
algorithms

Article

A Parallel Algorithm for Dividing Octonions

Aleksandr Cariow † and Janusz P. Paplinski *,†

����������
�������

Citation: Cariow, A.; Paplinski, J.P. A

Parallel Algorithm for Dividing

Octonions. Algorithms 2021, 14, 309.

https://doi.org/10.3390/a14110309

Academic Editors: Charalampos

Konstantopoulos and Grammati

Pantziou

Received: 16 September 2021

Accepted: 23 October 2021

Published: 24 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Computer Science and Information Technology, West Pomeranian University of Technology,
Żołnierska 49, 71-210 Szczecin, Poland; acariow@wi.zut.edu.pl
* Correspondence: janusz.paplinski@zut.edu.pl
† These authors contributed equally to this work.

Abstract: The article presents a parallel hardware-oriented algorithm designed to speed up the
division of two octonions. The advantage of the proposed algorithm is that the number of real
multiplications is halved as compared to the naive method for implementing this operation. In
the synthesis of the discussed algorithm, the matrix representation of this operation was used,
which allows us to present the division of octonions by means of a vector–matrix product. Taking
into account a specific structure of the matrix multiplicand allows for reducing the number of real
multiplications necessary for the execution of the octonion division procedure.

Keywords: hypercomplex numbers; division of octonions; fast algorithm

1. Introduction

The dynamic development of science and technology of data processing as well
as the need to implement more and more complex problems and practical applications
require the use of ever more complex mathematical methods and formalisms. Currently,
the algebra of hypercomplex numbers [1] is increasingly used for the synthesis, description,
and implementation of highly efficient numerical algorithms in the field of digital signals,
like in [2–5] where the analysis of complex signals was extended to multidimensional
hypercomplex signals and hypercomplex digital signal processing. Frequency-domain
adaptive filters used for the derivation of the most popular algorithms for a wide variety of
signals, from real-valued ones to hypercomplex-valued signals are presented in [6]. The use
of hypercomplex numbers for image recognition, due to their internal correlation, is a more
natural fit for recognition of multicolor patterns than does the use of color vector spaces [7,8].
Similarly, the use of complex numbers with their internal correlation allows for a more
complete analysis of the image [9,10], or analyse the various watermarking techniques [11].
Hypercomplex numbers are widely used in robotics, in rotation and moving of robot
manipulators [12–14], in automation for the analysis of multidimensional spaces [11,15],
or in wireless data transmission [16]. Deep neural networks are also a popular area of
application for hypercomplex numbers: quaternion valued neural network [17,18] and
octonion valued neural network [19,20].

A promising area also seems to be the application of hypercomplex numbers to big
data analysis, e.g., in parallel training architecture for large-scale convolutional neural
networks [21], in parallel extreme learning machine [22–24], in cloud computing service
system based on big data [25], in blockchain [26,27], or in IoT [28]. In all of the above
cases, the use of octonions in parallel algorithms can provide significant benefits, due to
the internal relations of hypercomplex numbers.

When performing the aforementioned hypercomplex-valued algorithms, the most
time-consuming macro operations are multiplication and division, since they require
several dozen of the nested real multiplications and additions [29,30]. For natural reasons,
the intention of developers of highly efficient algorithms for processing hypercomplex
data has always been to look for ways to reduce the number of arithmetic operations

Algorithms 2021, 14, 309. https://doi.org/10.3390/a14110309 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-4513-4593
https://orcid.org/0000-0002-6100-3913
https://doi.org/10.3390/a14110309
https://doi.org/10.3390/a14110309
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14110309
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14110309?type=check_update&version=1

Algorithms 2021, 14, 309 2 of 10

in these algorithms. This, in particular, refers to the minimization of the number of real
multiplications, which from the very beginning of the development of computerization has
been the most time-consuming operation in the entire set of data processing operations.
As for the operation of multiplying hypercomplex numbers, everything is more or less
clear. Quite a lot of efficient algorithms for multiplying hypercomplex numbers have
been developed. However, if various hypercomplex numbers have already been invented,
then it would be good to have efficient algorithms on hand to perform all the defined
mathematical operations on those numbers. Nevertheless, fast algorithms for dividing
hypercomplex numbers are practically not described anywhere. The only exception is
the fast quaternion division algorithm [31]. To eliminate this disadvantage, the authors
proposed an algorithm for the fast division of octonions.

