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Abstract: A major goal in pre-detonation nuclear forensics is to infer the processing conditions and/or
facility type that produced radiological material. This review paper focuses on analyses of particle
size, shape, texture (“morphology”) signatures that could provide information on the provenance of
interdicted materials. For example, uranium ore concentrates (UOC or yellowcake) include ammonium
diuranate (ADU), ammonium uranyl carbonate (AUC), sodium diuranate (SDU), magnesium diuranate
(MDU), and others, each prepared using different salts to precipitate U from solution. Once precipitated,
UOCs are often dried and calcined to remove adsorbed water. The products can be allowed to react
further, forming uranium oxides UO3, U3O8, or UO2 powders, whose surface morphology can be
indicative of precipitation and/or calcination conditions used in their production. This review paper
describes statistical issues and approaches in using quantitative analyses of measurements such as
particle size and shape to infer production conditions. Statistical topics include multivariate t tests
(Hotelling’s T2), design of experiments, and several machine learning (ML) options including decision
trees, learning vector quantization neural networks, mixture discriminant analysis, and approximate
Bayesian computation (ABC). ABC is emphasized as an attractive option to include the effects of
model uncertainty in the selected and fitted forward model used for inferring processing conditions.

Keywords: nuclear forensics; experimental design; particle morphology; machine learning

1. Introduction

References [1–7] describe pre-detonation nuclear forensics goals. Pre-detonation nu-
clear forensics focuses on determining the source and route of nuclear materials and devices
prior to their use in an improvised nuclear device or radiological dispersal device. Base-
line morphology and discussion of the technical production details for four precipitation
conditions (ADU, AUC, SDU, and MDU) are provided in [1,2]. Subsequent studies have
investigated the quantitative morphological variations for a selection of these materials
due to processing, aging, and/or storage conditions [3,4,7]. One related inference goal is
to determine factors that impact particle morphology, such as calcination temperature,
production pathway involving UO3, U3O8, or UO2, at 400 ◦C, 800 ◦C, and 510 ◦C (in H2),
respectively, and impurities for a given precipitation condition. Nuclear forensic analysis
utilizes a suite of techniques to help elucidate the provenance for a nuclear material of
interest. The analysis of surface morphology for particulate samples has been of great
interest as a possible indicator of the synthetic conditions used to produce nuclear materials,
such as uranium ore concentrates (UOCs). The technique of quantitative morphological
analysis as applied to nuclear forensics is this paper’s focus.

This review paper illustrates statistical issues using 22 quantitative morphological
metrics (Appendix A describes these 22 metrics) derived from the analysis of scanning
electron microscopy images (SEM) of each segmented particle [2,4,5]. Figure 1 highlights
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some example SEM images acquired from nuclear materials. The left image is the raw
unprocessed SEM image and the right image is the image following manual particle
segmentation using the Morphological Analysis of Materials (MAMA) software [2,8–10].
Morphological features are proving to be useful signatures to infer the chemical processing
histories (which relate to forensics goals [1–3]) of uranium oxides. Particle morphology
analysis has recently been developed and applied with image analysis software to segment
fully visible particles in SEM images and then compute attributes, such as circularity,
area, perimeter, and ellipse aspect ratio of the segmented particles. One example of such
software is MAMA, which performs segmentation and quantification. SEM images of
nuclear materials can be difficult to segment due to overlapping particles, charging effects,
and image clarity. Manual segmentation (locating, recognizing, and assigning bound-
aries to particles) requires significant time-consuming user inputs to only segment fully
visible particles. An alternative automated segmentation method using a deep learning
model (a U-net based on convolutional neural networks) was shown in [8] to effectively
segment fully visible particles (see also Reference [11] for another segmentation option);
however, this paper’s focus is on inferring processing conditions using currently-available
segmentation software, such as MAMA, that can also provide the 22 quantitative particle
morphological metrics.
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line condition only, or either of the other two conditions) is represented in the data. An-
other inference goal is then to determine factors that impact particle morphology, such as 
calcination temperature, production pathway, and impurities for a given precipitation 
condition.  

Figure 1. SEM image from the calcination of MDU at 400 ◦C. The left image contains the raw unprocessed image of the
particle surface morphology at 50,00×. The image on the right was manually segmented using MAMA software. The
blue regions were the individual particle features that had clearly defined boundaries and were used to quantitatively
characterize the morphology of the material.

Figure 2 highlights representative SEM images of ADU, SDU, MDU, and AUC and the
materials generated throughout the calcination and reduction pathway of each respective
starting material. In [1,2], each of the ADU, AUC, MDU, and SDU conditions have three
processing pathways involving UO3, U3O8, or UO2, at 400 ◦C, 800 ◦C, and 510 ◦C (in H2),
respectively. The main inference goal is to use particle morphology to distinguish among
ADU, AUC, MDU, and SDU processing routes. One open question is whether machine
learning (ML) methods can clearly recognize ADU, AUC, MDU, SDU when all 3 pathways
are represented in the data and also when only one pathway (baseline condition only, or
either of the other two conditions) is represented in the data. Another inference goal is
then to determine factors that impact particle morphology, such as calcination temperature,
production pathway, and impurities for a given precipitation condition.
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Figure 2. Example SEM images, such as those used in [1,2], at the listed magnifications (right), for MDU, ADU, SDU, and
AUC throughout the 400 ◦C (UO3), 800 ◦C (U3O8), and 510 ◦C (UO2) production pathways.

