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Abstract: Fitting of analytic forms to point or triangle sets is central to computer-aided design,
manufacturing, reverse engineering, dimensional control, etc. The existing approaches for this
fitting assume an input of statistically strong point or triangle sets. In contrast, this manuscript
reports the design (and industrial application) of fitting algorithms whose inputs are specifically
poor triangular meshes. The analytic forms currently addressed are planes, cones, cylinders and
spheres. Our algorithm also extracts the support submesh responsible for the analytic primitive. We
implement spatial hashing and boundary representation for a preprocessing sequence. When the
submesh supporting the analytic form holds strict C0-continuity at its border, submesh extraction is
independent of fitting, and our algorithm is a real-time one. Otherwise, segmentation and fitting are
codependent and our algorithm, albeit correct in the analytic form identification, cannot perform in
real-time.

Keywords: analytic form fitting; poor triangular meshes; spatial hashing; real time

1. Introduction
1.1. Research Target

This manuscript reports an algorithm for analytic form (cone, cylinder, sphere) sub-
mesh extraction and fitting, using as input low statistical quality triangular meshes. Our
algorithm has been successfully applied in actual industrial low-quality datasets, when
good quality ones are impractical due to their large size and processing times. Our method
favors sequential small submesh probing and vector closure formulation for the identifica-
tion of analytic form parameters. Our method avoids, as much as possible, multi-variable
regression, which requires a statistically rich input.

1.2. Context

Point samples of a two-manifold (surface) in 3D are achieved by contact, ultrasound or
optical scanning. Under Nyquist–Shannon conditions of this geometrical point cloud infor-
mation, topological (i.e., connectivity) information may be inferred. A widely used result
of the topology inference is the triangular mesh surface approximation. This manuscript
addresses the next step of shape inference, namely the fitting of a analytic form g() to a
subset of the triangular mesh M.

This manuscript is concerned with triangular meshes whose facets strongly depart
from equilateral, isotropic, and homogeneous size conditions. The reason for this choice
is that in many cases, mesh conditioning is not only labor-expensive but is produces
massive triangle sets. Fitting analytic form to heavy datasets is prohibitively slow for many
industrial applications.

A strong demand exists in industrial applications for planar, cylindrical, conical
and spherical forms, identified in low-quality triangle sets. Therefore, this manuscript
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addresses those surface types, tessellated with such low-quality triangles. The implicit
form (g(x, y, z) = k) is pursued. In this manuscript, g() equally notes the parametric or
implicit forms, as well as the defining feature set of the form, as follows:

a For cylinders: axis pivot point p0, axis direction v̂, radius R.
b For cones: axis pivot point p0, axis direction v̂, cone angle γ.
c For spheres: center pivot point p0, radius R.

This manuscript addresses the following problem:

Given:

1 M(T , P): triangular mesh representing a shell with manifold properties.
2 ts ∈ T : seed triangle (selected by the user).
3 T : type of analytic form (selected by the user from the options cylinder, sphere,

and cone).

Goal:

i S: largest connected subset of M, formed by triangles from M, containing ts and fitting
the analytical form of T .

ii g() : analytic form of the chosen primitive, fit to subset S.

where the analytic form is expressed by the identified parameters in (a)–(c) above.
It is important to note that the continuity level (C0, C1 or higher) at the borders ∂S

triangle subset S and M − S has a dramatic impact on the decoupling of solutions for
items (i) and (ii) above. If the surface M has only C0-continuity at border ∂S, this fact
determines S, without influence from the fitting stage. Then, the fitting of g() proceeds
in real time. On the other hand, if M presents continuity C1 or higher at border ∂S, there
is a codependency between S and g(). S can be extended only as far as it produces a
good quality fit g(). Low-quality g() fitting indicates that the subset S includes mistaken
triangles. Those triangles must be eliminated from S, other triangles might be included,
and a new guess for g() is computed. This iteration is obviously more expensive than the
one in which identification of S does not depend on the quality of g() fitting.

This manuscript is organized as follows: Section 2 reviews the existing literature
and argues our claim for novelty in our initiative. Section 3 explains the methodology
followed. Section 4 conveys the results of our implementation and compares it in some
aspects against similar competitor approaches. Section 5 concludes the manuscript and
discusses relevant future endeavors.

2. Literature Review

This section executes a taxonomy on the prevailing methods for fitting of analytic
forms to point of triangle sets. The available literature may be divided into (1) stochastic,
(2) parameter-space, and (3) mesh segmentation fitting methods. This taxonomy is based
on the one described by Ref. [1].

2.1. Stochastic Methods

These methods randomly segment the input (point or triangle) set. They apply local
regressions with alternative goal primitives (cylinder, cone, sphere, etc.), keeping the
one with the best fit. The methods allow for the evolution of the primitive type and
its parameters as well as evolution of the partition of the input mesh into local support
submeshes. The methods require a dense, isotropic, homogeneous input set.

Ref. [2] requires point clouds with surface normal information. It fits cones and
cylinders by solving local linear regressions. It intends to keep a small support point
set, at the expense of actually producing a collection of guesses for the user to choose
from. Ref. [3] presents analytical fitting of cones, cylinders and ellipsoids from dense,
noisy point clouds. Ref. [3] finds an initial guess for the analytical surface by calculating
their characteristic variables. Then, tuning of the analytic form parameters takes place by
minimizing the point vs. analytic surface accumulated distances.
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2.2. Mapping to Parameter Space

In these methods, type T of the analytic form is assumed. For a given point sample
support set, a regression is performed, thus finding an estimate of the n parameters which
that particular form type has. A point in the parameter space Rn is then located with such
values. As other neighborhoods of the input point set are used as support sets, a point
population of Rn arises, with clusters in the most likely parameter combinations. These
high-density clusters are identified with standard statistical tools and the parameters of
the analytic form are determined. Mapping to parametric space is particularly expensive
when computing (storage), sharply growing with n, the dimension of the Rn parameter
space. They also require dense input point sets. Due to these reasons, these methods are
mostly applied to identification of polygonal flat faces in a polytope.

Ref. [4] uses the Hough transform as mapping to parametric space to identify planes.
Ref. [5] lowers the high cost of detecting cylinders (parameter space R6) by breaking the six
parameter sets (i.e., 6D Hough transform) into axis vector, axis pivot, and cylinder radius
and carrying sequential lower-dimension Hough transforms.

