies, n)

Algorithms 2021, 14, 342 8 of 21

4.1. General Overview

The algorithm consists of two phases. In the first phase, we want the elements in
ncopies to be nearly sorted, a property which is defined as follows.

Definition 2. A sequence of N non-negative integers, ncopies, is nearly sorted in descending
order when it has the following shape:

ncopies =
[
λ0, λ1, ..., λm−1, 0, ..., 0

]
(9)

where ncopiesi > 0 (marked with λs in (9)) ∀i = 0, 1, ..., m− 1 and 0 ≤ m ≤ N. On the other
hand, ncopies is an ascending nearly sorted sequence if the last m elements are positive and the
first are 0.

In this paper, ncopies is nearly sorted in descending order. We also note that, as the
elements in ncopies are progressively shifted to achieve (9), the related particles in x are
consequently also shifted. The main purpose of this phase is to separate all particles that
must be duplicated (i.e., those for which ncopiesi > 0) from those that must be deleted.
Here, we prove that (9) can be achieved by using Rotational Nearly Sort, an O(log2 N)
alternative to the O((log2 N)2) Nearly Sort step in [7] (as also described in Appendix A).
We denote that (9) can also be achieved with sort, as carried out in [25] by using Bitonic
Sort. In theory, one could also employ O(log2 N) sorting networks [32,33]. However,
the constant time of these networks is notoriously prohibitive in practice, even with some
of the most recent advances [34]. Our constant time is significantly smaller; because of that,
we do not consider AKS-like sorting networks as a practical approach for (9).

In the second phase, we want to achieve two goals: the first is to make room on the
right of each particle that has to be copied; the second is for the P cores to have the same
number of particles in their private memory. The first goal easily translates to shifting the
particles to the right until ncopies has the following new shape:

ncopies = [λ0, 0, ..., 0, λ1, 0, ..., 0, λm−1, 0, ..., 0] (10)

where, for each ncopiesi > 0 (again marked with λs in (10)), ncopiesi − 1 zeros follow.
The second can be expressed as follows:

∑(p+1) N
P −1

i=p N
P

ncopiesi =
N
P
∀p = 0, ..., P− 1 (11)

which is essentially (5) applied locally. In the next section, we prove it is possible to achieve
both (10) and (11) in O(log2 N) parallel time by using a single algorithm, which we refer
to as Rotational Split. After that, the cores are completed by using S-R independently to
redistribute the particles within their private memory.

4.2. Algorithmic Details and Theorems

In this section, we give details for a novel implementation of parallel redistribution
and prove that it scales as O(log2 N). The reader is referred to Figure 3, which illustrates
an example for N = 8 and P = 4.

Algorithms 2021, 14, 342 9 of 21

Rotational Nearly Sort

p = 0 p = 1 p = 2 p = 3

i = 0 1 2 3 4 5 6 7

S-NS

Exclusive Cumulative Sum over zeros

Scan the log2
N
P LSBs of shifts and shift accordinglyLeaf

Shift
by 1

k = 1
Shift
by 2

k = 2
Shift
by 4

x

ncopies

x

ncopies

shifts

x

ncopies

zeros

x

ncopies

A B

0 0

C D

0 2

E F

5 0

G H

1 0

A B

0 0

2

D C

2 0

1

E F

5 0

1

G H

1 0

1

A B

0 0

000

D C

2 0

010

E F

5 0

011

G H

1 0

100

A B

0 0

000

D E

2 5

010

E F

0 0

000

G H

1 0

100

D E

2 5

000

D E

0 0

000

E F

0 0

000

G H

1 0

100

D E

2 5

G E

1 0

E F

0 0

G H

0 0

Rotational Split

p = 0 p = 1 p = 2 p = 3

i = 0 1 2 3 4 5 6 7

Compute csum, the Cumulative Sum over ncopies, and
min shiftsi = csumi−ncopiesi− i, if ncopiesi > 0
max shiftsi = csumi − i− 1, if ncopiesi > 0
copies to sendi = ncopiesi or csumi − i−N2−k,
depending on the MSBs of min shiftsi & max shiftsi

∀k ≥ 1 each core sends starter = csums−copies to sends

where xs the first copy to send; otherwise it sends 0.
Update csum in O(N/P) if the received starter > 0.
csumi = 0 if all particles were sent and none was received

k = 1
Shift
by 4

k = 2
Shift
by 2

x

ncopies

x

ncopies

csum

min shifts

max shifts

copies to send

D E

2 5

G E

1 0

E F

0 0

G H

0 0

D E

2 5

2 7

G E

1 0

8 8

E F

0 0

8 8

G H

0 0

8 8

000 001

000 101

0 2

101 000

101 000

1 0

000 000

000 000

0 0

000 000

000 000

0 0

D E

2 3

2 5

G E

0 0

0 0

E E

0 2

5 7

G H

1 0

8 8

000 001

000 011

0 2

000 000

000 000

0 0

000 000

000 001

0 0

001 000

001 000

0 0

Rotational Split (cont.) + S-R

p = 0 p = 1 p = 2 p = 3

i = 0 1 2 3 4 5 6 7

Leaf
Shift
by 1

Consider inter-core shifts only if they move copies
to the neighbour core’s memory and then internal
shifts if min shiftsi > 0

x

ncopies

S-R

Notes:
- shifts, min shifts and max shifts are

represented in binary notation, e.g. 4 = (100)2.
- For those arrays, the scanned bits at any given

iteration are in red and underlined.
- Here N = 8 and P = 4, so the number of LSBs

to check in both Leaf stages is log2
N
P = 1.

- If P = N both leaf stages are skipped.
- In Rotational Split, each circle represents an

index s in which a starter > 0 is computed.

x

D E

2 1

2 3

G E

0 2

3 5

E E

0 2

5 7

G H

1 0

8 8

000 001

000 001

0 1

000 000

000 001

0 1

000 000

000 001

0 1

001 000

001 000

0 0

D E

2 0

E E

1 1

E E

1 1

E G

1 1

D D E E E E E G

Figure 3. RoSS redistribution—example for N = 8 and P = 4. Each xi is actually a real vector, but marked with a letter for brevity.

4.2.1. Rotational Nearly Sort

Theorem 1. Given an array of N particles, x, and their copies to be created, ncopies, whose
elements are evenly distributed across the P cores of a DM, Algorithm 2 (performed by each core p,
∀p = 0, 1, ..., P− 1) describes the steps to safely shift the elements in x and ncopies to achieve
property (9), and performs that in O(log2 N) parallel time for P = N.