This paper focuses on ML options applied to the 22 MAMA measurements per particle
to recognize ADU, AUC, MDU, and SDU precipitation conditions when 1, 2, or 3 pathways
are represented in the data. Data from [2] are analyzed to estimate the correct classification
rate (CCR) in recognizing ADU, AUC, SDU, and MDU. For completeness, it is noted
here that data from [1] are vector representations of images (using unsupervised vector
quantized variational autoencoding) either of length 256 or 1000 that are derived from
each SEM image [1]. These vector representations of images have been shown to have
a CCR of approximately 0.80 depending on the particular data subset used [1]. Because
the CCR depends on the particular data subset analyzed, this paper does not directly
compare the CCR when using the 256-length or 1000-length vectors from [1] for each image
to the CCR when using 22-length MAMA measurements from each segmented particle
from its respective SEM image. Instead, this paper reviews statistical issues in using the
22-length MAMA measurements per particle, and applies ML options to the 22-length
MAMA measurements per segmented particle, with the ADU, AUC, MDU, and SDU
precipitation conditions and the processing pathways involving UO3, U3O8, and UO2,
at 400 ◦C, 800 ◦Cand 510 ◦C (in H2) all known (supervised learning).

Data from [2] are 22 morphological measurements produced from MAMA software
(morphological analysis for material attribution) such as particle area, aspect ratio, and
circularity (Appendix A). Data from [2] can be analyzed per particle or per image. Available
data include 10s to 100s of MAMA measurements of particles per image, with a total of
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9255 particle measurements (2258, 2436, 2263, and 2298 sets of 23 MAMA measurements of
particles for ADU, AUC, SDU, and MDU, respectively). For ADU, there are 16, 12, and 14
images with an average of 47.3, 62.5, and 53.6 particles per image, for ADU1, ADU2, ADU3
(ADU1, ADU2, ADU3 denote pathways U3O8, UO2, or UO3, respectively). For AUC, there
are 15, 8, and 10 images with an average of 57.7, 99.4, and 77.5 particles per image, for
AUC1, AUC2, AUC3, respectively. For SDU, there are 8, 8, and 7 images with an average
of 94, 94.5, and 107.9 particles per image, for SDU1, SDU2, SDU3, respectively. For MDU,
there are 16, 19, and 18 images with an average of 46.9, 40.2, and 43.6 particles per image
for MDU1, MDU2, MDU3, respectively. The results presented here are by particle because
of the limited number of images for each precipitation condition and pathway [1–5].

This paper is organized as follows. Section 2 presents CCR results for nine ML
methods. Section 3 relates the multivariate T2 test to LDA and illustrates impacts of model
assumptions violations due to having multiple components (pathway, U3O8, UO2, or UO3,
at 800 ◦C. 510 ◦C and 400 ◦C) per group (precipitation condition, ADU, ADU, SDU, MDU).
Section 4 relates LDA to the multivariate T2 test to assess group separation. Section 5
provides more details regarding ABC in the context of experimental design. Section 6
summarizes this paper.

2. CCR Results

Results based on the 22 MAMA measurements [2] are given in Table 1 for nine ML
options including decision trees, flexible discriminant analysis (FDA), mixture DA (MDA),
linear DA (LDA), k-nearest neighbor, approximate Bayesian computation (ABC), learning
vector quantization (LVQ), multivariate adaptive regression with splines (MARS), and
support vector machines (SVM). When all three pathways are in the data, the CCRs (using
70% of the data to train and 30% of the data to test) for decision trees, MDA, LDA, FDA,
k-nearest neighbor, LVQ, SVM, ABC, and MARS, are 0.83, 0.76, 0.74, 0.74, 0.81, 0.75, 0.76,
0.87, and 0.87, respectively. All analyses are done in R [12].

Table 1. CCRs for 9 ML methods for recognizing ADU, AUC, SDU, and MDU with 3 pathways
present in the data, or with 1 pathway present in the data. The boldface entries are the largest entries
in each row, and all entries are repeatable to within approximately ±0.01. Decision trees, MARS, and
ABC have the highest CCRs.

Tree MDA LDA FDA knn LVQ SVM ABC MARS

3 pathways 0.83 0.76 0.74 0.74 0.81 0.75 0.76 0.87 0.87
1 pathway 0.93 0.82 0.81 0.81 0.85 0.87 0.83 0.89 0.89

When only pathway 1 is in the data for each of ADU, AUC, SDU, and MDU, the CCRs
(again using 70% of the data to train and 30% of the data to test) for decision trees, MDA,
LDA, FDA, k-nearest neighbor, LVQ, SVM, ABC, and MARS, are all increased, to 0.93, 0.82,
0.81, 0.81,0.85, 0.87, 0.83, 0.89, and 0.89, respectively. Precipitation conditions SDU and
MDU are the most difficult to distinguish, so if SDU and MDU are merged into one group,
reducing the number of groups from 4 to 3, then all methods have higher CCRs, some as
large at 0.98. ML options 1–9 are described in Appendix B. In addition, LDA is discussed
in Section 4, and ABC is discussed in Section 5 because the simulation framework used in
ABC is helpful for including various sources of model uncertainty.