Thus, the purpose of this article is to present the original results of the synthesis of a
rationalized algorithm for calculating the quotient of two octonions, which requires fewer
real multiplications compared to the direct naive calculation method at the cost of some
increase in the number of real additions.

The paper is organized as follows: The next section presents a short background of
dividing two octonions. The main chapter, which presents the synthesis of a fast algorithm
for octonion division is given in Section 3. Evaluation of computational complexity of
proposed algorithm is provided in Section 4. The paper finishes with the concluding
remarks in Section 5.

2. Short Background

Consider the problem of dividing two octonions

d = a/b, (1)

where
a = (a0 + e1a1 + e2a2 + e3a3 + e4a4 + e5a5 + e6a6 + e7a7),

b = (b0 + e1b1 + e2b2 + e3b3 + e4b4 + e5b5 + e6b6 + e7b7),

d = (d0 + e1d1 + e2d2 + e3d3 + e4d4 + e5d5 + e6d6 + e7d7),

and {ai}, {bi}, {di} ∈ R;{ei}, i = 0, 1, . . . , 7 are imaginary units. The division operation (1)
can be written as the multiplication of the octonion-dividend a by the conjugate octonion-
divisor b∗ divided by the square of the norm of the quaternion-divisor R

d = ab∗/R, (2)

where
b∗ = (b0 − e1b1 − e2b2 − e3b3 − e4b4 − e5b5 − e6b6 − e7b7)

R = b2
0 + b2

1 + b2
2 + b2

3 + b2
4 + b2

5 + b2
6 + b2

7,

The rules for multiplying the octonion imaginary units are presented in Table 1 [1].

Table 1. Rules for multiplying the octonion imaginary units.

× 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

Algorithms 2021, 14, 309 3 of 10

The operation of division (2) can be rewritten in the matrices-vector form [32–34]

Y8×1 = η8O8X8×1, (3)

where η8 is a scalar matrix
η8 = ηI8,

IN is the identity matrix of order N, η is a inverse of the square of the norm of the quaternion-
divisor

η = 1/R,

Y8×1 and X8×1 are the vector representation of the quotient d and octonion-dividend a,
respectively

Y8×1 = [y0, y1, y2, y3, y4, y5, y6, y7]
T , yi = di, i = 0, 7,

X8×1 = [x0, x1, x2, x3, x4, x5, x6, x7]
T , xi = ai, i = 0, 7,

and O8 is the left real matrix representation of the conjugate octonion-divisor

O8 =



b0 b1 b2 b3 b4 b5 b6 b7
−b1 b0 b3 −b2 b5 −b4 −b7 b6
−b2 −b3 b0 b1 b6 b7 −b4 −b5
−b3 b2 −b1 b0 b7 −b6 b5 −b4
−b4 −b5 −b6 −b7 b0 b1 b2 b3
−b5 b4 −b7 b6 −b1 b0 −b3 b2
−b6 b7 b4 −b5 −b2 b3 b0 −b1
−b7 −b6 b5 b4 −b3 −b2 b1 b0


. (4)

The direct multiplication of the vector–matrix product in Equation (3) requires 72 mul-
tipliers, 63 adders, 8 squarers and one divider of real numbers. The authors proposed some
tricks, which reduce the multiplicative complexity of this operation to 38 real multiplica-
tions at the price of 56 more real additions.

3. Synthesis of a Fast Algorithm for Octonion Division

Let us multiply by (−1) the first column of the matrix O8. It is easy to see that this
procedure leads to minimising the computational complexity of the final algorithm. This
results in the following matrix:

B8 =



−b0 b1 −b2 b3 b4 b5 b6 b7
b1 b0 b3 −b2 b5 −b4 −b7 b6
b2 −b3 b0 b1 b6 b7 −b4 −b5
b3 b2 −b1 b0 b7 −b6 b5 −b4
b4 −b5 −b6 −b7 b0 b1 b2 b3
b5 b4 −b7 b6 −b1 b0 −b3 b2
b6 b7 b4 −b5 −b2 b3 b0 −b1
b7 −b6 b5 b4 −b3 −b2 b1 b0