2.3. Mesh Segmentation Fitting Methods

In these methods [6–8], the priority is to segment the input (point-normal vector set
or point graph). The fitted analytic form is a by-product. These methods create input
clusters using diverse strategies: fitting-segmentation iteration, grouping using X-means or
mean shift (separate segmentation), or classification by ranges of additional information
(scalar or vector fields) such as color, depth, abrupt dihedral angle, etc. These methods
have limitations as they need at least one of the additional pieces of information mentioned
above and also require dense datasets.

Ref. [6] describes a hierarchical segmentation of dense point clouds. This method gen-
erates the k-nearest graph by merging edges of the input connectivity graph. This merging
uses as criteria a penalty function related to the quality of fitting of the point clusters to a
given primitive (one of sphere, cone, plane, torus). Ref. [7] applies segmentation-fitting
iterations seeking to simultaneously segment the full input set and to fit quadratic analytic
primitive options (plane, sphere, cylinder, ellipsoid, paraboloid) to the support subsets. It
executes an initial segmentation of the input dataset before the iterative process. Ref. [7]
does not provide detailed information on such a preprocessing. Ref. [8] executes a color-
based segmentation of indoor 3D depth map scenarios. Then, a matching is conducted
between the generated patches and a template database of predefined 3D indoor furniture
models. Finally, the user refines the segmentation. The authors train a matching algorithm
of random-regression forest to obtain the desired result. The process of matching the
support set S to various reference models is an expensive task and is out of our scope since
we do not need to train any learning algorithm. Ref. [9] executes a rough segmentation
of a dense good quality point cloud or triangular mesh. This segmentation seeks to find
neighborhoods of the input data which present slippage compatibility, i.e., which can slide
onto themselves (e.g., spheres, cylinders, planes). The segmentation is carried out by using
a greedy clustering, based on the local slippage compatibility. This reference aims for
an approximate segmentation. It does not determine the g() analytic form, nor presents
execution times or complexity information.

2.4. Conclusions of Literature Review

The literature reveals that most fitting techniques require statistically dense datasets
complying with the Nyquist–Shannon theorem. Additionally, these input datasets must
include supplementary information (i.e., scalar maps or vector fields). Therefore, our
approach offers (1) fitting of analytic surfaces to statistically poor triangulations as the
industry demands it. (2) When the continuity and the border ∂S is exclusively C0, we
provide real-time performance. (3) When the border ∂S presents C1 or higher continuity
with M − S, segmentation and fitting are codependent. The fitted form g() guarantees
the perfecting of the support subset S. In turn, the support subset S provides the grounds
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for the g() fitting. Table 1 presents a summary of the different approaches with their
advantages and drawbacks.

Table 1. Competitor approaches vs. current approach.

Approach Refs. Advantages Disadvantages

Stochastic Methods. Randomly apply
local regressions of alternative goal
primitives and keeping the best fit.

[2,3,10–12] (1) Robust to outliers;
(2) application-specific

(1) Requires dense, isotropic,
homogeneous input dataset.

Mapping to Parameter Space. Implement
a mapping to the parameter space, identify
the number of parameters needed and
search for clusters of similar parameters.

[4,5,13,14]
(1) Robust to noise and
outliers; (2) work with
missing data

(1) High computational cost;
(2) requires dense datasets

Mesh Segmentation Fitting Methods.
Create clusters of the dataset using
different grouping techniques. Fitting can
occur during or after the segmentation.

[6–9,15–17] (1) Spatial consistency

(1) Sensitive to noise and
outliers; (2) require
supplementary information in
the dataset.

Our approach. A primitive fitting in poor
triangular meshes. Segmentation driven by
dihedral angle is implemented when
continuity is strict C0. Segmentation and
fitting are codependent for C1 or
higher continuity.

(1) Fitting in poor datasets;
(2) low computational cost;
(3) real-time performance for
C0-continuity; (4) perfecting
of S for C1 or
higher continuity.

(1) Requires the type of
analytic form intended to be
fitted as an input.

3. Methodology

Fitting of an analytic primitive g() to the support (triangle) subset S requires (obvi-
ously) the determination of S. Extraction of support subset S from the input set M is heavily
based on triangle neighborhood interrogations on M. The acceleration of neighborhood
queries on M was implemented by building the triangular boundary representation of the
triangle set. This construction was itself accelerated by applying a spatial hashing process
on input M (Spatial Hashing based on techniques from [18,19]). Spatial hashing and B-Rep
construction are reported in Section 3.1 on preprocessing. Section 3.2 discusses the specific
problem of inferring the analytic form g() from a triangle set S. Sections 3.3 and 3.4 address
the determination of triangle subset S for applying Section 3.2. Section 3.4 focuses on
cases where the border between support subset S and M− S is sharp (C0-continuity), thus
allowing identification of S by using continuity information alone. Section 3.4 addresses
more difficult cases where continuity at the border between S and M− S is C1 or better. In
these cases, S is legitimated by a good fitting g(), but at the same time, g() depends on S.
In these cases, fitting (g()) and segmentation (S) are codependent and cannot be executed
independently from each other.

Preprocessing

The process of extracting and identifying analytic forms from a manifold triangle
set (Figure 1) is preceded by a preprocessing stage encompassing: (1) a spatial hashing;
(2) boundary representation (B-Rep) construction.

Figure 1. Overall primitive extraction process.
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Analytic Form Fitting

If the triangle subset S supporting the analytic form has C0 -continuity alone at the
border ∂S between S and MS, the determination of S is exclusively based on the dihedral
angle at ∂S (red box, left portion of Figure 2). Otherwise, if the continuity at ∂S is C1 or
higher, the identification of support subset S and the fitting of g() on that S are codependent
(blue box, right portion of Figure 2). Triangles are added to S, or rejected, according to their
effect on the fitting quality of the analytic form g(). Growth of the support subset S stops
when all triangles at border ∂S have an adverse effect on g().

Figure 2. Fitting process. Left (red) block: segmentation/fitting decoupled. Real-time identification of g(). Right (blue)
block: codependent segmentation and fitting.

3.1. Preprocessing
3.1.1. Spatial Hashing

Spatial hashing on the input triangle set M is used in this work for accelerating the
construction of explicit triangle neighborhood information (boundary representation). The
I/O specification of the spatial hashing preprocessing follows.