Proof of Theorem 1. The first process to carry out is to nearly sort the particles locally by
calling Sequential Nearly Sort (S-NS) (see Algorithm 3), which iteratively moves the i-th
particle to the left/right side of the output array if ncopiesi is positive/zero. We note that
this routine only takes O(N

P) iterations, since every DM core owns N
P particles. This will

start moving the particles locally to the left before doing so globally.
The particles within the core p must now shift to the left by as many positions as the

number of zero elements in ncopies owned by the cores with a lower rank. Let zeros ∈ ZP

be the array that counts the number of ncopiesi = 0 within each core; each element of
shifts ∈ ZP (the array to keep track of the remaining shifts) can be initialized as follows:

shiftsp = ∑p−1
p̂=0 zeros p̂ (12)

Equation (12) can be parallelized by using a parallel exclusive cumulative sum (after
each core p has initialized zerosp to the sum of zeros within its memory, at the end of S-NS).
It is well covered in the literature that the cumulative sum (also known as prefix sum or
scan) takes O(N

P + log2 P) computations [35,36].
We now want to express shiftsp in binary notation and shift the particles by increasing

power-of-two numbers of positions, depending on the bits of shiftsp, from the Least
Significant Bit (LSB) to the Most Significant Bit (MSB). This translates to using a bottom-up
binary tree structure that will complete the task in O(log2 N) time.

If P < N, then we first need to perform an extra leaf stage, in which, the cores send
all of the particles to their neighbor if the bitwise AND of shiftsp and N

P − 1 is positive.
In simple terms, the leaf stage masks the log2

N
P LSBs of shiftsp and performs the rotations

referring to those bits in one operation per particle. Hence, during this step, each core
sends and receives up to N

P particles, meaning that the leaf stage takes O(N
P).

Algorithms 2021, 14, 342 10 of 21

After the leaf stage, the actual tree-structure routine can start. At every k-th stage of
the tree (for k = 1, 2, ..., log2 P), any core p will send to its partner p− 2k−1 all its particles
(i.e., x and ncopies) and shiftsp − N

P 2k−1 (i.e., the number of remaining shifts after the
current rotation) if the bitwise AND of shiftsp and N

P 2k−1 is positive; this corresponds to
checking a new bit of shiftsp, precisely the one which is significant at this stage. We note
that, in order to balance the communication at all stages, the cores are set to send particles
to reject (i.e., having ncopiesi = 0) if the LSBs are 0. Hence, this phase takes O(N

P log2 P)
because each core sends and receives N

P particles log2 P times.
Before the leaf stage, the particles in the memory of core p must shift at most from

one end to the other end, i.e., by shiftsp ≤ N − 1 positions. Any non-negative integer
shiftsp ≤ N − 1 can always be represented in base-2 by log2 N bits. Therefore, each
particle will be shifted O(log2 N) times, each time by an increasing power-of-two number
of positions, and, since shifts gets updated in O(1), Algorithm 2 achieves an O(log2 N)
time complexity. Furthermore, as long as no particle to be copied collides with or gets past
another one, Algorithm 2 always achieves (9), since the shifts to perform will progressively
decrease, whereas (12) will always hold. Lemma 1 and Corollary 1 prove that collisions
and overtaking (defined in the following definitions) can never occur.

Definition 3 (Collisions). Let xi be a particle having ncopiesi ≥ 1, and xj be a particle having
ncopiesj ≥ 1, with j = i + dist, where 0 < dist < N − 1. A collision would occur if dist is
a power-of-two number, xj is rotating to the left by dist and xj stays where it is. More formally,
a collision occurs if the total number of rotations that xj must perform has significant bit (i.e., the
bit corresponding to dist rotations) equal to 1, while the same bit of the number of rotations that xi

must perform is 0. The same definition can be applied to collisions when rotations are performed
to the right if xi is rotating to the right (and, hence, have significant bit equal to 1) and xj is not
rotating (and, hence, have significant bit equal to 0).

Definition 4 (Overtaking). Let xi again be a particle having ncopiesi ≥ 1, and xj again be a
particle having ncopiesj ≥ 1, with j = i + dist, where 0 < dist < N − 1. The particle xj can
overtake xi if it is rotating to the left by a power-of-two number greater than dist while xi stays
where it is. The same problem occurs when rotations are performed to the right, if xi is rotating to
the right by a power-of-two number greater than dist while xj stays where it is.

Lemma 1. During the k-th iteration of Rotational Nearly Sort, ∀k = 1, 2, ..., log2 P, a particle xj,
having ncopiesj ≥ 1 and rotating to the left by N

P 2k−1 positions, can never collide with a particle
xi, having ncopiesi ≥ 1 and j = i + N

P 2k−1.

Proof of Lemma 1. At the k-th iteration, particle xi has shiftsi remaining rotations to the
left, whereas xj has shiftsj. Therefore, the necessary and sufficient condition for collisions,
defined in Definition 3, can be restated for Rotational Nearly Sort by checking whether the
following logical condition((

shiftsi&
N
P

2k−1
)
= 0

)
∧
((

shiftsj&
N
P

2k−1
)
> 0

)
(13)

is true, which corresponds to checking whether the significant bit of shiftsi is 0 and the
significant bit of shiftsj is 1. This condition can also be rearranged as follows:((

shiftsi&
N
P

2k−1
)
= 0

)
∧
((

(shiftsi + zerosi+1:j−1)&
N
P

2k−1
)
> 0

)
(14)

where zerosi+1:j−1 is the number of 0s in ncopies between positions i and j excluded.
Since Rotational Nearly Sort performs rotations using an LSB-to-MSB strategy, it is

easy to infer that the bits to the right of the significant one at this iteration (i.e., bit k− 1)
are all 0. This means that, if the significant bit of shiftsi is 0, the only condition that would

Algorithms 2021, 14, 342 11 of 21

make (14) true would be zerosi+1:j−1 = N
P 2k−1. That is, however, impossible, because, in

this case, there are only i + N
P 2k−1 − 1 memory slots between i and j, which means that:

zerosi+1:j−1 ≤ j− i− 1 =
N
P

2k−1 − 1 <
N
P

2k−1 (15)

Corollary 1. During the k-th iteration of Rotational Nearly Sort, ∀k = 1, 2, ..., log2 P, a particle
xj, having ncopiesj ≥ 1 and rotating to the left by N

P 2k−1 positions, can never overtake a particle
xi, having ncopiesi ≥ 1 and i < j < i + N

P 2k−1.

Proof of Corollary 1. Lemma 1 can automatically prove Corollary 1 because, once again, (14)
is true only if zerosi+1:j−1 = N

P 2k−1. However, in this case, j < i + N
P 2k−1, and hence:

zerosi+1:j−1 ≤ j− i− 1 < j− i <
N
P

2k−1 (16)

4.2.2. Rotational Split

Theorem 2. Given an array of N particles, x, and their copies to be created, ncopies, whose
elements are nearly sorted according to (9), and evenly distributed across the P cores of a DM,
Algorithm 4 (performed by each core p, ∀p = 0, 1, ..., P− 1) describes the steps to shift and/or
safely split the elements in x and ncopies to achieve properties (10) and (11), and performs that in
O(log2 N) parallel time for P = N.

Proof of Theorem 2. Let csum ∈ ZN be the inclusive cumulative sum of ncopies. As men-
tioned in the previous section, the cumulative sum achieves an O(N

P + log2 P) time com-
plexity for any P ≤ N.