. (5)

Taking into account the performed manipulations, the operation of dividing one
octonion by another octonion can be written as follows:

Y8×1 = η8B8Ĩ8X8×1 = η8B(1)
8 Ĩ8X8×1 − η82B(2)

8 Ĩ8X8×1 (6)

Algorithms 2021, 14, 309 4 of 10

where

B(1)
8 =



b0 b1 b2 b3 b4 b5 b6 b7
b1 b0 b3 b2 b5 b4 b7 b6
b2 b3 b0 b1 b6 b7 b4 b5
b3 b2 b1 b0 b7 b6 b5 b4
b4 b5 b6 b7 b0 b1 b2 b3
b5 b4 b7 b6 b1 b0 b3 b2
b6 b7 b4 b5 b2 b3 b0 b1
b7 b6 b5 b4 b3 b2 b1 b0


, (7)

B(2)
8 =



b0 0 0 0 0 0 0 0
0 0 0 b2 0 b4 b7 0
0 b3 0 0 0 0 b4 b5
0 0 b1 0 0 b6 0 b4
0 b5 b6 b7 0 0 0 0
0 0 b7 0 b1 0 b3 0
0 0 0 b5 b2 0 0 b1
0 b6 0 0 b3 b2 0 0


, (8)

Ĩ8 = diag(−1, 1, 1, 1, 1, 1, 1, 1).

The following notation may be introduced: Ŷ8×1 = η8B(1)
8 Ĩ8X8×1, and Y̆8×1 =

η82B(2)
8 Ĩ8X8×1. Then, the division of two octonions can be represented as the follow-

ing sum:
Y8×1 = Ŷ8×1 − Y̆8×1. (9)

It is easy to see that the matrix B(1)
8 has symmetric Toeplitz-type structure. A matrix

with such a structure can be successfully diagonalized using the fast discrete Walsh–
Hadamard transform [35]. Let us take a closer look at this thought.

The matrix B(1)
8 has a block-symmetric structure:

B(1)
8 =



b0 b1 b2 b3 b4 b5 b6 b7
b1 b0 b3 b2 b5 b4 b7 b6
b2 b3 b0 b1 b6 b7 b4 b5
b3 b2 b1 b0 b7 b6 b5 b4
b4 b5 b6 b7 b0 b1 b2 b3
b5 b4 b7 b6 b1 b0 b3 b2
b6 b7 b4 b5 b2 b3 b0 b1
b7 b6 b5 b4 b3 b2 b1 b0


=

[
A4 B4
B4 A4

]
,

where

A4 =


b0 b1 b2 b3
b1 b0 b3 b2
b2 b3 b0 b1
b3 b2 b1 b0

, B4 =


b4 b5 b6 b7
b5 b4 b7 b6
b6 b7 b4 b5
b7 b6 b5 b4

.

For matrices with such a structure, the following factorization takes place [35]:

B(1)
8 = W(0)

8 D(1)
8 W(0)

8 (10)

Algorithms 2021, 14, 309 5 of 10

where

W(0)
8 = H2 ⊗ I4 =



1 1
1 1

1 1
1 1

1 −1
1 −1

1 −1
1 −1


,

D(1)
8 =

1
2
[(A4 + B4)⊕ (A4 − B4)] =

1
2

[
A4 + B4 04

04 A4 − B4

]
,

H2 =

[
1 1
1 −1

]
is Hadamard matrix of order 2, 0N is the N × N null matrix (all of its

entries are zero), and symbols “⊗”, “⊕” denote the tensor product and direct sum of two
matrices, respectively [31,35–37].

The next step is to analyze the structures of matrix A4 + B4 and matrix A4 − B4:

A4 + B4 =

[
A2 B2
B2 A2

]
, A4 − B4 =

[
C2 D2
D2 C2

]
,

A2 =

[
b0 + b4 b1 + b5
b1 + b5 b0 + b4

]
, B2 =

[
b2 + b6 b3 + b7
b3 + b7 b2 + b6

]
,

C2 =

[
b0 − b4 b1 − b5
b1 − b5 b0 − b4

]
, D2 =

[
b2 − b6 b3 − b7
b3 − b7 b2 − b6

]
,

As you can see, these matrices also have block-symmetric structures and a similar
factorization takes place for them. This means that expression (10) can be rewritten
as follows:

B(1)
8 = W(0)

8 W(1)
8 D(2)

8 W(1)
8 W(0)

8 (11)

where
D(2)

8 =
1
4
[(A2 + B2)⊕ (A2 − B2)⊕ (C2 + D2)⊕ (C2 −D2)],

A2 + B2 =

[
b0 + b2 + b4 + b6 b1 + b3 + b5 + b7
b1 + b3 + b5 + b7 b0 + b2 + b4 + b6

]
,

A2 − B2 =

[
b0 − b2 + b4 − b6 b1 − b3 + b5 − b7
b1 − b3 + b5 − b7 b0 − b2 + b4 − b6

]
,

C2 + D2 =

[
b0 + b2 − b4 − b6 b1 + b3 − b5 − b7
b1 + b3 − b5 − b7 b0 + b2 − b4 − b6

]
,

C2 −D2 =

[
b0 − b2 − b4 + b6 b1 − b3 − b5 + b7
b1 − b3 − b5 + b7 b0 − b2 − b4 + b6

]
,

W(1)
8 = I2 ⊗ (H2 ⊗ I2) =



1 1
1 1

1 −1
1 −1

04

04

1 1
1 1

1 −1
1 −1


.

Algorithms 2021, 14, 309 6 of 10

Now, consider the structures of the matrices A2 + B2, A2 − B2, C2 + D2, and C2 −D2.
It is easy to see that also in this case there are block-symmetric matrices. Thus, this is again
a similar case. Then, expression (11) can be rewritten as follows:

B(1)
8 = W(0)

8 W(1)
8 W(2)

8 D(3)
8 W(2)

8 W(1)
8 W(0)

8 (12)

where

W(2)
8 = I4 ⊗H2 =



1 1
1 −1

02

02
1 1
1 −1

04

04

1 1
1 −1

02

02
1 1
1 −1


,

D(3)
8 = diag(C8×1), (13)

C8×1 = [c0 c1 c2 c3 c4 c5 c6 c7]T ,

c0 = (b0 + b2 + b4 + b6 + b1 + b3 + b5 + b7)/8,

c1 = (b0 + b2 + b4 + b6 − b1 − b3 − b5 − b7)/8,

c2 = (b0 − b2 + b4 − b6 + b1 − b3 + b5 − b7)/8,

c3 = (b0 − b2 + b4 − b6 − b1 + b3 − b5 + b7)/8,

c4 = (b0 + b2 − b4 − b6 + b1 + b3 − b5 − b7)/8,

c5 = (b0 + b2 − b4 − b6 − b1 − b3 + b5 + b7)/8,

c6 = (b0 − b2 − b4 + b6 + b1 − b3 − b5 + b7)/8,

c7 = (b0 − b2 − b4 + b6 − b1 + b3 + b5 − b7)/8.

The triple products of matrices on the left and on the right with respect to the diagonal
matrix D(3)

8 are in fact the factorized representations of the eighth order Hadamard matrices
and describe the algorithms for the fast Walsh–Hadamard transform.

It is possible to write:

Y(1)
8×1 = η8 W(0)

8 W(1)
8 W(2)

8︸ ︷︷ ︸
H8

D(3)
8 W(2)

8 W(1)
8 W(0)

8︸ ︷︷ ︸
H8

Ĩ8X8×1 (14)

It is easy to check that the elements of the matrix D(3)
8 = diag(S8×1) can also be

calculated using the eight-point fast Walsh–Hadamard transform:

S8×1 =
1
8

W(2)
8 W(1)

8 W(0)
8︸ ︷︷ ︸

H8

B8×1, (15)

B8×1 = [b0, b1, . . . , b7]
T

Unfortunately, the process of calculating product B(2)
8 Ĩ8X8×1 defies any effort at rationaliza-

tion. However, since the matrix B(2)
8 is a sparse matrix and contains only 22 nonzero entries,

the calculation of the entries of the vector Y(2)
8×1 requires only 22 real multiplications.