Input:

1. M(T , P): Triangle (two-manifold) set with geometry P and topology T .
2. Ω: Rectangular prism in R3, orthogonally oriented w.r.t. coordinate axes, equipped

with a regular grid of voxels with dimension deltax, deltay, deltaz.
3. Nv : A predefined number of voxels per dimension of Ω.

Output:

1. h: Hashing function: h : P → N × N × N, which maps each vertex of the input
triangle set M into the (i,j,k) indices of the voxel vijk ⊂ Ω, which contains such
a vertex.

2. H: Ω→ T2, which maps each voxel vijk of Omega to the set of triangles of M which
contain a vertex inside voxel vijk. 2T denotes the power set of T (all sets made with
triangles from T).

The algorithm divides the prism Ω into a set of rectangular voxels. These voxels
are represented by a three-dimensional array where each cell contains the indices of the
triangles with vertices in that voxel. Figure 3 shows a graphical representation of the voxel
subdivision for an input triangle set.
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(a) (b)

Figure 3. (a) Bounding box and (b) rectangular voxel subdivision.

The hash function [i, j, k] = h(pi) maps a point pi ∈ Ω to a position [i, j, k] in the hash
table H.

i = f loor((pi.x−Ω.xmin)/δx),

j = f loor((pi.y−Ω.ymin)/δy),

k = f loor((pi.z−Ω.zmin)/δz).

(1)

where Ω.xmin, Ω.ymin, Ω.zmin are constants corresponding to the minimal positions of the
prism Ω. δx, δy, δz are the x, y, and z voxel side dimensions.

Figure 4 represents a block a diagram of the algorithm and how the vertices are stored
in the hash table. As the input triangles sets are representation of two-manifold shells, H is
a sparse array.

Notice that the spatial hashing [H, h] ensures that all triangles incident on (EDGEs
of) a given triangle are stored in at most three voxels of the hash array H, and they are
directly accessible via the function h(). Due to this reason, the spatial hashing accelerates
the construction/weaving of the boundary representation of the input triangle set M.

3.1.2. Boundary Representation Construction

After the spatial hashing process, a boundary representation, B-Rep, of the input
triangle set M is constructed. We use a variation of the half-edge data structure [20]. The
construction of the B-Rep produces the FACEs, EDGEs, VERTEXs and BORDER tables
(see Tables 2–5).

Input:

• A two-manifold triangular mesh M(T , P).

Output:

• Boundary representation for M (Tables 2–5).

Table 2. VERTEX table.

Vertex x y z Edge

1 2.34 3.00 1.12 13
2 2.22 9.00 10.36 27
3 5.20 4.00 9.12 53
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Figure 4. Spatial hashing preprocessing. The hashing is executed before the fitting process starts.

Table 3. FACE table constructed from B-Rep.

Face Edge 1 Edge 2 Edge 3

1 1 2 3
2 3 5 4
3 3 1 4
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Table 4. EDGE table. If counter-EDGE cell is empty, indicates border.

Edge Vertex 1 Vertex 2 Counter-EDGE Face

1 1 2 4 1
2 2 3 5 1
3 3 4 - 1

Table 5. BORDER table.

Border Loop Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5 Vertex 6 . . .

1 4 7 8 91 <End-of-loop>
2 10 71 31 11 1 90 <End-of-loop>
3 63 83 47 121 9 <End-of-loop>

In the present case, the SHELL table is omitted because the input mesh is connected
(i.e., there is only one SHELL). The B-Rep guarantees that all FACEs within a SHELL
have consistent orientation. The B-Rep delivers constant time expenses O(k) in the fol-
lowing interrogations: (a) EDGES incident on a VERTEX, (b) FACEs incident on an EDGE,
(c) FACEs neighboring a FACE, (d) ordered LOOPs of a SHELL border, (e) SHELL owner
of a FACE, (f) EDGEs of a LOOP, (g) LOOPs of a FACE. Figures 5 and 6 present plain-sight
visible effects of building the B-Rep of two input triangle sets M. Those visible effects
are the consistent orientation of the FACEs in a SHELL and the identifications of the
SHELL BORDER.

(a) Raw triangle set M. Disoriented triangles
become transparent.

(b) B-Rep woven from the raw triangle set
M. No disoriented triangles are present.

Figure 5. Input triangle set M with inconsistent FACE orientation. Output B-Rep of M. (a) and
(b) displayed with culling based on the triangle orientations.

3.2. Primitive Fitting from Triangle Set

This section addresses the determination of the parameters of a given analytic form
(cylinder, cone, sphere) of type T , which the user wants to fit to a triangle set S. The
strategy used in our algorithm is to locally probe the triangle set, progressively determining
parameters of the form (radius, center, axis, apex, etc.). This strategy was chosen instead
of statistical fitting, which requires statistically meaningful (dense, large, homogeneous,
isotropic) triangle set inputs. Our implementation does use quadratic form fitting for the
purpose of determining minimal and maximal curvature directions on specific and small
neighborhoods of the triangle set S.
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(a) (b)

Figure 6. Result of border identification in the triangle set. (a) and (b) present the identified border
of the triangle set after weaving the B-Rep.

The fitting of the g() analytic form to set S ⊂ M is indifferent to the manner in which
triangle subset S is determined. The description of the fitting follows.

Input:

1. S: triangle support set (S ⊂ M) to fit the analytic form g().
2. T : primitive type, selected by the user from the set {Cylinder, Sphere, Cone}

Output:

1. g(): The analytic form of the chosen primitive, fit to subset S.

For each analytic form, we implement an approach for the identification of its parameters.

3.2.1. Cylinder Fitting

The geometrical parameters to define the cylinder are:

1. p0: axis pivot point.
2. v̂: axis direction.
3. R: radius.

Our algorithm takes advantage of the fact that the input triangle set provides informa-
tion on the vectors locally normal to the cylinder. This information enables the calculation
of p0 and v̂.

Axis point p0

The axis pivot point is calculated as follows:

1. Create a set of lines Ln = {`1, `2, ..., `n}, where `i is a line generated by the baricenter
bi and the normal ni of the triangle ti.

2. Obtain Cp: as the set containing the points of the minimum distance between each
pair of lines from Ln. Every line `i is approximately perpendicular to, and nearly
intersects, the cylinder axis [p0, v̂]. Therefore, Cp is a point sample of the axis [p0, v̂].