It is not surprising that the CCR decreases when all three pathways are represented
in the data. Figure 3 plots principal coordinate (PC, [13]) 7 versus PC 4 for particles from
the ADU, AUC, SDU, and MDU. PCs are coordinates from which the matrix of pairwise
distances in the 22-dimensional space can be closely approximated. In Figure 3, there is
qualitative evidence of moderately-good group separation, particularly considering that
only two PCs are used (up to 22 PCs are available). Figure 4 is the same as Figure 3, but is
for PC1, PC2, and PC4, and illustrates that using three PCs leads to better group separation
than using the two PCs in Figure 3.
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Methods such as MDA have the potential to recognize clusters within the 4 precipita-
tion conditions and thereby mitigate the decrease in classification accuracy [13,14]. Figure 5
plots the Bayesian information criterion (BIC) used in model-based clustering versus the
number of clusters (“components”) in the ADU data with all three pathways (U3O8, UO2,
UO3) present. There is modest evidence for 3–7 clusters within ADU. Figure 6a plots
the case in which mclust is asked to find the best 3-cluster fit in 22 MAMA features in
the ADU data (using MDS coordinates 7 and 3 as one good option to display the data in
2-dimensions). The three clusters are somewhat distinct, but the same types of plots for 4, 5,
6, or 7 clusters look equally plausible, and there are small sub-clusters in 2 of the 4 clusters.
Figure 6b is the “true” clusters as defined by the three pathways. Note in comparing
Figure 6a,b that some of U3O8 cases are clustered in the UO2 group. Figure 7 plots the raw
MAMA feature 5 (perimeter of convex hull covering the particle) versus feature 1 (particle
vector area) without transformation into PCs. Figure 8 plots the raw MAMA feature 3
(particle pixel area) versus feature 1 (particle vector area) and feature 2 (area of convex
hull covering the particle) without transformation into PCs. Figure 9 plots the ADU, AUC,
MDU, SDU data from [1] for UMAP coordinates 1 and 2. The UMAP coordinates are a
uniform manifold approximation and projection for dimension reduction, which is used to
reduce the dimension of either a 256-length vector or a 1000-length vector used to represent
each image that are the derived image-based features from [1] using a vector quantized
variational encoder. The CCR from the UMAP coordinates is approximately 0% to 10%
smaller than those presented here for the MAMA features from [2], depending on the data
subsets analyzed.
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Figure 5. The BIC versus the number of components for ADU with 3 pathways in the training
data (U3O8, UO2, UO3). The legend describes different modeling assumptions regarding the data
covariance matrix within each cluster, where “E” denotes “equal”, “I” denotes “identity” matrix
(independent MAMA components), and “V” denotes “varying” features of the covariance matrix in
the order volume, shape, orientation in an eigenvector decomposition. For example, EVI denotes
equal volume, varying shape, and identity orientation among the groups, and VVV denotes varying
volume, shape, and orientation among the groups.
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3. Multivariate t-Test

If two groups of normally-distributed data have the same variance and possibly
different means then the well-known univariate t statistic

t = (x1 − x2)/{
(

1
n1

+
1
n2

)
spooled} (1)

where x1 is the sample mean of group 1, x2 is the sample mean of group 2, and s2
pooled =

1
tn1+n2−2

{∑n1
i=1(x1i − x1)

2 + ∑n1
i=1(x2i − x2)

2} is distributed as tn1+n2−2 (at distribution with

n1 + n2 − 2 degrees of freedom. Therefore, the value of t as computed in Equation (1) is
compared to the quantiles of the t distribution with tn1+n2−2 degrees of freedom to test whether
the mean µ1 of group 1 is different from the mean µ2 of group 2 [15].

The precipitation condition could define group 1 as ADU and group 2 as AUC and
other production, aging, and/or storage conditions could be varied to evaluate how
robustly and reliably the ADU data could be distinguished from the AUC data. If the two
groups cannot be assumed to have the same variance, then another version of the t statistic,
such as Welch’s t [15], can be used. The normality assumption is not crucial, partly because
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the sample means x1 and x2 are usually approximately normal in distribution due to the
central limit effect [15].

If the data are from the two groups are more than one dimension (a vector rather than
a scalar), as for example in Figure 8, then Hotelling’s multivariate T statistic [16] generalizes
Equation (1) to:

T2 = (x1 − x2)
T [

(
1
n1

+
1
n2

)
Spooled]

−1
(x1 − x2) ∼

(n1 + n2 − 2)p
(n1 + n2 − p− 1)

Fp,(n1+n2−p−1) (2)

Figure 10 plots simulated group 1 and group 2 data for p = 2, with the true and
estimated (from 100 observations per group) linear decision boundaries. The correlation is
0.5, and the true mean shift is 3 units in the direction of x1 only (a 3 unit mean shift to the
east, and the standard deviation in both groups is (1).
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of 3 units in the x1 direction.

Figure 11 plots the estimated probability density function (pdf) of simulated values of T2

from Equation (2) and the corresponding analytical probability density, (n1+n2−2)p
(n1+n2−p−1)Fp,(n1+n2−p−1).

The R programming language is used for all figures, simulations, and calculations [12].
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analytical pdf, (n1+n2−2)p

(n1+n2−p−1) Fp,(n1+n2−p−1).

Not surprisingly, if the mean shift between group 1 and group 2 is due to a mean shift
of only a subset of p variables, then the probability to detect the mean shift decreases as.
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If µ1 6= µ2 then T2 ∼ (n1+n2−2)p
(n1+n2−p−1) Fp,(n1+n2−p−1;δ), where the non-centrality parameter

δ of the F distribution is:

δ=
n1n2

n1 + n2
(µ1 − µ2)

TΣ−1(µ1 − µ2) (3)

If δ in Equation (3) is fixed, for example, at δ = 5, and the number of variables
(predictors) p increases then the non-centrality parameter δ remains fixed, but p increases,
which means that a mean shift from µ1 to µ2 becomes more difficult to detect. To illustrate,
Figure 12 plots the detection probability to detect µ1 6= µ2 as p increases for δ = 5. The
MAMA software currently provides 22 particle measurements (such as convex hull area,
pixel area, vector perimeter, ellipse perimeter, ellipse aspect ratio, circularity, etc.), some of
which might not be useful to distinguish among groups, and Figure 12 indicates that using
useless measurements can decrease the CCR. Therefore, Section 5 on ABC investigates
whether variable screening based on t statistic values can increase the CCR.
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Figure 12. The detection probability (DP) versus the number of predictors.

Figure 13 plots one example of the impact of nonnormality on the pdf for T2. In Figure 13,
p = 2, and the pdf of T2 is plotted for normal data (with correlation 0.60 and n1 = n2 = 20)
and for lognormal data, also with a correlation 0.60. The analytical result is the same as in
Figure 11 for normal data. In this case, there is noticeable effect of non-normality on the pdf
of T2. Figure 14 is the same as Figure 13 but for p = 15. Figure 15 is the same as Figure 14,
but for and n1 = n2 = 200. The approach to approximate normality is somewhat slower as
p increases.
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4. LDA

The multivariate T2 statistic uses the statistical distance between two sample means
and leads to a simple and reasonably robust test, for example, of whether the ADU group
mean is different from the AUC mean. Linear discriminant analysis (LDA) uses the statisti-
cal distance from a test observation to each of the ADU and AUC group means to assign
the test observation to the ADU or AUC group. LDA is one of the oldest [12,13,15] and
simplest pattern recognition methods (“supervised learning” in ML jargon) used to assign a
group membership to a test case based on training data that has known group assignments.