To achieve (10), we want to move the particles to the right to have ncopiesi − 1 gaps
after each index i, such that ncopiesi > 0. It can be inferred that the minimum required
number of shifts to the right that the i-th particle must perform is:

min_shiftsi = ∑i−1
z=0(ncopiesz − 1) = csumi − ncopiesi − i (17)

However, (10) alone does not guarantee (11). This is because, for each particle xi that
must be copied more than once, we are rotating all of its copies by the same minimum
number of positions, and we are not considering that some of these copies could be split
and rotated further to also fill in the gaps that a strategy for (10) alone would create.
Therefore, we also consider the maximum number of rotations that any copy of xi has to
perform, without causing collisions. Since (10) aims to creating ncopiesi − 1 gaps for each
i, such that ncopiesi > 0, that number is:

max_shiftsi = min_shiftsi + ncopiesi − 1 = csumi − i− 1 (18)

Therefore, the key idea is to consider min_shiftsi and max_shiftsi in binary notation
and use their bits to rotate the particles accordingly, from the MSB to the LSB. This corre-
sponds to using a top-down binary tree structure of log2 P stages. At each stage k of the
tree (for k = 1, 2, ..., log2 P), any core with rank p sends particles N2−k positions ahead to
its partner with rank p + P

2k . At each k-th stage, we check the MSB of both min_shiftsi and

max_shiftsi to infer copies_to_sendi, the number of copies of xi that must rotate by N2−k

positions. For each xi, three possible scenarios may occur:

• None of its copies must move;
• All of them must rotate;
• Some must split and shift, and the others must not move.

Algorithms 2021, 14, 342 12 of 21

Trivially, the copies will not move if the MSB of max_shiftsi is 0, which also implies
that the MSB of min_shiftsi is 0, since min_shiftsi ≤ max_shiftsi at all stages. If both
MSBs are 1, we send copies_to_sendi = ncopiesi copies of xi. However, if only the MSB
of max_shiftsi is equal to 1, copies_to_sendi < ncopiesi. The number of copies to split
is equal to how many of them must be placed from position i + N2−k onwards to achieve a
perfect workload balance. This is equivalent to computing how many copies make

csumi > i + N2−k

Therefore, if only the MSB of max_shiftsi is equal to 1, we send

copies_to_sendi = csumi − i− N2−k (19)

copies of xi and we keep the remaining ones where they were. Here, as in Section 4.2.1,
particles to be rejected are sent if the MSB of max_shiftsi is 0 in order to keep all cores
equally busy. This phase takes an O(N

P log2 P) time complexity, because each core sends or
receives N

P particles at every stage. However, to ensure a logarithmic time complexity, one
needs to update csum, min_shifts and max_shifts in O(N

P). This can be achieved if the
cores send

starter = csums − copies_to_sends (20)

where s is the index of the first particle to send, having ncopiess > 0. As long as no particle
overwrites or moves past another one (which is proven to be impossible by Lemma 2), each
core p can safely see the received starter as

starter = ∑p N
P −1

i=0 ncopiesi = csump N
P −1

and use it to re-initialize csum and update it in O(N
P) as csumi = csumi−1 + ncopiesi

∀i = p N
P + 1, ..., (p + 1)N

P − 1. This strategy guarantees csum is always correct for at least
any index i, such that ncopiesi > 0, i.e., those indexes we require to be correct. Once csum
is updated, Equations (17) and (18) are embarrassingly parallel.

If P < N, after log2 P stages, the cores perform a leaf stage. Here, for each particle,
we perform inter-core shifts or splits and shifts only if there is any copy to be sent to the
neighbor; this is equivalent to checking if

csumi > (p + 1)
N
P

(21)

where (p + 1)N
P is the first global index in the neighbor’s memory. Arrays of 0s are

again sent when no inter-core shifts are needed. We also consider internal shifts only if
min_shiftsi > 0, in order to both make room to receive particles from the neighbor, p− 1,
and guarantee (10). This leaf stage takes O(N

P) because N
P particles are sent or received.

It is easy to infer that min_shiftsi < N − 1 and max_shiftsi ≤ N − 1, as a particle
copy could at most be shifted, or split and shifted from the first to the last position. Both
min_shiftsi and max_shiftsi can be represented in base-2 by log2 N bits. Therefore, as also
anticipated above, only up to log2 N messages are required, which means that the achieved
time complexity of Algorithm 4 is O(log2 N). Furthermore, the particles are progressively
split according to the MSBs of min_shiftsi and max_shiftsi, until they are split according
to (21). Hence, after the final leaf stage, the first and last element of csum in the memory of
each core will necessarily meet the following two requirements:(

csump N
P − ncopiesp N

P = p
N
P

)
∧
(

csum(p+1) N
P −1 = (p + 1)

N
P

)
which, if subtracted, automatically proves (11).

Algorithms 2021, 14, 342 13 of 21

Lemma 2. Given a nearly sorted input ncopies, at the k-th iteration of Rotational Split, ∀k =
1, 2, ..., log2 P, a particle xi, having ncopiesi ≥ 1 and rotating to the right by N2−k positions,
can never collide with or get past a particle xj, having ncopiesj ≥ 1 and j = i + dist with
1 ≤ dist ≤ N2−k.

Proof of Lemma 2. This lemma can be proved in two possible complementary cases:

1. There are one or more zeros between i and j;
2. There are no zeros between i and j.

Case 1. Since the particles are initially nearly sorted, at the beginning, there are no
zeros in between any pair of particles in position i and j. At the k-th iteration, if one or more
zeros are found between xi and xj, it necessarily means that dist > max_shiftsi ≥ N2−k.
This is because of two reasons. First, zeros between two particles xi and xj can only be
created if the MSB of min_shiftsi is 0 and the MSB of max_shiftsj is 1. Second, for any
binary number, its MSB, if equal to 1, is a greater number than the one represented by any
disposition of all remaining LSBs (e.g., (1000)2 = 8 > (0111)2 = 7). Hence, if there are any
zeros between xi and xj, it is because, during at least one of the previous stages, xj rotated
by an MSB and xi did not, such that xj is now beyond reach of possible collisions with xi.

Case 2. In this case, all particles between i and j are still nearly sorted. Therefore, xi

would collide with (when dist = N2−k) or get past xj (when dist < N2−k) if((
max_shiftsi&N2−k

)
> 0

)
∧
((

min_shiftsj&N2−k
)
= 0

)
(22)

is true, which corresponds to checking whether the MSB of max_shiftsi is 1 (which also
includes those cases where the MSB of min_shiftsi is 1) and the MSB of min_shiftsj is 0.
In other words, (22) can be simplified to checking if max_shiftsi > min_shiftsj. However,
for a pair of particles xi and xj within a nearly sorted group of particles, this is impossible,
because:

max_shiftsi = csumi − i− 1 = csumj −∑j
z=i+1 ncopiesz − j + dist− 1

= csumj − ncopiesj − j−
(
∑j−1

z=i+1 ncopiesz − dist + 1
)

= min_shiftsj −
(
∑j−1

z=i+1 ncopiesz − dist + 1
)
≤ min_shiftsj

since csumj = ∑
j
z=0 ncopiesz, dist = j− i and (in this case) ∑

j−1
z=i+1 ncopiesz ≥ j− i −

1.

4.2.3. Rotational Nearly Sort and Split Redistribution

Theorem 3. Given an array of N particles, x, and their copies to be created, ncopies, whose
elements are evenly distributed across the P cores of a DM, Algorithm 5 (performed by each core p,
∀p = 0, 1, ..., P− 1) redistributes all particles in x for which ncopiesi > 0, and performs that in
O(log2 N) parallel time for P = N.