3. Compute p0 as the geometric center of gravity of Cp.

Figure 7 presents an axial view of a cylindrical triangle set. Lines [bi, ni] ideally
intersect, and are perpendicular to, the cylinder axis [p0, v̂]. Figure 8 displays an actual
example set Cp and cylinder axis identification.
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Figure 7. p0 calculation with the intersection of lines [bi, ni] whose directions are triangle normal
vectors ni and pass through triangle baricenters bi.

Figure 8. Set of points Cp approximating the cylinder axis.

Cylinder Axis direction v̂

To calculate the cylinder axis, the method relies on the ability to:

1. Translate the unitary vectors ni normal to the triangles from their supposed pivot
point (triangle baricenter bi) to the origin.

2. Collect the tips of the origin-based vectors resulting from step (1). These tip points
form a tilted flat disk d centered at the origin (Figure 9).

3. Obtain (via Principal Component Analysis (PCA)) the cylinder axis direction v̂ as the
one of smallest dispersions of the points of disk d (Figure 9).

Figure 9. Cylinder fitting. Coplanar circular set of tips of cylinder normal unitary vectors, applied at
origin. v̂: direction of minimal dispersion of disk d, cylinder axis direction.
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Cylinder Radius R

Knowing the cylinder axis [p0, v̂], the radius R of the cylinder is determined as follows:

1. Rigidly move the triangle set S so its axis [p0, v̂] maps to the Yw World axis and the
geometric center of S maps to the origin Ow.

2. Project the point set resulting from (1) onto the XwZw plane, resulting in a flat circular
point set.

3. Compute the radius of such a circular point set.

3.2.2. Cone Fitting

The geometrical parameters of the cone are:

1. p0: cone apex.
2. v̂: axis direction.
3. γ: opening angle.

Cone axis direction v̂

As in the cylinder case (Section 3.2.1), the vectors normal to the cone triangles allow
us to estimate the direction of the cone axis.

The unitary vectors ni normal to the cone triangles are translated to the origin
(Figure 10). Their tips form a planar circle which is the base of a dual cone whose apex is at
the origin. Observe that this dual cone is not the one contained in triangle input S. This
dual cone in Figure 10 is obtained by using the normal vectors in the triangle set S as cone
generatrices, but it has the same axis direction vector as the sough cone g().

Figure 10. Cone fitting. Dual cone formed with Origin as apex. Unitary vectors normal to S are
generatrices for the dual cone. Origin-located tails of ni vectors normal to triangles ti at Origin.
Normal vector tips contained in a plane form a flat disk d. Minimal dispersion direction (principal
component analysis) of disk d is the direction of cone axis v̂.

Cone apex p0

The straight line [bi, êi] (Figure 11) tangent to triangle ti passes through the triangle
baricenter bi and has direction êi (i.e., direction of the cone generatrix at bi). The point at
which the lines [bi, êi] are nearest to (or intersect) each other are the elements of Cp. The
cone apex p0 is the center of gravity of Cp.

Each set of vectors [ni, êi, v̂] lies in a plane that intersects the cone and contains the
apex p0. We calculate a temporal vector temp which is normal to such a plane as the cross
product between ni and v̂. The cross product between the temp vector and ni guarantees
that êi is perpendicular to ni and lies in the aforementioned plane. Equation (2) summarizes
the process.

temp = ni × v̂

ei = temp× ni
(2)
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Opening Angle γ

The opening angle of the cone is computed as the average of the angles γi (Equation (3))
between the cone axis direction v̂ and the calculated vectors êi.

γ =
1
m ∑

i
γi. (3)

Figure 11. Cone 2D example. Vectors ei point to pv and are perpendicular to ni.

3.2.3. Sphere Fitting

The geometrical parameters to define the sphere are:

1. p0: sphere center.
2. R: radius.

Sphere center p0

We consider a sphere which is faceted by a manifold set S of triangles t. The straight
line [b1, ni] normal to triangle ti passes through the triangle baricenter bi. This line has
direction ni. The points at which all lines [bi, ni] are nearest to (or intersect) each other are
the elements of set Cp (Figure 7) and probabilistically lie at the sphere center p0 . The center
of the sphere p0 is estimated to be the center of gravity of Cp.

Sphere Radius R

The radius of the sphere is calculated by computing the mean distance from p0 to all
the vertices of the triangle subset.

R =
1
m

m

∑
i
||pi − p0||. (4)

3.2.4. Conclusions of Fitting Section

This section presents methods based on progressive probing rather than statistical fitting
to estimate the g() parameters of the analytic cones, cylinders, and spheres which has
been faceted with manifold sets S of irregular, anisotropic, heterogeneous triangles. The
extraction of the g() support triangle subset S ⊂ M follows.

3.3. Extraction of Subset S Based on Dihedral Angle

This method for extracting from M the triangle subset S (⊂ M) which contains the
seed triangle ts, is applicable when the EDGE border between S and M− S holds only C0-
continuity (i.e., ∂S is a sharp border). In this case, (a) S is indifferent to the T type of
analytic form sought and (b) the extraction of S precedes and is independent from the g()
fitting process.

In this manuscript, we say that two EDGE-sharing triangles ti, tj ∈ M hold only
C0-continuity if their dihedral angle is above a threshold αmax. The dihedral angle ∠(ti, tj)
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between triangles ti and tj is the one between their normal vectors (under a uniform LOOP
traversal direction). We measure the dihedral angle in the interval [0, 180) degrees. Notice
that ∠(n1, n2) = 180 implies that M would be non-manifold.

The first method for extraction of the triangle subset S is based on the dihedral angle
between the triangles of M. This method is employed when the target segment of the
triangulation holds strict C0-continuity with respect to the other segments of M. This
extraction process is indifferent to the type T of the analytic form and occurs separately
from the fitting process as shown in Figure 2 (red).

Input:

1. M(T , P): triangle (two-manifold) set with geometry P and topology T .
2. ts: selected seed triangle from T .
3. αmax: maximum angle value for dihedral angle-based extraction.
4. Eα(): dihedral angle equivalence relation defined on M.