Figure 16 plots simulated group 1 and group 2 data for p = 2, with the true and
estimated (from 100 observations per group) linear decision boundaries. The correlation is
0.5, and the true mean shift is 3 units in the direction of x1 only (a 3-unit mean shift to the
east, and the standard deviation in both groups is 1). The mean vector of group 1 is (0,0) and
the mean vector of group 2 is (3,0). By appealing to likelihood ratio theory, or Bayes rule, the
true linear decision boundary is computed using (µ1 − µ2)

TΣ−1X and the estimated linear
decision boundary is computed using (x1 − x2)

TΣ−1X where X = (x1, x2) [13,14,16].
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Similarly to using the non-centrality parameter in Section 3 to quantify the effect of
a mean shift from µ1 to µ2, the total probability of misclassification (TPM) by LDA (the
probability that a group 1 item is classified as group 2, or a group 2 item is classified as
group 1, TPM = 1−CCR), is given by the cumulative normal probability TPM = Φ

(
−δ
2

)
,

where δ2 = (µ1 − µ2)
TΣ−1(µ1 − µ2) [16]. For the data in Figure 16, the true TPM = 0.042

and the estimated TPM is 0.045. Figure 16 plots the pdf for the estimated TPM based on
105 sets of 100 simulated observations per group, both for normal data and log normal data.

Of course, real data are rarely so close in distribution to multivariate normal (MVN).
For example, Figure 17 plots 25 simulated observations from each of 4 clusters, where
clusters 1 and 2 belong to group 1 and clusters 3 and 4 belong to group 2. ML methods such
as learning vector quantization (LVQ [14]) or mixture discriminant analysis (MDA [14])
training are effective for this type of data. However, with more than p = 2 predictors, it is
rarely so evident that clusters are present, so LDA, LVQ, and MDA are compared. MDA
assigns a test case to the nearest cluster and corresponding group. Although real data
rarely closely follow the LDA assumptions that the data are MVN with the same covariance
matrix and possibly different means, LDA sometimes has a competitive CCR compared to
other ML options such as MDA and LVQ.
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Note that due to processing, aging, and/or storage conditions, clustering, such as in
Figure 17, could occur and performance claims regarding how distinct group 1 is from
group 2 depend on the relative frequency of each cluster. For example, cluster 4 in group 2
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is quite distinct from all of group 1, but cluster 3 from group 2 is not distinct from cluster 2
of group 1. Therefore, performance claims regarding group separability could depend on
the relative frequencies of the clusters in the training and testing data. Applying leave-one-
out cross validation (CV) to 103 simulated observations in each of the four clusters in each
group, the estimated TPM using either LDA or MDA is 0. Simply assuming MVN data in
each group without clustering and applying TPM = Φ

(
−δ
2

)
, where

δ2 = (µ1 − µ2)
TΣ̂−1

(µ1 − µ2) (4)

leads to an estimated TPM = 0.08, with δ2 = 7.61 in Equation (4), describing the T2 based
measure of group separation. Somewhat surprisingly, the estimate 0.08 closely agrees
with 1 − CCR = 0.08 (recall from previous paragraphs that CCR = 0.93 if clustering is
ignored) in this case because Σ is badly estimated due to ignoring the clustering within
each group. In the case with the probability of 1, 2, 3, 4, 5, 6, or 7 clusters in each group
calculated from BIC leads to an estimated TPM = 0.13 (CCR = 0.87, in good agreement with
the CCR of 0.88 from the previous paragraph), with δ2 = 5.12 in Equation (4) describing the
T2-based measure of group separation. Again, somewhat surprisingly, because Σ is badly
estimated due to ignoring the clustering within each group, the CCR is well estimated
even if clustering is ignored. The true simulated distribution is a mixture of MVN clusters
within each of the two groups, with either four clusters or a random number of clusters
from 1 to 7 as modeled using BIC as estimated using mclust applied to the real data with
ADU = group 1 and AUC = group 2. Real data can often be modeled effectively using
mixtures, including mixtures of MVN distributions [17]; however, ignoring the mixture
behavior and assuming one cluster per group can often lead to competitive performance.
Recall that LDA assumes one MVN component per group while MDA allows one or more
MVN components per group.

5. ABC

Because ABC is a versatile and robust option for many inverse problems [18–23], ABC
is described in detail here. ABC can be used to evaluate candidate experimental designs,
accommodate model uncertainty such as how many clusters could be present in each
precipitation condition (ADU, AUC, SDU, MDU), and to provide a model-based summary
of the data.

In any Bayesian approach [24], prior information regarding the magnitudes and/or
relative magnitudes of any model parameter(s) can be provided. If the prior is “conjugate”
for the likelihood, then the posterior is in the same likelihood family as the prior, in
which case analytical methods are available to compute posterior prediction intervals for
quantities of interest. So that a wide variety of priors and likelihoods can be accommodated,
modern Bayesian methods do not rely on conjugate priors, but use numerical methods
to obtain samples from approximate posterior distributions [24]. For numerical methods,
such as Markov chain Monte Carlo [24], the user specifies a prior distribution (which need
not be normal), for the parameters to be inferred, such as processing and aging conditions.
The user must also specify a likelihood for the data given the model parameters. In contrast,
ABC does not require a likelihood for the data; and, as in any Bayesian approach, ABC
accommodates constraints on variances through prior distributions [18–24].