Proof of Theorem 3. After the cores perform Rotational Nearly Sort first, and then Ro-
tational Split, Equation (11) holds, as proven by Theorem 2. Therefore, the cores can
independently use S-R to redistribute their N

P particle copies in their private memory in
O(N

P) iterations. As proven by Theorems 1 and 2, Algorithms 2 and 4 complete their task
in O(log2 N) parallel time, which means that the achieved time complexity by Algorithm 5
is then O(N) for P = 1, O(log2 N) for P = N cores and, for any 1 ≤ P ≤ N, is:

O
(

N
P

+
N
P

log2 P
)

(23)

the first term in (23) represents S-R, which is always performed, and all of the steps that
are only ever called once for any P > 1 (e.g., S-NS). The second term in (23) describes the

Algorithms 2021, 14, 342 14 of 21

log2 P stages of Algorithms 2 and 4, during which, we update, send and receive up to N
P

particles.

With the results of Theorem 3 in view, we conclude that the PF tasks now take either
O(N

P), O(N
P + log2 P) or O(N

P + N
P log2 P) time. This is because (3), (4) and (8) require

reduction (which notoriously scales as O(N
P + log2 P) [36]), the IS step is embarrassingly

parallel and (in the resampling algorithm) Equation (6) requires an exclusive cumulative
sum; in addition, Equation (7) and resetting the weights to 1/N are also embarrassingly
parallel tasks. Table 1 summarizes this conclusion. This means that, even if we had an em-
barrassingly parallel fully-balanced redistribution, the time complexity of PFs will still be
no less than O(N

P + log2 P), since reduction and the cumulative sum are required elsewhere.

Table 1. Time complexity of each task of PFs on DM.

Task Name
(Parallelization Strategy) Details

Sequential Time
Complexity

Parallel Time
Complexity

IS (embarrassingly parallel) Equations (1) and (2) O(N) O(N
P)

Normalize (reduction) Equation (3) O(N) O(N
P + log2 P)

ESS (reduction) Equation (4) O(N) O(N
P + log2 P)

MVR (cumulative sum) Equations (6) and (7) O(N) O(N
P + log2 P)

Redistribution (RoSS) Algorithm 5 O(N) O(N
P + N

P log2 P)
Reset (embarrassingly parallel) wi

t = 1/N ∀i O(N) O(N
P)

Estimate (reduction) Equation (8) O(N) O(N
P + log2 P)

4.3. Implementation on MPI

In this section, we give brief information concering which MPI routines are needed to
implement RoSS and the rest of SIR on MPI.

The exclusive cumulative sum that is required before the leaf stage in Algorithm 2 is
parallelized on MPI by calling MPI_Exscan [37]. On the other hand, MPI_Scan is used to
parallelize the inclusive cumulative sum of ncopies at the start of Algorithm 4.

During the binary tree and the leaf stages in Algorithms 2 and 4, the cores send
and receive N

P particles each time. On MPI, MPI_Sendrecv is ideal for these messages,
since it requires the ranks to send to and receive from. Temporary arrays should be used
on both communication ends to ensure data coherency before accepting or rejecting the
received content.

All of the other operations or algorithms within RoSS, such as (17) or S-NS, are
performed locally by each core and, therefore, do not need to call MPI routines.

For completeness, we point out that, in the other PF tasks, the reduction operation
in (3), (4) and (8) is parallelized on MPI by calling MPI_Allreduce, whereas (6) needs
MPI_Exscan.

5. Experimental Results

In this section, we show the numerical results of redistribution first and then show
results for a PF example. In the experiment for redistribution, we compare RoSS, the novel
fully-balanced algorithm presented in this paper, with N-R and B-R, two fully-balanced
redistributions that take O((log2 N)2) steps (see Appendix A). These algorithms are com-
pared by passing in input arrays with the same values to all algorithms: ncopies and x with
M = 1. To guarantee (5), ncopies is generated randomly by using MVR (see Equation (7))
with a log-normally distributed input w̃. For the PF experiment, we consider three versions
of a SIR PF that only differ in terms of the constituent redistribution used. Each PF test is
run for TPF = 100 iterations. Resampling is computed every iteration so that we ensure
that the frequency of redistribution is the same. The model we consider is the stochastic
volatility example described in Appendix B.

All experiments are conducted for N ∈ {216, 220, 224} particles and for up to P =
256 cores. Each reported run-time is the median of 20 runs collected for each N, P pair.

Algorithms 2021, 14, 342 15 of 21

All algorithms in this paper are coded in C++ with OpenMPI-1.10.7 and compiled
with -O3 optimization flag; double and unsigned int data types are, respectively, used
for real and integer numbers. Combinations of MPI_Barrier and MPI_Wtime are used
to collect the run-times for Figures 4 and 5, while TAU Performance System 2.7 is used
for the profiling in Figure 6. The cluster for the experiments consists of eight machines,
interconnected with InfiniBand 100 Gbps and each mounting a 2 Xeon Gold 6138 CPU
that provides 40 cores running at 2 GHz. We note that the results for up to P = 32 DM
cores have been collected by requesting (at scheduling time) cores from the same node.
For P ≥ 64, we have requested 32 DM cores from each node. While we cannot identify any
resulting artifacts in the results, we acknowledge that this feature of the hardware does
potentially influence our results when comparing run-times related to P ≤ 32 with those
for P ≥ 64. We emphasise that, to ensure the experimental results allow for a meaningful
comparison between algorithms, all algorithms were assessed on the same hardware for
each P. Future work would sensibly investigate these performance differences as part of a
broader study on how to maximise performance as a function of hardware configuration.

20 21 22 23 24 25 26 27 28

P

2-12

2-11

2-10

2-9

2-8

ru
n
-t

im
e
 [

s]

All algorithms
here are ≡ S-R
for P= 1

N-R

RoSS

B-R

2-1

20

21

22

sp
e
e
d
-u

p

Redistribution: run-times and speed-ups
for increasing P, N= 216 and M= 1

(a) N = 216

20 21 22 23 24 25 26 27 28

P

2-10

2-9

2-8

2-7

2-6

2-5

2-4

2-3

2-2

ru
n
-t

im
e
 [

s]

All algorithms
here are ≡ S-R
for P= 1

N-R

RoSS

B-R

2-3

2-2

2-1

20

21

22

23

24

sp
e
e
d
-u

p

Redistribution: run-times and speed-ups
for increasing P, N= 220 and M= 1

(b) N = 220

20 21 22 23 24 25 26 27 28

P

2-6

2-5

2-4

2-3

2-2

2-1

20

21

22

ru
n
-t

im
e
 [

s]

All algorithms
here are ≡ S-R
for P= 1

N-R

RoSS

B-R

2-3

2-2

2-1

20

21

22

23

24

sp
e
e
d
-u

p

Redistribution: run-times and speed-ups
for increasing P, N= 224 and M= 1

(c) N = 224

Figure 4. Redistribution—results for increasing N and P.