Output:

1. S: the equivalence class (or block) containing ts, of M under the equivalence relation
Eα().

Definition. Equivalence Relation Eα()

The triangles are equivalent under Eα() if there is a triangle sequence (Figure 12)
L = [t0, t1, ..., t f ] such as:

1. L ⊂ M
2. Any two consecutive triangles of L, ti and ti+1 share an EDGE.
3. ∠(ti, ti+1) < αmax

The equivalence character of relation Eα() is not proved here. However, it is easy
to verify that Eα() is symmetric, reflexive and transitive. The reason we show this small
digression here is that the g() support subset S ⊂ M containing the seed triangle ts is
computable (when S and M − S hold only C0-continuity at ∂S) by using well known
algorithms for transitive closure.

The boundary representation of input triangle set M supports FACE, VERTEX, EDGE
neighborhood interrogations in constant time. Therefore, the dihedral angle-based ex-
traction process of the g() support subset S presents low computational cost and fast
execution times.

Figure 12. Dihedral angle equivalence Eα(). ∠(n1, n2) → 0 and Eα(t1, t2) (blue equivalence class).
∠(n1, n3) > αmax and t3 (red) is outside the equivalence class (blue) of t1 and t2.

3.4. Extraction of Subset S Based on Fitting Quality

The dihedral angle-based extraction presents limitations when the input triangle set
presents C1 or higher continuity at border ∂S. The extraction of the g() support subset
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S depends on the quality of the g() fitting and on the type T of the analytical form
as follows.

Input:

1. M(T , P): Triangle (two-manifold) set with geometry P and topology T .
2. ts: selected seed triangle from T .
3. T : type of analytic form (selected by the user from the options cylinder, sphere, cone).

Output:

1. S: Largest connected subset of M, formed by triangles from M, containing ts and
fitting the analytical form of type T .

2. g(): The parameters to define the analytic form that fits S.

Figure 13 presents a diagram with the general structure of the fitting-based extraction
algorithm. The quality of g() and the extent of the S support subset impact on each other
at every iteration. The algorithm in Figure 13 assumes the existence of an initial set S, its
border triangles B(S) (in M− S) and an initial estimation for the analytic form g(). This
basic S is formed by the seed triangle (marked by the user) and its neighbor triangles in M.
The initial form g() is estimated as per Section 3.2. B(S) contains the triangles in M− S
that encircle S.

In Figure 13, the process/box “select candidate triangle from B(S)” selects a triangle
in M− S adjacent to the border triangles of current S to be screened for its belonging to
the currently fitted analytic form g(). Figure 14 addresses this task. Its discussion appears
after explaining the main algorithm of Figure 13.

In Figure 13, B(S) denotes a set of triangles which encircle S, in M− S, and represent
an opportunity to expand S (i.e., they do not differ from g()). The algorithm acts as long
as B(S) is not empty. A triangle t from the B(S) border set is chosen (Figure 14, discussed
later). If t strongly fits g(), it is accepted in S. If t does not fit g() in a clear manner, the
validity of S is examined. If S is a “mature” set (w() → 0, Figure 15, discussed below),
g() it is supposed to be reliable and t is rejected. If the set S is “immature” (w()→ 1, t is
re-assessed: if its distance to g() is large, it is rejected. If it is near g(), it is accepted in S. If
t is accepted in S, then it is removed from B(S) and its neighbors in M− S are included in
B(S). Additionally, g() is re-computed against the new, augmented S.

Figure 13. Algorithm for simultaneous fitting of g() and extraction of g() support subset S.

If a triangle t is rejected, it is removed from B(S). In this case, obviously, its neighbors
in M− S will not be considered to expand S.
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We use a w() : R+ → [0, 1] heuristic function (Figure 15) as a measure of the immatu-
rity of S. Let u = NS/NT be the ratio between the instant size of S and a threshold number
of triangles NT , which is considered the size of a “mature” S. The function w(u) satisfies:

i w(0) = 1 (S is immature, has few triangles).
ii w(u) = 0 for all u ≥ 1.0 (S is mature, has many triangles).
iii w(u) is monotonically decreasing in R+

Figure 14 presents an expansion of the process/box “select candidate triangle from
B(S) ” in Figure 13, as follows: (1) A triangle t of the triangle border of S (B(S)) is selected.
(2) The neighbors of triangle t outside S are determined, forming set Nt. (3) From the set
Nt, triangles are eliminated whose dihedral angle with t is large (i.e., form sharp edges
with t). (4) From the remaining eligible neighbors of triangle t, Nt, the direction umax
of largest curvature is determined. (5) The triangle ts, neighbor of t, is selected, which
materializes this large curvature (i.e., direction umax from t). This algorithm has an implicit
bias of considering that expansion of the support triangle subset S in the direction of
largest smooth curvature will speedily lead to a meaningful fitting of g(). Thus, the
evolving of g() would be most efficient. Eventually, all feasible triangles around t are
included in the expansion and tested accordingly. It is important to emphasize that the
segmentation/fitting algorithm (Figure 13), both support subset S and analytic primitive
g() results.

This codependent fitting-segmentation process probes and expands the g() support
subset S ⊂ M, authorized by the quality of the g() fitting (Section 3.2). Due to this
codependency, this process is slower than the dihedral angle-based identification of S.

Figure 14. Expansion of box/process “select candidate triangle from B(S)” from Figure 13.

Figure 15. S immaturity function w(). w → 1: S is immature set, with few triangles (NS → 0).
w→ 0: S is mature set, with many triangles ( NS > NT). NT = threshold in number of triangles to
consider g() as stable analytic form.
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3.4.1. Fitting-Based Extraction of Cylinders and Cones

Cones and cylinders are ruled surfaces. As a consequence (Figure 16), at each point of
them, there is a direction umin of Kmin = 0 minimal curvature (i.e., generatrix direction). As
always, the direction of Kmax maximal curvature umax is normal to the umin and both span
the plane tangent to the surface at such a point.

Our algorithm aims to fit a reliable g() analytic form to the support triangle subset S as
early as possible. Triangles in the direction of maximal curvature umax (obviously) provide
information on the cone or cylinder radii in addition to generatrices. Due to this reason, S
primarily grows in the direction umax (box “select candidate from B(S)” in Figures 13 and 14).
However, it is important to notice that S must eventually encompass the whole set of triangles
supporting g().

The process to calculate the local curvature at a given seed triangle ts (with normal
vector n and baricenter b) is described below.

1 Build a homogeneous coordinate frame Si:

Si =

[
e1 e2 n̂ b
0 0 0 1

]
,

with e1, e2 spanning the plane tangent to surface M at b and making [e1, e2, n] a Special
Orthogonal SO(3) (3× 3) submatrix.