Algorithms 2021, 14, 309 7 of 10

Combining partial computing procedures into a single one:

Y8×1 = η8Ω8×16W(0)
16 W(1)

16 W(2)
16 D16W(2)

16 W(1)
16 W(0)

16 P16×8Ĩ8X8×1 (16)

where P16×8 = 12×1 ⊗ I8, W(i)
16 = W(i)

8 ⊕ I8, D16 = D(3)
8 ⊕ B(2)

8 , Ω8×16 = 1̃1×2 ⊗ I8, 1̃1×2 =
[1,−1]T and 1N×M is a matrix of ones (every element is equal to one).

The signal flow graph of the final algorithm (16) is shown in Figure 1.

2H

2H
2H

2H

2H

2H

2H

2H

2H

2H

2H
2H

0x

1x

2x

3x

6x

5x

7
y

6
y

5
y

4
y

3
y

2
y

1
y2H 2H

7x

4x

0c

1c

2c

3c

4c

5c

6c

7c

η

η

η

η

η

η

η

η

0y

)2(

82B

Figure 1. The signal flow graph of the proposed algorithm.

4. Evaluation of Computational Complexity

The concept of computing the quotient of two octonions discussed in the article is
an attempt to rationalize the computation process in terms of minimizing the number
of multipliers required for a fully parallel hardware implementation of computations.
The number of multiplication operations (multipliers) in the proposed solution is nearly
twice as small as the naive method, and it is reduced from 72 to 38, which is a reduction
of about 47.2%. This is at the expense of increasing the number of addition operations
(adders) from 63 to 133, which is an increase of approximately 106.3%. It is also necessary
to use eight three-bit barrel shifters. The number of dividers and squarers remained the
same as in the compared method.

It should be noted that in most digital signal processing tasks one of the divided
octonions is the so-called "constant", which means that its coefficients {bi} are known con-
stant real numbers in advance. This means that the matrix D16 entries can be computed in
advance only once and stored in the read-only memory (ROM) of the computational system.
Then, the solution proposed in the article becomes even more effective because it requires
the same number of operating blocks as in the case of the naive method, among which only

Algorithms 2021, 14, 309 8 of 10

38 blocks (twice less) are multipliers, and 70 adders. The total number of operating blocks
necessary for the implementation of the processor system for calculating the obtained
quotient in this case is 108 (128 in the case of the implementation of the naive method).
In this way, the solution proposed in the article becomes the best in terms of the total num-
ber of arithmetic operations or operating blocks (in the case of hardware implementation)
necessary to calculate the quotient of octonions.

5. Conclusions

The paper presented a new parallel algorithm for calculating the quotient of two
octonions. The use of this algorithm reduces the multiplicative complexity of dividing
octonion operation, thus reducing its hardware implementation complexity. The proposed
algorithm has a simple, regular, and modular structure suitable for VLSI implementation.
It is known that, all other things being equal, a conventional hardwired multiplier is a more
complex device than a binary adder and occupies a much larger die area than an adder.
Therefore, reducing the number of embedded multipliers is especially important when
developing a specialized fully parallel VLSI-based module such as an octonion divider.
Minimizing the number of multipliers required also reduces power dissipation and the
cost of realization of such a module. Thus, it can be argued that a decrease in the number
of embedded multipliers even due to a small increase in the number of adders plays an
important role in the hardware implementation of the algorithm.

In addition, it can be seen that the total number of arithmetic operations in the
presented algorithm is less than the total number of operations in the compared algorithm.
Therefore, the proposed algorithm in some cases may turn out to be better than the naive
algorithm even from the point of view of its software implementation on a general-purpose
computer. Many applications of presented in the paper algorithm could be proposed.
However, these questions are beyond the scope of this study and will be considered in the
following articles by the authors.

Author Contributions: Conceptualization, A.C. and J.P.P.; methodology, A.C. and J.P.P.; software,
J.P.P.; validation, A.C. and J.P.P.; formal analysis, A.C. and J.P.P.; investigation, A.C. and J.P.P.;
resources, A.C.; data curation, J.P.P.; writing—original draft preparation, A.C.; writing—review and
editing, J.P.P.; visualization, A.C.; supervision, A.C.; project administration, J.P.P.; funding acquisition,
A.C. and J.P.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors gratefully acknowledge S.I. Klipkov for helpful clarifications re-
garding the dividing of octonions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kantor, I.L.; Kantor, I.; Solodovnikov, A. Hypercomplex Numbers: An Elementary Introduction to Algebras; Springer:

Berlin/Heidelberg, Germany, 1989.
2. Alfsmann, D.; Göckler, H.G.; Sangwine, S.J.; Ell, T.A. Hypercomplex algebras in digital signal processing: Benefits and drawbacks.