20 21 22 23 24 25 26 27 28

P

2-4

2-3

2-2

2-1

20

21

22

ru
n
-t

im
e
 [

s]

All algorithms have
the same baseline

PF with N-R

PF with RoSS

PF with B-R

20

21

22

23

24

25

sp
e
e
d
-u

p

Stochastic volatility: run-times and speed-ups
 for increasing P, N= 216 and TPF = 100

(a) N = 216

20 21 22 23 24 25 26 27 28

P

2-2

2-1

20

21

22

23

24

25

26

ru
n
-t

im
e
 [

s]

All algorithms have
the same baseline

PF with N-R

PF with RoSS

PF with B-R

20

21

22

23

24

25

26

27

sp
e
e
d
-u

p

Stochastic volatility: run-times and speed-ups
 for increasing P, N= 220 and TPF = 100

(b) N = 220

20 21 22 23 24 25 26 27 28

P

22

23

24

25

26

27

28

29

210

ru
n
-t

im
e
 [

s]

All algorithms have
the same baseline

PF with N-R

PF with RoSS

PF with B-R

20

21

22

23

24

25

26

27

sp
e
e
d
-u

p

Stochastic volatility: run-times and speed-ups
 for increasing P, N= 224 and TPF = 100

(c) N = 224

Figure 5. Stochastic volatility—results for increasing N and P.

Algorithms 2021, 14, 342 16 of 21

20 21 22 23 24 25 26 27 28

P

0

20

40

60

80

100

w
o
rk

lo
a
d
 p

e
rc

e
n
ta

g
e
 [

%
]

Stochastic volatility: bottleneck analysis
for increasing P, N= 224 and TPF = 100

IS
Others
B-R
N-R
RoSS

(a) Bottleneck analysis.

20 21 22 23 24 25 26 27 28

P

0

20

40

60

80

100

w
o
rk

lo
a
d
 p

e
rc

e
n
ta

g
e
 [

%
]

Stochastic volatility: avg computation vs avg communication
for increasing P, N= 224 and TPF = 100

PF w/ B-R
avg comp.
PF w/ N-R
avg comp.
PF w/ RoSS
avg comp.
PF w/ B-R
avg comm.
PF w/ N-R
avg comm.
PF w/ RoSS
avg comm.

(b) Average computation vs. average communication.

Figure 6. Stochastic volatility—profiling information for N = 224 and increasing P.

5.1. RoSS vs. B-R and N-R

In Figure 4, we can see that the gap between the proposed approach and the other
algorithms increases with P, particularly with large N. For P ≤ 4 and all three of the values
for N that are considered, RoSS is comparable with N-R and roughly four times as fast as
B-R. However, for P = 256, RoSS is up to eight times faster than N-R (which is slightly
faster than B-R, as shown in [7]) and B-R. We also note that these fully-balanced approaches
may also stop scaling when the computation shrinks and the communication becomes too
intensive: e.g., here, RoSS stops scaling at N = 216 and P = 64.

5.2. Stochastic Volatility

Figure 5 shows that the PF using RoSS is four to six times faster than a PF using
N-R/B-R. The maximum speed-up for a PF with RoSS is approximately 125 for P =
256 cores. Furthermore, the gap between a PF with RoSS and a PF with any other considered
redistribution also increases with P, in line with the results in Section 5.1. Figure 6 describes
profiling information for the three PFs with N = 224. In Figure 6a, it is interesting to see that
RoSS is the only redistribution variant that runs faster than IS for any P ≤ 256, while B-R
and N-R emerge as the bottleneck for a relatively low P, i.e., for 2 ≤ P ≤ 16. This is mostly
due to the larger volume of communication in B-R/N-R, as shown in Figure 6b. In Figure 6b,
we have considered the average time spent on all MPI calls per core as the communication
time. Since N � P in this experiment, the time spent on the MPI_Sendrecv calls in the
redistribution step is dominant over the time spent on all the other MPI routines, such as
MPI_Allreduce or MPI_Exscan, which only consists of log2 P single-scalar messages and
up to 2 log2 P arithmetical operations (in this case sum). Therefore, we can state that the
reported average communication is equivalent (with a good degree of confidence) to the
percentage of time that the cores are not used for any computation.

6. Conclusions

In this paper, we present RoSS, a novel fully-balanced redistribution for global resam-
pling in SIR PFs on distributed memory environments. The algorithm has been imple-
mented on MPI. The baselines for comparison are B-R and N-R, two similar state-of-the-art
fully-balanced redistribution algorithms that both achieve an O((log2 N)2) time complexity
and whose implementation is already available on MPI. We prove in this paper that RoSS
redistribution achieves an O(log2 N) time complexity.

The empirical results show that RoSS redistribution is almost an order of magnitude
faster than B-R and N-R for up to P = 256 cores. Similar results are observed in the context
of an exemplar PF. For the same level of parallelism, a PF using RoSS is up to six times
faster than a PF using B-R/N-R and provides a maximum speed-up of 125. We also denote

Algorithms 2021, 14, 342 17 of 21

that, under the same testing conditions, RoSS is the only option for redistribution that can
still be faster than IS for such large P.

Future work should focus on reducing the number of messages between the cores. One
way to achieve this is to combine SM with DM: we note that an O(log2 N) redistribution for
SM already exists [19], and that mixing OpenMP, one of the most common programming
models for SM architectures, with MPI is a routine practice in the HPC domain [38]. A
second avenue for potential improvement consists of using recent versions of OpenMP
that support GPU offload or using Cuda (in place of OpenMP) in order to take advantage
of the extra speed-up that GPU cards can offer relative to a CPU.

Author Contributions: Conceptualization, A.V. and S.M.; formal analysis, A.V., P.G.S. and S.M.;
software, investigation, validation, visualization and writing original draft, A.V.; review and editing,
A.V., P.G.S. and S.M.; supervision, P.G.S. and S.M.; project administration and funding acquisition,
S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a UK EPSRC Doctoral Training Award (1818639), Schlum-
berger, and the UK EPSRC “Big Hypotheses” (EP/R018537/1) and “Algorithmic Aspects of Temporal
Graphs” (EP/P02002X/1) grants.

Institutional Review Board Statement: Not application.

Informed Consent Statement: Not application.

Data Availability Statement: Not application.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. O((log2 N)2) Fully-Balanced Redistribution

This appendix describes the fully-balanced redistribution algorithm described in [30].
This routine redistributes the particles in O((log2 N)2) parallel time by performing the
following steps.

First, the particles x are sorted by the values in ncopies. The chosen sorting algorithm
is Bitonic Sort, a comparison-based parallel sorting algorithm that has been implemented
on a cluster of graphics cards relatively recently [28]. For any P ≤ N, Bitonic Sort performs

O

(
N
P

(
log2

(
N
P

))2
+

N
P
(log2 P)2

)
(A1)

comparisons, where the first term describes the number of steps to perform Bitonic Sort
locally, and the second term represents the data movement to merge the keys between the
cores. Here, as in [25], Bitonic Sort is performed locally, but it is also possible to replace it
with an O(N log2 N) single-core sort, such as Mergesort. Quicksort is not recommended in
this case, because ncopies contains many zeros, which often results in Quicksort’s worst-
case (O(N2)) run-time. An example of a sorting network for Bitonic Sort is illustrated in
Figure A1. The particles to be duplicated are then separated from those to be deleted.