2 Apply a coordinate transformation T to rigidly move ts and support subset S to the
World Coordinate System Sw with n and b mapped to direction z and point [0, 0, 0]′,
respectively (Figure 16).

T Si = Sw,

T = Si S−1
w .

(5)

3 Fit a quadratic surface (Equation (6)) to T ∗ S by multi-variable linear regression.

f (x, y) = a + bx + cy + dxy + ex2 + f y2. (6)

4 Find the minimum and maximum curvature directions vmax, vmin with the Hessian
eigenvalues and eigenvectors.

H( f ) =

[
2e d
d 2 f

]
,

H[vmax vmin] = [vmax vmin]

[
Kmax 0

0 Kmin

]
.

(7)

5 Convert direction vmax vmin back to global coordinates, with:

[umax umin] = T−1[vmax vmin], (8)

where, for the sake of simplified notation, we use the same symbols for 2D, 3D and 3D
homogeneous vectors. Notice that T−1 does not involve inverting a matrix. Instead,
as T is an SO(3) rotation plus translation, the transpose of the rotation is its inverse.
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Figure 16. Rigid mapping M of local tangent plane of a ruled surface S onto the XY plane for the
purpose of computing maximal and minimal curvature directions on S.

3.4.2. Fitting-Based Extraction of Spheres

This section corresponds to the cases in which the primitive g() and triangle support
subset S to extract from M correspond to a sphere making a smooth blend with M− S. The
fitting and extraction algorithm appears in Figure 13 and is commented on in Section 3.4;
at this point, we only add some particularities of the box “select candidate triangle from
B(S)” from Figure 13.

This section uses the concept of a topological circle C(t, k) and topological ball B(t, k)
defined on a triangular mesh M. C(t, k) consists of the triangles of M that have distance
k with respect to a “center” triangle t. A distance k between any triangles ta and tb of M
corresponds to the minimal number of neighboring triangles in M to be traversed to travel
from triangle ta to triangle tb, or vice versa. For this definition, two triangles are considered
to be a distance of 1 apart if they share an EDGE or a VERTEX. The topological ball B(t, k)
includes all triangles of M whose topological distance to triangle t is less than or equal to
k. Figure 17 presents a graphical example of the topological circle C(ts, 2) and topological
ball B(ts, 2).

Figure 17. Red: user input seed triangle (C(ts, 0)). Blue: topological circle C(ts, 2). White: topological
circle C(t, 1). Red + White + Blue: topological ball B(ts, 2). The initial guess for the analytic form g()
is computed with C(ts, 0) ∪ C(ts, 2).

4. Results

Sections 4.1–4.3 present support subset extraction and fitting for forms cylinder, cone
and sphere, respectively. In each section, (1) dihedral angle-based and (2) fitting-based



Algorithms 2021, 14, 304 18 of 28

support subset S extractions are presented, along with the g() analytic forms fitted to S.
Section 4.5 presents a complexity analysis comparison of our approach vs. competitor
approaches. Section 4.6 discusses the real-time application of our implementation, achieved
via spatial hashing and boundary representation preprocessing.

Figure 18 presents an execution of the fitting-extraction algorithm of Figures 13 and 14.
The execution fits and extracts a cone S from a triangle set M in which the cone sector S
keeps C1-continuity with the remaining M− S subset, and therefore the dihedral angle criteria
are not able to identify S. Figure 18a displays the current S triangle set containing the seed
triangle ts (red) and already accepted neighboring triangles (blue). Figure 18b shows the grey
boundary of S, B(S). The bases of the cone contain triangles of B(S) are not considered to be
part of the cone due to their abrupt dihedral angle at the border of S, ∂S. The green triangle is
detected in the direction of maximal curvature umax. This green triangle fits into the current
g() estimation. Figure 18c shows that the green triangle is added to the support subset S,
extracted from the boundary (B(S)) and its neighbors (grey) are added to B(S), ready for the
next iteration. The final result of the S extraction and g() estimation is shown in Section 4.2.

4.1. Cylinder Fitting

Cylinder. Dihedral Angle-based Support Subset S Extraction

Figure 19 presents results for g() cylinder fitting when the g() support subset S has
only C0-continuity with the rest (M− S) of the input set M. S is extracted at sharp dihedral
angle EDGEs. As g() support subset S extraction is independent of g(), the extraction and
fitting are real-time processes (taking less than 1 s).

Cylinder. Fitting-based Support Subset S Extraction

Figure 20 displays cases in which the support subset S for g() holds C1-continuity
or higher with M− S. In these cases, g() fitting and g() support subset S extraction take
place simultaneously.

Table 6 presents the numerical results for the test on cylinder extraction, comparing
the preset parameters against the parameters obtained by the fitting. Subindex f it indicates
the variable obtained via fitting, as opposed to the experimental preset value.

An interesting result is that for the more difficult cases (fitting-based extraction), the
estimated g() is more accurate than the one achieved in the simpler cases (C0-continuity
between S and M− S). This result shows that the algorithm discussed in Figures 13 and 14,
albeit more complex, renders a better accuracy.

Dihedral angle-based extraction cases (1–4) perform in real time, while fitting-based
extraction cases (5–6) do not. The former are faster not only because extraction and fitting
are independent from each other, but also because g() is fitted to small triangle subsets of
S. These triangle subsets are scattered to make reasonable even though fast estimations.
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(a) Initial support set S and B(S). (b) S expansion in umax direction.

(c) Inclusion of accepted triangle in
S and its neighbor in B(S).

Figure 18. Step-wise execution of the S extraction g() fitting algorithm, applied to a cone which does
not accept S extraction based on dihedral angles.

(a) Test 1 (b) Test 2

(c) Test 3 (d) Test 4

Figure 19. Cylinder fit. S extraction based on dihedral angles. Pink: extracted S support subset. Yellow:
fitted g().
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Figure 20. Cylinder fit. Fitting-based S extraction. Pink: extracted S support subset. Yellow: fitted g().

Cylinder. Fitting performance

Table 6. Cylinder fit. Set vs. found parameters. Tests 1–4: S extraction based on dihedral angles.
Tests 5–6: Fitting-based S extraction.