In Proceedings of the 2007 15th European Signal Processing Conference, Poznan, Poland, 3–7 September 2007; pp. 1322–1326.
3. Bulow, T.; Sommer, G. Hypercomplex signals-a novel extension of the analytic signal to the multidimensional case. IEEE Trans.

Signal Process. 2001, 49, 2844–2852.
4. Sangwine, S.J.; Le Bihan, N. Hypercomplex analytic signals: Extension of the analytic signal concept to complex signals. In

Proceedings of the 2007 15th European Signal Processing Conference, Poznan, Poland, 3–7 September 2007; pp. pp. 621–624.
5. Schutte, H.D.; Wenzel, J. Hypercomplex numbers in digital signal processing. In Proceedings of the 1990 IEEE International

Symposium on Circuits and Systems (ISCAS), New Orleans, LA, USA, 1–3 May 1990; pp. 1557–1560.

Algorithms 2021, 14, 309 9 of 10

6. Comminiello, D.; Scarpiniti, M.; Parisi, R.; Uncini, A. Frequency-domain adaptive filtering: From real to hypercomplex signal
processing. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brighton, UK, 12–17 May 2019; pp. 7745–7749.

7. Labunets, V.G.; Smetanin, J.G.; Chasovskikh, V.P.; Ostheimer, E. Hypercomplex Algebras as Unified Language for Image
Processing and Pattern Recognition Part 1. Cliffordean Models of Multichannel Images. In Advances in Information Technologies,
Telecommunication, and Radioelectronics; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–19.

8. Pei, S.C.; Ding, J.J.; Chang, J. Color pattern recognition by quaternion correlation. In Proceedings of the 2001 International
Conference on Image Processing (Cat. No. 01CH37205), Thessaloniki, Greece, 7–10 October 2001; Volume 1, pp. 894–897.

9. Wang, C.; Hao, Q.; Ma, B.; Wu, X.; Li, J.; Xia, Z.; Gao, H. Octonion continuous orthogonal moments and their applications in color
stereoscopic image reconstruction and zero-watermarking. Eng. Appl. Artif. Intell. 2021, 106, 104450.

10. Sangwine, S.J. Fourier transforms of colour images using quaternion or hypercomplex, numbers. Electron. Lett. 1996,
32, 1979–1980.

11. Gao, W.B.; Li, B.Z. The octonion linear canonical transform: Definition and properties. Signal Process. 2021, 188, 108233.
12. Cariow, A.; Cariowa, G.; Majorkowska-Mech, D. An Algorithm for Quaternion–Based 3D Rotation. Int. J. Appl. Math. Comput.

Sci. 2020, 30, 149–160.
13. Hu, C.; Meng, M.Q.H.; Mandal, M.; Liu, P.X. Robot rotation decomposition using quaternions. In Proceedings of the 2006

International Conference on Mechatronics and Automation, Luoyang, China, 25–28 June 2006; pp. 1158–1163.
14. Takahashi, K.; Fujita, M.; Hashimoto, M. Remarks on Octonion–valued Neural Networks with Application to Robot Manipulator

Control. In Proceedings of the 2021 IEEE International Conference on Mechatronics (ICM), Kashiwa, Japan, 7–9 March 2021;
pp. 1–6.

15. Błaszczyk, Ł. Hypercomplex fourier transforms in the analysis of multidimensional linear time-invariant systems. In Progress in
Industrial Mathematics at ECMI 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 575–581.

16. Seberry, J.; Finlayson, K.; Adams, S.S.; Wysocki, T.A.; Xia, T.; Wysocki, B.J. The theory of quaternion orthogonal designs. IEEE
Trans. Signal Process. 2007, 56, 256–265.

17. Cariow, A.; Cariowa, G. Fast Algorithms for Quaternion-Valued Convolutional Neural Networks. IEEE Trans. Neural Netw. Learn.
Syst. 2021, 32, 457–462, doi:10.1109/TNNLS.2020.2979682.