After this single sort, the algorithm moves on to another top-down routine. Starting
from the root node, at each stage of the binary tree, three parallel operations are performed
in sequence. First, the cores compute the inclusive cumulative sum over ncopies. Then,
they search for a pivot that perfectly divides the node into two balanced leaves; in other
words, pivot is the first index where the cumulative sum is equal to or greater than N

2 .
To find and broadcast pivot to all cores of the node, the cores use linear search locally,
followed by a sum, which can be performed in parallel by using reduction. In the end,
the N

2 particles on the right side of the pivot are shifted to the right side of the node. This
is achieved by expressing r (the positions to shift by) in base-2 and rotating in O(log2 N)
steps according to the bits of r. In this way, the root node gets split into two balanced
leaves. This top-down routine is recursively performed log2 P times until the workload is
equally distributed across the cores; then, S-R is called. In this paper, as in [7], we refer to
this algorithm as Bitonic-Sort-Based Redistribution (B-R). Since Bitonic Sort is used once,

Algorithms 2021, 14, 342 18 of 21

and cumulative sum, reduction and rotational shifts are performed log2 P times each, B-R
achieves an O((log2 N)2) time complexity for P = N, or equal to (A1) for any P ≤ N. As
mentioned in Section 4.1, it would be theoretically possible to replace Bitonic Sort with
AKS sort in order to make the asymptotic time complexity of the sorting phase equal to
O(log2 N), albeit with a large constant. However, since B-R needs a cumulative sum, a
sum and rotational shifts up to log2 N times, the overall computational complexity that
would result from such an approach would still be O((log2 N)2). In [30], B-R has been
implemented on MapReduce. In [25], B-R has been ported to MPI.

0
1
0
0

0
0
0
0

0
5
0
0

2
0
3
0

0
0
0
0

0
3
4
0

0
2
1
0

1
9
1
0

(Nearly)
Sort
up

(Nearly)
Sort
down

(Nearly)
Sort
up

(Nearly)
Sort
down

(Nearly)
Sort
up

(Nearly)
Sort
down

(Nearly)
Sort
up

(Nearly)
Sort
down

0|0
0|0
0|0
1|1

0|0
0|0
0|0
0|0

0|0
0|0
0|0
5|5

2|3
3|2
0|0
0|0

0|0
0|0
0|0
0|0

3|4
4|3
0|0
0|0

0|0
0|0
2|1
1|2

1|9
9|1
1|1
0|0

(Nearly)
Sort
up

(Nearly)
Sort
up

(Nearly)
Sort
down

(Nearly)
Sort
down

(Nearly)
Sort
up

(Nearly)
Sort
up

(Nearly)
Sort
down

(Nearly)
Sort
down

0|0
0|0
0|0
0|0

0|0
0|0
0|0
1|1

2|5
3|3
5|2
0|0

0|0
0|0
0|0
0|0

0|0
0|0
0|0
0|0

0|0
0|0
3|3
4|4

1|9
9|2
2|1
1|1

1|1
0|0
0|0
0|0

(Nearly)
Sort
up

(Nearly)
Sort
up

(Nearly)
Sort
up

(Nearly)
Sort
up

(Nearly)
Sort
down

(Nearly)
Sort
down

(Nearly)
Sort
down

(Nearly)
Sort
down

0|0
0|0
0|0
0|0

0|0
0|0
0|0
0|0

0|0
0|0
0|0
0|0

2|1
3|2
5|3
1|5

1|9
9|4
2|3
1|2

1|1
3|1
4|1
0|0

0|0
0|0
0|0
0|0

0|0
0|0
0|0
0|0

(Nearly)
Sort
down

(Nearly)
Sort
down

(Nearly)
Sort
down

(Nearly)
Sort
down

(Nearly)
Sort
down

(Nearly)
Sort
down

(Nearly)
Sort
down

(Nearly)
Sort
down

1|9
9|5
2|4
1|3

1|3
3|2
4|2
1|1

2|1
3|1
5|1
0|0

0|0
0|0
0|0
0|0

0|0
0|0
0|0
0|0

0|0
0|0
0|0
0|0

0|0
0|0
0|0
0|0

0|0
0|0
0|0
0|0

Figure A1. Bitonic/Nearly Sort for N = 32 and P = 8. The arrows represent inter-core messages
(e.g., MPI_Sendrecv) and swap, which, for Nearly Sort, only applies to a zero-positive pair, since
pairs of positive keys or zeros are nearly sorted. After each stage, results are in blue/red for
Bitonic/Nearly Sort.

A small change to B-R can result in a further 25% improvement, as results in [7]
and Section 5.1 show. This is achieved by substituting Bitonic Sort with an alternative
algorithm, Nearly Sort. One does not actually need to perfectly sort the particles to divide
the workload afterwards, but only needs to guarantee ncopies has shape (9). To achieve
this property, the particles are first nearly sorted locally by calling Algorithm 3. We
emphasize that doing so is faster than sorting the particles according to ncopies. Then,
the particles are recursively merged, as in Bitonic Sort, by using the same sorting network
illustrated in Figure A1. Since S-NS takes O(N

P), and the number of sent/received messages
per core equals (log2 P)2, we can infer that Nearly Sort costs

O
(

N
P

+
N
P
(log2 P)2

)
(A2)

iterations. Here, as in [7], we refer to a B-R parallelization that uses Nearly Sort instead of
Bitonic Sort as Nearly-Sort-Based Redistribution (N-R). Algorithm A1 summarizes both

Algorithms 2021, 14, 342 19 of 21

N-R and B-R, which achieve an O((log2 N)2) time complexity. Figure A2 shows an example
of N-R for N = 16 and P = 8; a figure for B-R is omitted due to its similarities with N-R.

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

x

ncopies

A

0

B

0

C

0

D

0

E

0

F

1

G

0

H

0

I

0

J

0

K

2

L

1

M

1

N

9

O

2

P

0 Notes:
- At each stage
k = 0, 1, 2, ...,
cores of the
same node are
evenly colored
- The pivots
are circled

- The horizon-

tal arrows are

application of

rotational shifts

Nearly Sort

M

1

N

9

K

2

L

1

O

2

F

1

G

0

H

0

A

0

B

0

C

0

D

0

E

0

J

0

I

0

P

0

k = 0 r = (0111)2 rotate by 1, 2, and 4

M

1

N

7

D

0

E

0

J

0

I

0

P

0

M

0

N

2

K

2

L

1

O

2

F

1

G

0

H

0

A

0

k = 1 r = (011)2 r = (010)2

M

1

N

3

M

0

M

0

N

4

D

0

E

0

J

0

N

2

K

2

N

0

K

0

L

1

O

2

F

1

G

0

k = 2 r = (01)2 r = (10)2 r = (01)2 r = (01)2

M

1

N

1

N

2

M

0

N

2

J

0

N

2

D

0

N

2

K

0

K

2

K

0

L

1

O

1

O

1

F

1

S-R

x M N N N N N N N N N K K L O O F

Figure A2. N-R - example for N = 16 and P = 8. Each xi is actually a real vector, but is marked with
a capital letter for brevity.