R R f it v̂ v̂ f it ∠∠∠(v̂, v̂ f it) Degrees

Test #1 47 46.9999

−0.6104
0.6169
0.4967

 −0.6104
0.6169
0.4968

 0◦

Test #2 14 13.9972

1
0
0

 0.9999
0.0008
0.0003


0.0497◦

Test #3 13 13.00004

0
0
1

  0.00003
−0.0002
0.9999


0.0136◦

Test #4 5 5.0037

 0.4968
−0.1904
0.8467

  0.4967
−0.1903
0.8468


0.0051◦

Test #5 20 20.0000

0
0
1

 0
0
1


0◦

Test #6 2.5 2.4999

0
0
1

 0
0
1


0◦

4.2. Cone Fitting

Figures 21a,b and 22a,b illustrate the results for cone fitting with dihedral angle-based
and fitting-based extraction, respectively. Table 7 presents numerical results comparing the
actual vs. fitted g() parameters.
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(a) (b)

Figure 21. Test 1. Cone fitting test using dihedral angle-based extraction. Pink: segmentation. Yellow:
cone fitting.

(a) (b)

Figure 22. Cone Fit. Fitting-based S extraction. Pink: extracted S support subset. Yellow: fitted g().

Table 7. Cone fit. Set vs. found parameters. Test 1: S extraction based on dihedral angles. Test 2: fitting-based S extraction.

Ap Ap f it γ γ f it v̂ v̂ f it ∠∠∠(v̂, v̂ f it) Degrees

Test #1

 0
0

144

  0.0010
0.0063

144.1274

 13.87 13.8852

0
0
1

 0.0000
0.0000
0.9999

 0.0033◦

Test #2

 0
0

72.27

 −0.1258
−3.0241
72.2727

 19 18.9716

0
0
1

 −4.57×10−11

−5.96×10−9

1

 0.0033◦

4.3. Sphere Fitting

For the sphere fitting, the dihedral angle-based extraction does not produce a segmen-
tation of the input mesh M. Therefore, S = M and the fitting occurs over M. Figure 23
presents the results for that particular case. However, the parameters obtained by the
fitting are accurate (see Table 8).
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(a) Sphere sample r = 35 (b) Sphere fit r f it = 2.99

Figure 23. Sphere fitting using dihedral angle-based extraction. Pink: segmented sphere. Yellow:
fitted sphere. Notice that S = M.

Figure 24 illustrates the results for a fitting-based extraction in a sphere coupled with
a cylinder and presenting C1-continuity at the cylinder–sphere border.

(a) Input mesh. Sphere (b) Segmentation and sphere detection.

Figure 24. Sphere fit. Fitting-based S extraction. Pink: extracted S support subset. Yellow: fitted g().
The process leaves out of S few sphere triangles at the C1 border with M− S. However, it succeeds
in rejecting inclusion in S of triangles actually belonging to the cylinder.

Table 8. SPHERE Fit. Set vs. found parameters. Test 1: S extraction based on dihedral angles. Test 2:
fitting-based S extraction.

R R f it p0 p0 f it

Test #1 3 2.9752

0
0
0

 −0.0118
−0.0074
−0.0399



Test #2 25 25.0216

0
0
0

  0.0357
0.1242
−0.0333



4.4. Comparison with Competitor Approaches

The datasets, or code, used by competitor approaches are not publicly available. In
searching benchmark datasets for analytic form fitting, we found that they consist of point
clouds. In contrast, the input for our algorithm should be (poor quality) triangle meshes.
In consequence, we resorted to (a) executing CAD models or (b) downloading triangular
meshes presenting object similarity and the same challenges as the ones in those references.
The results of the comparison are presented in Table 9.
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Table 9. Test with reference datasets of competitor approaches.

Test Reference + Dataset Input Triangular Set
M

Primitive +
Segmentation Our Result

1

Ref. [9]. Dataset: Sphere-in-Cube

1. Ref. [9] fails to include all triangles in S
2. Ref. [9] does not inform execution

times.
3. Requires dense datasets.
4. Our execution is correct, both in S and

g().

Sphere + Dihedral
Segmentation

2

Ref. [17]. Dataset: C1-cylinder

1. Ref. [17] requires dense datasets.
2. Ref. [17] does not give execution times.
3. Our execution is correct, both in S and

g().

Cylinder + Fitting
Segmentation

fitted cylinder
g()

g()support subset Sg() support subset S

3

Ref. [16]. Dataset: Lamp Post

1. Ref. [16] uses triangle aspect ratios ≈ 1.
2. Ref. [16] does not inform exc. Times.
3. Our execution is correct, both in S and

g().

Cone + Dihedral
Segmentation g() support

subset S

fitted cone g()

4 Cylinder + Dihedral
Segmentation

5

Ref. [7]. Dataset: Crankshaft

1. Ref. [7] uses dense, good quality
triangle set ≈ 1.

2. Ref. [7] gives global execution times.
3. Our execution is correct, both in S and

g().

Cylinder + Dihedral
Segmentation

g() support subset S

fitted cylinder g()
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Table 9. Cont.

Test Reference + Dataset Input Triangular Set
M

Primitive +
Segmentation Our Result

6 Cylinder + Fitting
Segmentation

fitted cylinder g()

g() support subset S

7 Cylinder + Dihedral
Segmentation

fitted cylinder g()

g() 
support
subset S

8 Cylinder + Fitting
Segmentation

fitted
cylinder
g()

g()
support
subset S

9

1. Ref. [7] does not cover cone extraction.
2. Our execution is correct, both in S and

g().
Cone + Dihedral
Segmentation

Our algorithm does not fail in any one of the datasets presented by competitor ap-
proaches. In row 9, our algorithm is able to fit a correct g() conical analytic form, while
Ref. [7] does not attempt this fit. These competitor approaches ([7,9,16,17]) either do not
publish execution times at all or publish lumped times spent for fitting the full set of
primitives sought in the input triangle set M.

4.5. Complexity

Table 10 exhibits the complexities for distinguishable existing approaches in the litera-
ture. The complexity is calculated based on the standard costs of the diverse subprocesses
required for each method.
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Table 10. Complexities of existing approaches and of our algorithm (n is the number of points or triangles of the input set).
∗ Obtaining initial guess of g(). ∗∗ Applying optimization to g(). † Segmentation and fitting are codependent.