No matter what type of Bayesian approach is used, a well-calibrated Bayesian ap-
proach is defined here as an approach that satisfies several requirements. One calibration
requirement is that in repeated applications of ABC for classification the actual correct
classification probability should be closely approximated by the predicted correct classi-
fication probability. For example, if the average probability of the selected model is 0.90,
then the actual CCR should be approximately 0.90. In applications of ABC for estimating a
continuous-valued parameter (“regression”), one requirement is that in repeated applica-
tions of ABC, approximately 95% of the middle 95% of the posterior distribution for the
parameter should contain the true value. That is, the actual coverage should be closely
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approximated by the nominal coverage. The nominal coverage is obtained by using the
quantiles of the estimated posterior. For example, the 0.005 and 0.995 quantiles define
the lower and upper limits of a 99% probability interval. A second requirement is that
the true mean squared error (MSE) of the ABC-based estimate of the parameter should
be closely approximated by the variance of the ABC-based posterior distribution of that
parameter [22].

Denote the real data as y. Inference using ABC can be summarized as follows:

(1) Sample θ from the prior θ ∼ fprior(θ)

(2) Simulate data y′ from the model y′ ∼ P(y|θ)
(3) If the distance d(S(y′), S(y)) ≤ ε, then accept θ as an observation from fposterior(θ

∣∣y)
Repeat steps 1–3 many times, usually 105 or more times. In step (2), the model can be

analytical or, for example, a computer model. In ABC, the model has input parameters θ,
has output data y′ ∼ P(y|θ), and there is corresponding real data yobs. For the example
below, the forward model has 1 parameter (the group membership, 1, 2, 3, or 4 for ADU,
AUC, SDU, and MDU, respectively).

Synthetic data are generated from the model for many trial values of θ, and trial θ
values are accepted as contributing to the estimated posterior distribution for θ | yobs if
the distance d(yobs, y(θ)) between yobs and y(θ) is reasonably small. Alternatively, for most
applications, it is necessary to reduce the dimension of yobs to a small set of summary statis-
tics θ and accept trial values of θ if d(S(yobs), S(y(θ)) < ε, where ε is a user-chosen threshold.
Here, for example, yobs is the 22 MAMA morphology measurements or transformations of
them. Because trial values of θ are accepted if if d(S(yobs), S(y(θ)) < ε, an approximation er-
ror to the posterior distribution arises that several ABC options [20,21] attempt to mitigate.
Such options weight the accepted θ values by the actual distance d(S(yobs), S(y(θ)) (abctools
package in R [12]). In practice, the true posterior distribution is not known, so a method
such as that in [22] using calibration checks, is needed in order to choose an effective value
of the threshold ε.

ABC is used here for two main reasons:

(A) ABC allows for comparison of the performance of candidate summary statistics such
as the mean or quantiles of the particle attributes such as size and shape.

(B) ABC allows for easy experimentation with the effects of EDA to choose a model and
to include uncertainty in the estimated forward model (such as the number of mixture
components in each of ADU, AUC, SDU, MDU) used to perform ABC.

5.1. ABC for ADU, AUC, SDU, MDU

ABC requires a forward model with source terms (such as group membership being
ADU, AUC, SDU, or MDU) as inputs and observables such as any subset of the 22 MAMA
features as outputs. For a test set of outputs, the most likely inputs can be inferred using
steps 1, 2, and 3. The forward model can be simple or complicated, and can include
empirical adjustments based on training data. For example, empirical measurements
(training data) can be used to select a model (such as the number of mixture components
in MDA) and estimate the chosen model parameters. Uncertainty arising from the model
selection step [25] is often ignored; however, the effects of model selection can be easily
including via ABC (Section 5.3).

This section uses subsets of the MAMA measurements as the model output and assigns
the group membership as 1, 2, 3, or 4, for ADU, AUC, SDU, and MDU, respectively. The
CCR of 0.87 in Table 1 corresponds to the choice of MAMA features 1–9, 11, 21, 22 (Vector
area (µm2), Convex hull area (µm2), Pixel area (µm2), Vector perimeter (µm), Convex hull
perimeter (µm), Ellipse perimeter (µm), ECD (µm), Major ellipse (µm), Minor ellipse (µm),
Diameter aspect ratio, Grayscale mean, Gradient mean). Features 1–9, 11, 21, and 22 were
chosen because these 12 features had the largest ratio of between-group variance to the
within-group variance (as is done in LDA). The average probability assigned by ABC to
the inferred group membership is 0.85, which is acceptably close to 0.87. If instead all 22
MAMA features are used, the CCR of ABC is approximately 0.82 instead of 0.87.
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Note that this implementation of ABC for classification uses the actual data rather than
an explicit forward model; therefore, this implementation of ABC is similar to a smooth
version of k-nn in that it is based on using weighted distances from the test case to the
training cases. In ABC applications below, the data is used to fit a model and uncertainty
due to model selection [25] and parameter estimation is included.

5.2. ABC for the 3 Pathways in ADU, AUC, SDU, MDU

The same procedure as in Section 5.1 can be repeated for training data that includes
only one of the three pathways (U3O8, UO2, or UO3, at 400 ◦C, 510 ◦C and 800 ◦C, for
each of the four precipitation conditions. Recall from Table 1 that the nine ML methods
each have larger CCR for the one-pathway per group training data (for any of the three
pathways) than for the three-pathways per group training.

5.3. Model Uncertainty Accommodated by ABC for Inverse Problems in Forensics

Suppose that a model such as ŷ = β̂0 + β̂2x1 + β̂2 x2 + β̂3 x2
1 + β̂4 x2

2 + β̂5 x1x2 is fit
to training data for one MAMA feature (or a transformation of several MAMA features),
where for example x1 is processing temperature and x2 is humidity (not available in the data
from [2] used here but experiments are ongoing that will have other processing conditions).
The ABC framework is useful to evaluate the fitted forward model’s performance in the
inverse problem consisting of using several responses y1, y2 . . . , yq to infer the value of
x1, x2 . . . , xp. Design of experiments has traditionally focused on choosing effective values
of x1, x2 . . . , xp that lead to low prediction error variance in each of y1, y2 . . . , yq, such as
I-optimal designs [26–31]. A key task in nuclear forensics is the inverse problem, using
future measured values of y1, y2 . . . , yq to infer the corresponding values of x1, x2 . . . , xp.
However, it is expected that good values of x1, x2 . . . , xp in training/calibration data that
lead to competitively small prediction error variance in y1, y2 . . . , yq will also be good
values for performing the inverse [26–31], because uncertainty in the fitted forward model
is minimized subject to resource constraints (number of experiments). ABC is a good
framework for including model uncertainty in addition to model parameter estimation
uncertainty, as illustrated below.