Algorithm A1 Bitonic/Nearly-Sort-Based Redistribution (B-R/N-R)

Input: x, ncopies, N, P, n = N
P , p

Output: x
1: if P > 1 then Bitonic/Nearly Sort the particles
2: Bitonic/Nearly_Sort(ncopies, x, N, P)
3: end if, ncopies has now shape (9)
4: for k← 0; k < log2 P; k← k + 1 do binary tree

5: csum← Cumulative_Sum
(

N
2k , P

2k , ncopies
)

, the P
2k cores in each node perform

cumulative sum over ncopies
6: pivot← Linear_Search(ncopies, csum, n), search for first pivot s.t. csumpivot ≥ N

2k+1 ;
if not found pivot← 0

7: pivot← Sum(pivot, P
2k , p), the P

2k cores in each node broadcast pivot to each other
8: r ← N

2k+1 − pivot, rotations to perform within the node

9: ncopies, x←Rot_Shifts
(

ncopies, x, r, pivot, P
2k , p

)
, the P

2k cores in each node rotate

the N
2k+1 particles on the right of pivot by r positions according to the bits of r

10: end for, ncopies has now shape (11)
11: x← S-R(x, ncopies, n)

Appendix B. Stochastic Volatility Model

The PF example considered in Section 5.2 is a stochastic volatility model that has
previously appeared in the literature [15,19] and estimates the GBP-to-USD exchange rate
from 1 October 1981 to 28 June 1985. The model is as follows:

Xt = φXt−1 + σVt (A3a)

Yt = β exp(0.5Xt)Wt (A3b)

where φ = 0.9731, σ = 0.1726, β = 0.6338 (as selected in [19]). Vt ∼ N (0, 1) and
Wt ∼ N (0, 1), which means that p(xi

t|xi
t−1) and p(Yt|xi

t) in (2) are also Gaussian. The initial

Algorithms 2021, 14, 342 20 of 21

state is sampled as X0 ∼ N (0, σ2

1−φ2). The particles are initially drawn from p0(X0) and

then from the dynamic model. Hence, (2) simplifies to wi
t = wi

t−1 p
(
Yt|xi

t
)
.

References
1. Arulampalam, M.; Maskell, S.; Gordon, N.; Clapp, T. A Tutorial on Particle Filters for Online Nonlinear/Non–Gaussian Bayesian

Tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [CrossRef]
2. Ma, X.; Karkus, P.; Hsu, D.; Lee, W.S. Particle Filter Recurrent Neural Networks. Proc. AAAI Conf. Artif. Intell. 2020, 34, 5101–5108.

[CrossRef]
3. Costa, J.M.; Orlande, H.; Campos Velho, H.; Pinho, S.; Dulikravich, G.; Cotta, R.; Cunha Neto, S. Estimation of Tumor Size

Evolution Using Particle Filters. J. Comput. Biol. A J. Comput. Mol. Cell Biol. 2015, 22, 649–665. [CrossRef]
4. Li, Q.; Liang, S.Y. Degradation Trend Prediction for Rotating Machinery Using Long-Range Dependence and Particle Filter

Approach. Algorithms 2018, 11, 89. [CrossRef]
5. van Leeuwen, P.J.; Künsch, H.R.; Nerger, L.; Potthast, R.; Reich, S. Particle Filters for High-Dimensional Geoscience Applications:

A Review. Q. J. R. Meteorol. Soc. 2019, 145, 2335–2365. [CrossRef]
6. Zhang, C.; Li, L.; Wang, Y. A Particle Filter Track-Before-Detect Algorithm Based on Hybrid Differential Evolution. Algorithms

2015, 8, 965–981. [CrossRef]
7. Varsi, A.; Kekempanos, L.; Thiyagalingam, J.; Maskell, S. A Single SMC Sampler on MPI that Outperforms a Single MCMC

Sampler. arXiv 2019, arXiv:1905.10252.
8. Jennings, E.; Madigan, M. astroABC : An Approximate Bayesian Computation Sequential Monte Carlo Sampler for Cosmological

Parameter Estimation. Astron. Comput. 2017, 19, 16–22. [CrossRef]
9. Liu, J.; Wang, C.; Wang, W.; Li, Z. Particle Probability Hypothesis Density Filter Based on Pairwise Markov Chains. Algorithms

2019, 12, 31. [CrossRef]
10. Naesseth, C.A.; Lindsten, F.; Schön, T.B. High-Dimensional Filtering Using Nested Sequential Monte Carlo. IEEE Trans. Signal

Process. 2019, 67, 4177–4188. [CrossRef]
11. Zhang, J.; Ji, H. Distributed Multi-Sensor Particle Filter for Bearings-Only Tracking. Int. J. Electron. 2012, 99, 239–254. [CrossRef]
12. Lopez, F.; Zhang, L.; Beaman, J.; Mok, A. Implementation of a Particle Filter on a GPU for Nonlinear Estimation in a Manufacturing

Remelting Process. In Proceedings of the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
Besançon, France, 8–11 July 2014; pp. 340–345. [CrossRef]

13. Lopez, F.; Zhang, L.; Mok, A.; Beaman, J. Particle Filtering on GPU Architectures for Manufacturing Applications. Comput. Ind.
2015, 71, 116–127. [CrossRef]

14. Kreuger, K.; Osgood, N. Particle Filtering Using Agent-Based Transmission Models. In Proceedings of the 2015 Winter Simulation
Conference (WSC),Huntington Beach, CA, USA, 6–9 December 2015; pp. 737–747. [CrossRef]

15. Doucet, A.; Johansen, A. A Tutorial on Particle Filtering and Smoothing: Fifteen Years Later. Handb. Nonlinear Filter. 2009, 12, 3.
16. Djuric, P.M.; Lu, T.; Bugallo, M.F. Multiple Particle Filtering. In Proceedings of the 2007 IEEE International Conference on

Acoustics, Speech and Signal Processing—ICASSP ’07, Honolulu, HI, USA, 15–20 April 2007; Volume 3, pp. III-1181–III-1184.
[CrossRef]

17. Demirel, O.; Smal, I.; Niessen, W.; Meijering, E.; Sbalzarini, I. PPF—A Parallel Particle Filtering Library. In Proceedings of the
IET Conference on Data Fusion Target Tracking 2014: Algorithms and Applications (DF TT 2014), Liverpool, UK, 30 April 2014;
pp. 1–8. [CrossRef]

18. Murray, L.M.; Lee, A.; Jacob, P.E. Parallel Resampling in the Particle Filter. J. Comput. Graph. Stat. 2016, 25, 789–805. [CrossRef]
19. Varsi, A.; Taylor, J.; Kekempanos, L.; Pyzer Knapp, E.; Maskell, S. A Fast Parallel Particle Filter for Shared Memory Systems.

IEEE Signal Process. Lett. 2020, 27, 1570–1574. [CrossRef]
20. Bolic, M.; Djuric, P.M.; Sangjin Hong. Resampling Algorithms and Architectures for Distributed Particle Filters. IEEE Trans.