18. Saoud, L.S.; Ghorbani, R.; Rahmoune, F. Cognitive quaternion valued neural network and some applications. Neurocomputing
2017, 221, 85–93.

19. Popa, C.A. Global exponential stability of octonion-valued neural networks with leakage delay and mixed delays. Neural Netw.
2018, 105, 277–293.

20. Wu, J.; Xu, L.; Wu, F.; Kong, Y.; Senhadji, L.; Shu, H. Deep octonion networks. Neurocomputing 2020, 397, 179–191.
21. Chen, J.; Li, K.; Bilal, K.; Li, K.; Philip, S.Y.; others. A bi-layered parallel training architecture for large-scale convolutional neural

networks. IEEE Trans. Parallel Distrib. Syst. 2018, 30, 965–976.
22. Chen, C.; Li, K.; Ouyang, A.; Tang, Z.; Li, K. Gpu-accelerated parallel hierarchical extreme learning machine on flink for big data.

IEEE Trans. Syst. Man, Cybern. Syst. 2017, 47, 2740–2753.
23. Duan, M.; Li, K.; Liao, X.; Li, K. A parallel multiclassification algorithm for big data using an extreme learning machine. IEEE

Trans. Neural Netw. Learn. Syst. 2017, 29, 2337–2351.
24. Jamel, A.A.; Akay, B. A Survey and systematic categorization of parallel K-means and Fuzzy-c-Means algorithms. Comput. Syst.

Sci. Eng. 2019, 34, 259–281.
25. Wang, J.; Yang, Y.; Wang, T.; Sherratt, R.S.; Zhang, J. Big data service architecture: A survey. J. Internet Technol. 2020, 21, 393–405.
26. Zhang, J.; Zhong, S.; Wang, T.; Chao, H.C.; Wang, J. Blockchain-based systems and applications: A survey. J. Internet Technol.

2020, 21, 1–14.
27. Deepa, N.; Pham, Q.V.; Nguyen, D.C.; Bhattacharya, S.; Prabadevi, B.; Gadekallu, T.R.; Maddikunta, P.K.R.; Fang, F.;

Pathirana, P.N. A survey on blockchain for big data: Approaches, opportunities, and future directions. arXiv 2020,
arXiv:2009.00858.

28. Rani, R.; Pushpalatha, M. Generation of Frequent sensor epochs using efficient Parallel Distributed mining algorithm in large
IOT. Comput. Commun. 2019, 148, 107–114.

29. Cariow, A.; Cariowa, G. Algorithm for multiplying two octonions. Radioelectron. Commun. Syst. 2012, 55, 464–473.
30. Tariov, A.; Tariova, G. Algorithmic aspects of the processor unit organization for Cayley numbers multiplication (In Polish):

Aspekty algorytmiczne organizacji jednostki procesorowej do mnożenia liczb Cayleya. Elektron. Konstr. Technol. Zastos. 2010,
51, 104–108.

31. Cariow, A.; Cariowa, G. An algorithm for dividing quaternions. arXiv 2020, arXiv:2009.00425.
32. Klipkov, S. Some features of the matrix representations of the octonions. Èlektronic Model. 2019, 41, 19–34.
33. Karataş, A.; Halici, S. Vector matrix representation of octonions and their geometry. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math.

Stat. 2018, 67, 161–167.
34. Tian, Y. Matrix representations of octonions and their applications. arXiv 2000, arXiv:math/0003166.
35. Cariow, A. Strategies for the Synthesis of Fast Algorithms for the Computation of the Matrix-vector Products. J. Signal Process.

Theory Appl. 2014, 3, 1–19.

Algorithms 2021, 14, 309 10 of 10

36. Granata, J.; Conner, M.; Tolimieri, R. The tensor product: A mathematical programming language for FFTs and other fast DSP
operations. IEEE Signal Process. Mag. 1992, 9, 40–48.

37. Regalia, P.A.; Sanjit, M.K. Kronecker products, unitary matrices and signal processing applications. SIAM Rev. 1989, 31, 586–613.

	Introduction
	Short Background
	Synthesis of a Fast Algorithm for Octonion Division
	Evaluation of Computational Complexity
	Conclusions
	References