A simulated example below uses q = 5 and p = 3 continuous-valued variables such
as temperature, humidity and concentration of impurities. The ABC output (as in any
Bayesian approach) is the estimated posterior for each of x1, x2 . . . , xp. Each candidate ex-
perimental design [26–31] such as central composite and Box-Behnken for fitting quadratic
models can be evaluated in the ABC framework. The experimental design having the
narrowest (smallest standard deviation) posterior probability density function (pdf) for
x1 (or any other processing parameter) as the least uncertainty, provided the ABC-based
approximation is sufficiently accurate. Simulations such as those used below indicate that
ABC is accurate, so ABC-based posterior widths corresponding to candidate experimental
designs can be compared [26–31].

Figure 18 plots an example of the ABC-based estimated posterior pdf of x1 for nominal
measurement error standard deviations (SDs) in x1, x2, x3 and in y1, y2, y3, y4, y5 and for two
times the nominal standard deviations. The SDs include measurement error and modeling
error effects. Note from Figure 18 that measurement errors in the factors (“predictors”)
leads to a mean shift when the SDs are multiplied by a factor of 2. Figure 18 also includes
a well-chosen experimental design (central-composite design [28,29]) and a randomly
chosen experimental design that has non-zero correlations among the 3 predictors. The
posterior width for a few other experimental designs were also compared [28,29]. For
example, the posterior standard deviation for x1 is 0.023, 0.053, 0.028, 0.024, 0.023, 0.021
for a full 3-level factorial for x1, x2, x3 with 33 runs plus 5 repeated runs at the central
position (27 + 5 = 32 runs), then the same full factorial but with two times the nominal
standard deviations in the measurements of x1, x2, x3 and in y1, y2, y3, y4, y5, then a random
reordering of each of the design-matrix columns (a random design), a Box–Behnken design
with 16 runs, a central composite design with 20 runs, and a central composite design with
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20 runs but with a linear fit only, respectively. Because of the quadratic and interaction
terms in the model, the full factorial design does not have uncorrelated predictors, which
is one reason the Box–Behnken or central composite designs lead to a similar posterior
standard deviation for x1 as does the full factorial design with more runs (32 runs compared
to 20 runs).
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Figure 18 plots the posterior for x1 for the central composite design and for the random
design. Recall that ABC is based on an approximate method, but the two ABC calibration
checks for a continuously-valued parameter such as x1 indicate that ABC is well calibrated
with a choice of ε = 0.01. The two checks are that the nominal posterior intervals coverages
agree with the actual coverages at 0.90, 095, and 0.99 levels, and the RMSE is well estimated
by the posterior standard deviation. Therefore, the posterior standard deviations are good
indications of inference quality and are a good basis to compare candidate experimental
designs. In this case, the central composite design or the Box–Behnken designs are better
than the full factorial because they achieve similar posterior width with fewer runs.

As pointed out in [27], ignoring estimation error in model parameters, one could use
plug-in estimates β̂0, β̂1 . . . , β̂5 of forward model parameters to compute the estimate

X̂ = {x̂1, x̂2, x̂3} = argminx

q

∑
j=1

(
yj − ŷj

)2 (5)

For example, if ŷ = β̂0 + β̂2x1 + β̂2 x2 + β̂3 x2
1 + β̂4 x2

2 + β̂5 x1x2 then the estimate
β̂0, β̂1, β̂2, β̂3, β̂4, β̂5 are plugged into ŷ, ignoring their uncertainty, and ignoring the model
selection process. Note the similarity of the plug-in approach to ABC in that ABC also
seeks plausible values of {x̂1, x̂2, x̂3} that lead to small distance ∑

q
j=1

(
yj − ŷj

)2. How-
ever, the ABC framework makes it simple to include the effects of estimation error in
model parameter estimates and to include the effects of model selection. Regarding
model selection, a key assumption in experimental design is that the model form such
as y = β0 + β1x1 + β2 x2 + β3 x2

1 + β4 x2
2 + β5 x1x2 + error is known in advance and

then good values of x1 and x2 can be calculated for minimizing prediction errors in
ŷ (such as the I-optimal or the Box–Behnken designs [27–29]). In practice, if EDA sug-
gests that some model form (perhaps nonlinear in the parameters or a segmented re-
gression) is more appropriate than a low-order quadratic, then the strategy in [27] of
using plug-in estimates β̂0, β̂1 . . . , β̂5 of forward model parameters to compute the esti-
mate X̂ = {x̂1, x̂2, x̂3} = argminx ∑

q
j=1

(
yj − ŷj

)2 in Equation (5) should be modified to
account for the model selection step [25], as illustrated in the next two paragraphs in the
classification context.
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In practice, if EDA suggests that some model form (perhaps nonlinear in the parame-
ters or a segmented regression) is more appropriate than a low-order quadratic, then the
strategy in [27] of using plug-in estimates β̂0, β̂1, . . . , β̂9 as illustrated in the next paragraph
in the regression context and in the following two paragraphs in the classification context
could be used, but it ignores model selection effects.