Signal Process. 2005, 53, 2442–2450. [CrossRef]
21. Zhu, R.; Long, Y.; Zeng, Y.; An, W. Parallel Particle PHD Filter Implemented on Multicore and Cluster Systems. Signal Process.

2016, 127, 206–216. [CrossRef]
22. Bai, F.; Gu, F.; Hu, X.; Guo, S. Particle Routing in Distributed Particle Filters for Large-Scale Spatial Temporal Systems. IEEE

Trans. Parallel Distrib. Syst. 2016, 27, 481–493. [CrossRef]
23. Heine, K.; Whiteley, N.; Cemgil, A. Parallelizing Particle Filters With Butterfly Interactions. Scand. J. Stat. 2020, 47, 361–396.

[CrossRef]
24. Sutharsan, S.; Kirubarajan, T.; Lang, T.; Mcdonald, M. An Optimization-Based Parallel Particle Filter for Multitarget Tracking.

IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1601–1618. [CrossRef]
25. Varsi, A.; Kekempanos, L.; Thiyagalingam, J.; Maskell, S. Parallelising Particle Filters with Deterministic Runtime on Distributed

Memory Systems. IET 3rd International Conference on Intelligent Signal Processing (ISP 2017), London, UK, 4–5 December 2017;
pp. 1–10. [CrossRef]

26. Maskell, S.; Alun-Jones, B.; Macleod, M. A Single Instruction Multiple Data Particle Filter. In Proceedings of the IEEE Nonlinear
Statistical Signal Processing Workshop, Cambridge, UK, 13–15 September 2006; pp. 51–54. [CrossRef]

http://doi.org/10.1109/78.978374
http://dx.doi.org/10.1609/aaai.v34i04.5952
http://dx.doi.org/10.1089/cmb.2014.0003
http://dx.doi.org/10.3390/a11070089
http://dx.doi.org/10.1002/qj.3551
http://dx.doi.org/10.3390/a8040965
http://dx.doi.org/10.1016/j.ascom.2017.01.001
http://dx.doi.org/10.3390/a12020031
http://dx.doi.org/10.1109/TSP.2019.2926035
http://dx.doi.org/10.1080/00207217.2011.623276
http://dx.doi.org/10.1109/AIM.2014.6878102
http://dx.doi.org/10.1016/j.compind.2015.03.013
http://dx.doi.org/10.1109/WSC.2015.7408211
http://dx.doi.org/10.1109/ICASSP.2007.367053
http://dx.doi.org/10.1049/cp.2014.0529
http://dx.doi.org/10.1080/10618600.2015.1062015
http://dx.doi.org/10.1109/LSP.2020.3014035
http://dx.doi.org/10.1109/TSP.2005.849185
http://dx.doi.org/10.1016/j.sigpro.2016.02.028
http://dx.doi.org/10.1109/TPDS.2015.2405912
http://dx.doi.org/10.1111/sjos.12408
http://dx.doi.org/10.1109/TAES.2012.6178081
http://dx.doi.org/10.1049/cp.2017.0357.
http://dx.doi.org/10.1109/NSSPW.2006.4378818

Algorithms 2021, 14, 342 21 of 21

27. Batcher, K.E. Sorting Networks and Their Applications. In Proceedings of the Spring Joint Computer Conference, Atlantic City,
NJ, USA, 30 April–2 May 1968; Association for Computing Machinery: New York, NY, USA, 1968; AFIPS ’68 (Spring); pp. 307–314.
[CrossRef]

28. White, S.; Verosky, N.; Newhall, T. A CUDA-MPI Hybrid Bitonic Sorting Algorithm for GPU Clusters. In Proceedings of the
2012 41st International Conference on Parallel Processing Workshops, Pittsburgh, PA, USA, 10–13 September 2012; pp. 588–589.
[CrossRef]

29. Baddar, S.; Batcher, K. Designing Sorting Networks: A New Paradigm; SpringerLink: Bücher; Springer: New York, NY, USA, 2011.
[CrossRef]

30. Thiyagalingam, J.; Kekempanos, L.; Maskell, S. MapReduce Particle Filtering with Exact Resampling and Deterministic Runtime.
EURASIP J. Adv. Signal Process. 2017, 2017, 71–93. [CrossRef] [PubMed]

31. Hol, J.D.; Schon, T.B.; Gustafsson, F. On Resampling Algorithms for Particle Filters. In Proceedings of the 2006 IEEE Nonlinear
Statistical Signal Processing Workshop, Cambridge, UK, 13–15 September 2006; pp. 79–82. [CrossRef]

32. Ajtai, M.; Komlós, J.; Szemerédi, E. An 0(N Log N) Sorting Network. In Proceedings of the Fifteenth Annual ACM Symposium
on Theory of Computing, Boston, MA, USA, 25–27 April 1983; ACM: New York, NY, USA, 1983; STOC ’83; pp. 1–9. [CrossRef]

33. Paterson, M.S. Improved Sorting Networks With O(logN) Depth. Algorithmica 1990, 5, 75–92. [CrossRef]
34. Seiferas, J. Sorting Networks of Logarithmic Depth, Further Simplified. Algorithmica 2009, 53, 374–384. [CrossRef]
35. Ladner, R.E.; Fischer, M.J. Parallel Prefix Computation. J. ACM 1980, 27, 831–838. [CrossRef]
36. Santos, E.E. Optimal and Efficient Algorithms for Summing and Prefix Summing on Parallel Machines. J. Parallel Distrib. Comput.

2002, 62, 517–543. [CrossRef]
37. Gropp, W.; Lusk, E.; Skjellum, A. Using MPI: Portable Parallel Programming with the Message-Passing Interface; The MIT Press:

Cambridge, MA, USA, 2014.
38. Li, H.F.; Liang, T.Y.; Chiu, J.Y. A Compound OpenMP/MPI Program Development Toolkit for Hybrid CPU/GPU Clusters. J.

Supercomput. 2013, 66, 381–405. [CrossRef]

http://dx.doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1109/ICPPW.2012.82
http://dx.doi.org/10.1007/978-1-4614-1851-1
http://dx.doi.org/10.1186/s13634-017-0505-9
http://www.ncbi.nlm.nih.gov/pubmed/32010202
http://dx.doi.org/10.1109/NSSPW.2006.4378824
http://dx.doi.org/10.1145/800061.808726
http://dx.doi.org/10.1007/BF01840378
http://dx.doi.org/10.1007/s00453-007-9025-6
http://dx.doi.org/10.1145/322217.322232
http://dx.doi.org/10.1006/jpdc.2000.1698
http://dx.doi.org/10.1007/s11227-013-0912-0

	Introduction
	Motivation
	Problem Definition and Related Work
	Our Results

	Sequential Importance Resampling
	Distributed Memory Architectures
	Novel O(log2N) fully-balanced Redistribution
	General Overview
	Algorithmic Details and Theorems
	Rotational Nearly Sort
	Rotational Split
	Rotational Nearly Sort and Split Redistribution

	Implementation on MPI

	Experimental Results
	RoSS vs. B-R and N-R
	Stochastic Volatility

	Conclusions
	O((log2N)2) Fully-Balanced Redistribution
	Stochastic Volatility Model
	References