For ABC-based model selection effects in the regression context, first a model form such
as y = β0 + β1x1 + β2 x2 + β3 x3 + β4 x2

1 + β5 x2
2 + β6 x2

3 + β7 x1x2 + β8 x1x3 + β9 x2x3 + e
is specified in the case of p = 3 continuous predictors x1, x2, x3, for each of q = 5 measured
responses (such as 5 of the 22 MAMA measurements, or transformations of the MAMA
measurements). Standard design of experiments assumes that the model form is known
in advance, and effective training values of x1, x2, x3 are selected in order to have good
predictions of future y values at future x1, x2, x3 values. In practice, EDA can suggest other
candidate models and to keep this example short and simple, the impact of model selection
will be illustrated when the true model is either (1) a 4-parameter model having only
linear terms (y = β0 + β1x1 + β2 x2 + β3 x3 + e) without interactions such as β7 x1x2, or
(2) is the full 10-parameter model model with parameters { β0, β1, . . . β9}. ABC will then be
implemented assuming the 4-parameter model, the 10-parameter, or using BIC to choose
between the two models. ABC is implemented by simulating possible x1, x2, x3 values
and corresponding y1, y2 . . . , yq values for each set of { β0, β1, . . . β9} values simulated
from their respective prior probability distributions. The measurement error variances in
x1, x2, x3 and y1, y2 . . . , yq are assumed here to have been well estimated by using small
repeatability studies. The BIC for comparing regression models (1) and (2) fit to the same
data is given by

BIC = n log
(

RSS
n

)
− p log(n) (6)

where RSS in Equation (6) is the residual sum of squares RSS = ∑n
i=1(yi − ŷi)

2, n is the
number of observations (n = 20 for the central composite design as used to generate
Figure 18 as in this example) and p is the number of model parameters (p = 10 for model 1
and p = 4 for model 2). Then for a randomly-generated test case, the ABC-based posterior
standard deviations (SDs, repeatable to ±0.001) for x1, x2, x3 are 0.046, 0.050, 0.064, respec-
tively, if model 1 is the true and assumed model; the SDs are 0.054, 0.058, 0.077, respectively,
if model 1 is the true and model 2 is the chosen model, and the SDs are 0.068, 0.043, 0.059,
respectively, if model 1 is the true model and the model selection process is included in

the training data for ABC, so model 1 is assumed with relative probability P(M1) ∝ e−
BIC1

2 ,
which has an average value over 105 simulations of approximately 0.65 for each of the 5 re-
sponses in this example. The model selection process can be included in ABC by simulating
from model 1 with 10 estimated parameters with the BIC-based model relative probability

P(M1) ∝ e−
BIC1

2 and by simulating from model 2 with relative probability P(M2) ∝ e−
BIC2

2 .
Such a simulation procedure is a representation of our state of knowledge after the n = 20 run
central composite design, such as a BIC-based approximate 65% probability that model 1 is
more appropriate than model 2 when model 1 is the correct model. For the same simulated
test case as above, having true values x1 = 0.71, x2 = −0.99, x3 = −0.10, Figure 19 plots
the ABC-based posterior pdf for the factor x1 ignoring the effects of model selection and
including the effects of model selection, for the central composite design with 20 runs. The
three cases plotted are: model 1 is the true model and (a) model 1 is always the chosen model,
(b) model 2 is always the chosen model, and (c) BIC-based model selection chooses between
model 1 and 2 in the ABC training data. It should be noted that the calibration checks indicate
that ABC is working: the actual coverages of 0.99, 0.95, and 0.90 are the same as the nominal
coverages, and the estimated RMSE is 0.05, in agreement with the observed average RMSE,
using threshold ε = 0.01.
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always the chosen model, if model 2 is always the chosen model, and if BIC-based model selection
chooses between model 1 and 2 in the ABC training data. for the central composite design with
20 runs.

Although this is a simple model selection example, it illustrates how ABC can accom-
modate both model selection and parameter estimation effects. Alternatively, [25] used a
smoothed bootstrap method to assess model selection effects, which were non-negligible
even for the case of selecting among linear, quadratic, or higher order polynomials to fit a
response, as done here.

For ABC-based model selection effects in the classification context, recall that Figure 5
plots the BIC used in model-based clustering versus the number of clusters (“components”)
in the ADU data with all 3 pathways (U3O8, UO2, UO3) present. There is modest evidence
for 3–7 clusters within ADU. Recall that Figure 6 is a two-dimensional plot of the identified
clusters when the mclust function in R is asked to find 4 clusters. ABC can be implemented
with a fixed number of clusters per group, or with the probability of 1, 2, 3, 4, 5, 6, or
7 clusters per group calculated from the BIC (with the relative model probability assumed
to be well approximated by e−

BIC
2 [14] and see below). In the case of distinguishing group

1 (ADU) from group 2 (AUC), the 4-cluster model has an ABC-based CCR estimate of 0.92
and the random-cluster model has an ABC-based CCR estimate of 0.88. The corresponding
actual CCRs in simulated data are 0.93 and 0.88, in good agreement with prediction, and
with the anticipated feature that the CCR is larger if the assumed forward model has a
known number (4) of clusters in each group.

Returning to ABC applied to the 9255 sets of 22 MAMA measurements on particles,
recall that the CCR in Table 1 is 0.87, which was for the case of using MAMA measurements
{1–9, 23, 24} and using 70% of the data to train and 30% to test. If leave-one-out cross
validation (CV, [14]) is used, the CCR is again 0.87. If model-based clustering (mclust in R)
is use to model the data, and 3 clusters are selected for each of ADU, AUC, SDU, and MDU,
then the ABC-based CCR is 0.93 (unrealistically high CCR due to over-simplified forward
model in ABC). If instead the BIC-based probability of 1, 2, 3, 4, 5, 6, or 7 clusters is used, so
that model uncertainty is accommodated in the forward model used by ABC, then the ABC-
based CCR is 0.88, only 0.01 larger than that observed in real data, and lower than the over-
simplified 3-clusters-per-group forward model. The BIC-based probability of a candidate
model M, such as one with M = 1–7 clusters, is approximated as P(M) = e−

BIC
2 , with

BIC = −2 log(likelihood of model) + p log(n) (7)

where the model likelihood in Equation (7) depends on the assume parametric form and
measures how well the model fits the data, p is the number of parameters, and n is the number
of observations. The number of parameters p = 2kM + Mk(k−1)

2 in the clustering example,
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where k is the dimension of the data and there are k means, k variances, and k(k − 1)/2
covariances per cluster. There are other ways to approximate the probability of a candidate
model, such as the integrated complete-data likelihood, but the point of this example is to
illustrate how ABC can accommodate the model selection process, no matter what type of
model selection [25] is used.

One goal for ABC applications is that the data model used in ABC lead to essentially
the same CCR as that from using the real data within the ABC framework, in which case
the fitted data model is a convenient model-based summary of the data.

6. Discussion and Summary

This review paper described statistical issues and approaches in using quantitative
morphological measurements such as particle size and shape to infer production conditions.
Statistical topics included multivariate T2 tests (Hotelling’s T2), design of experiments,
and several machine learning (ML) options including decision trees, learning vector quan-
tization neural networks, linear and mixture discriminant analysis, and approximate
Bayesian computation (ABC). Particular emphasis was given to ABC because its simulation
framework is effective for including effects of model selection and other sources of model
uncertainty [25]. Any calibrated Bayesian approach is useful for comparing candidate ex-
perimental designs (which are in progress for 2022). For example, Figure 18 plotted the
posterior probability distribution for inferred processing temperature in simulated data for a
well-chosen experimental design (a full factorial design) and for a randomly-chosen design.
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Appendix A. Morphological Analysis of Materials (MAMA), Software Quantification Attributes

Appendix A briefly describes the 22 quantitative morphological attributes or features
that are produced from the segmentation of particles within an image. See Appendix A in
reference [30] for more details.

1 Vector Area The area of the object calculated using the contour representation, but does
not remove any holes. Due to the contour representation passing through the pixels of
the perimeter of the object, generally slightly smaller than the pixel area representation.

2 Convex Hull Area This is the area contained within the convex hull (convex polygon
outline) of the segmented feature.

3 Pixel Area This is the area of the object which does not include any holes. This metric
is calculated by taking the total number of pixels encapsulated by the object boundary
and multiplying by the micrometer/pixel scale.

4 Vector Perimeter The perimeter of the object using the object contour, calculates the
length of the perimeter by summing the lengths of the segments between subsequent
points around the boundary as determined by the cvFindCountours function in the
OpenCV software.

5 Convex Hull Perimeter The perimeter of the convex hull of the object.
6 Ellipse Perimeter The calculated perimeter of the best-fitted ellipse around the bound-

ary of the object using the cvFitEllipse function in the OpenCV software. The major
and minor ellipse are extracted from these calculations.

7 Equivalent Circular Diameter (ECD) This is the diameter of a perfect circle that has an
area equivalent to the pixel area of the segmented feature. ECD = [4 ∗ (Pixel Area)/π)]1/2

8 Major Ellipse Major ellipse axis calculated from the fitted ellipse from the ellipse
perimeter calculations
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9 Minor Ellipse Minor ellipse axis calculated from the fitted ellipse perimeter calculations
10 Ellipse Aspect Ratio The ratio between the major ellipse and minor ellipse (Major

ellipse/minor ellipse)
11 Diameter Aspect Ratio Following the assignment of a particle boundary to the object,

the distance between all pairs of points on the boundary is calculated. The points
with the greatest distance between them are assigned the maximum distance chord.
Then the pair of points with the greatest distance between them that are within +/−
5 degrees of the orthogonal axis of the maximum distance chord are assigned as the
longest orthogonal chord. The ratio of the maximum distance chord and the longest
orthogonal chord is the diameter aspect ratio.

12 Circularity A measure of how closely the object perimeter approaches a perfect circle
(Circularity=1.0). Calculated from (4 ∗ π ∗ Pixel Area)/(Pixel Perimeter2).

13 Perimeter Convexity The ratio of the convex hull perimeter and the object pixel perimeter.
14 Area Convexity That ratio of the object area to the convex hull area.
15 Hu Moment 1 The image moment is a weighted average of the intensities of the

image’s pixels by a set of functions that are invariant to scale, rotation, and translation.
The 6 Hu moments were calculated using the cvMoments function in the OpenCV
software. The Hu moments are particularly useful for shape matching and pattern
recognition of objects from images.

16 Hu Moment 2
17 Hu Moment 3
18 Hu Moment 4
19 Hu Moment 5
20 Hu Moment 6
21 Grayscale mean The mean of the grayscale intensity values extracted from the all

pixels belonging to an object.
22 Gradient Mean The mean of the gradient magnitudes for each pixel location, which

utilized the Sobel operator determined 2D approximate gradient at each pixel location.

Appendix B. ML Options Considered for Classification (as ADU, AUC, SDU, or MDU)

Appendix B briefly describes the 9 ML options used. See [11,12] for more detail.

1 Decision Trees CART (classification and regression trees) is among the most versa-
tile and effect ML options, for a categorical response (classification) or continuous
response (regression). The R implementation in rpart is versatile and allows recur-
sive partitioning of the predictor space. In addition, Bayesian additive regression
trees (BART) as implemented in gbart (generalized BART for continuous and binary
outcomes) was applied, but had lower CCR than rpart in R.

2 MDA Mixture discriminant analysis as implemented in mclust in R allows several
choices for modeling the within-group covariance matrices, as shown in Figure 5.

3 LDA Linear discriminant analysis was described in Sections 4 and 5.
4 FDA Flexible discriminant analysis uses a mixture of linear regression models, and

applies optimal scoring to transform the response variable so that the data are in a
better form for linear separation, and multiple adaptive regression splines (MARS) to
generate the discriminant surface

5 k-nn Nearest-neighbor classification records the group of each of the nearest k neigh-
bors and uses majority rule voting. The choice of k is made by performance on
the training data, usually using CV, and the choice of a distance measure to define
distances among observations is usually made by trial and error.

6 LVQ Learning vector quantization is a neural-network based version of MDA.
7 SVM Support vector machines can be designed for classification or regression, and

seek good class separation (margin) by using hyper-plane separation boundaries.
8 ABC Approximate Bayesian Computation is described for classification in Section 5.
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9 MARS Multiple adaptive regression fits a piecewise linear model to capture any
nonlinear relationships in the data by choosing cutpoints (knots, as used in spine fits)
similar to step functions. MARS is somewhat similar to CART due to the piecewise
fitting, and can be performed with categorical responses.
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