Approach Preprocessing B-Rep Extraction of S Fitting Extraction + Fitting † Overall

[7] Yan et al. O(n2) - O(n2) O(n2) O(n4) O(n4)
[6] Attene et al. O(n2) - - - O(n3) O(n3)
[3] Ruiz et al. O(n3) ∗ - - O(n2) ∗∗ - O(n3)
[12] Li et al. O(n2) - O(n) O(n3) O(n4) O(n4)
[4] Hulik et al. O(n) - - O(n3) - O(n3)
Our approach O(n) O(n2) O(n) O(n2) O(n3) O(n3)

Notice that the methods (rows) analyzed in Table 10 have diverse goals. Therefore,
their overall complexity is not comparable on an equal basis. The standard cost for extract-
ing the support set S (i.e., computation of neighboring triangles) is O(n2). However, we
achieve complexity O(n) when profiting off the boundary representation for input triangle
set M. This B-Rep construction holds a complexity O(n2), but the hashing preprocessing
reduces the search set (n) to, at most, three voxels. Section 4.6 presents the time reduction
due to the hashing execution.

4.6. Reduction in Computing Time by Using Hashing

The preprocessing present in our algorithm contains the sequence: 1. spatial hashing
and 2. boundary representation. The B-Rep makes the neighborhood relations (among
VERTEXs, EDGESs and FACEs) in the input triangle set M explicit. At the same time, it is
a diagnosis of non-manifold conditions and guarantees uniform orientation of the input
triangle set M.

Although the B-Rep is the visible database for interrogation of M, it is the spatial
hashing that enables the efficient construction of B-Rep and subsequent extraction of
support subset S and fitting of g() to S. Due to this reason, this section focuses on the
acceleration of B-Rep construction due to the spatial hashing.

The spatial hashing reduces the search set space for interrogations of VERTEX, EDGE
and FACE neighborhoods. Figure 25 presents the reduction in execution time of the B-Rep
construction for different input sizes before and after applying the spatial hashing. The
figure shows a reduction factor of about 1000 in the execution time. It is also relevant to
mention that the B-Rep + hashing cost represents a very faithful logarithmic reduction in
the bare B-Rep expenses.
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Figure 25. Execution times for B-Rep construction with and without previous spatial hashing.

5. Conclusions and Future Work

This manuscript presents the implementation of an algorithm to identify user-requested
analytic forms (cone, cylinder, sphere) and their triangle support subsets S, in a connected
manifold triangle set M.
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The statistical quality of M is low as it is a heterogeneous and anisotropic, with a poor
aspect ratio triangulation. This characteristic aligns with specific industrial applications in
which low-polygon sets are purposely preferred at the expense of mesh quality.

Our algorithm favors a one-by-one progressive estimation of the parameters of the g()
form, based on local probing. Our approach does not favor the application of generic statis-
tical multi-parameter fittings, which renounce the exploitation of g()-specific properties
and require a dense, good quality input M.

Three different types of primitives (cylinder, cone, and sphere) were fitted. Two
methods were implemented for the extraction of g() support subset S, depending on the
C-continuity level at the border ∂S with M− S. The results are consistent and accurate in
obtaining g() for statistically poor triangulations. The precision in the parameters of each
analytical form was sufficient for our industrial application, presenting (for example) a
maximal error of ≈ 0.1 % in the opening angle of the cone.

As expected, fitting-based extraction presents higher execution times than a dihedral
angle-based one. The iterative process of calculating the primitive parameters introduces
an additional cost to the identification of the g() support subset S. In contrast, real-time
execution was achieved for all cases of dihedral angle-based S extraction. Both methods
are accelerated by the connectivity information provided by the B-Rep.

The spatial hashing is central in accelerating the B-Rep construction, and thus the
S support subset extraction and g() primitive fitting. Our approach takes advantage of
the B-Rep benefit of constant-time access to VERTEX, EDGE and FACE neighborhoods.
Spatial hashing reduces time complexity but adds storage complexity. Therefore, it is
not a theoretical advantage. In practice, however, spatial hashing dramatically speeds up
B-Rep construction because it delivers bounded neighborhood search times as it (B-Rep
construction) acts in a constant search space. Future work is required on the acceleration of
fitting-based extraction. A natural upgrade of our method is envisioned for cases in which
the primitive sought type T is not specified but instead is one out of a given finite set.
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Abbreviations
The following abbreviations are used in this manuscript:

Term Description
M(T , P) Triangle (2-manifold) set with geometry P and topology T .
T = {t1, t2, ...} Set of triangles of the input mesh M.
P = {t1, t2, ...} Set of vertices of the input mesh M.
ts Seed triangle.
T User-specified type of the analytic form {Cylinder, Sphere, Cone}.
g() Analytic form denoting one of the cone, cylinder or spheric primitives.

g() equally expresses parametric or implicit forms, as well as the set of
parameters determining a primitive.

Et User-specified method for the analytic form fitting.
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S Support set of triangles that fit a particular analytic form.
C(t, k) Topological circle on a triangular mesh M, with center triangle t

and distance k.
p0 Distinguished point of cylinder, sphere or cone definition.
R Cylinder or sphere radius.
v̂ Axis vector for cylinder or cone.
γ Opening angle for cone.
δx, δy, δz Voxel side length in the x, y, z directions, respectively.
Ω Rectangular prism orthogonally oriented w.r.t. the coordinate

axes, containing a Nv × Nv × Nv grid of rectangular voxels vijk.
Nv Number of voxels per side of Ω
h Hashing function: h : P → Nv × Nv × Nv, which maps each

vertex of the input triangle set M into the (i,j,k) indices of the
voxel vijk ⊂ Ω, which contains such a vertex.

H Ω → T , which maps each voxel vi jk of Omega into the set of
triangles of M which contain a vertex inside voxel vi jk.

Cp Set of auxiliary points to calculate the axis of the analytic forms
(center for sphere case).

n̂i, n Vector normal to triangle i.
bi, b Baricenter of triangle i.
Kmin, Kmax Maximal and minimal surface curvatures.
umin, umax Directions of maximum and minimal curvatures.
T Homogeneous rigid transformation mapping the point b of mesh

M onto the [0, 0, 0]′ of R3, and the plane tangent to M at p onto
the plane XY in R3.

Ln = {`1, `2, ...} Set of lines generated by the baricenter bi and normal n̂i.
NS Number of triangles in triangle subset S.
NT Threshold in number of triangles needed to obtain a stable ap-

proximation of an analytic form.
w(|S|) Maturity measure of the set S. 1 → 1 if |S| is small (S imma-

ture) w→ 0 if |S| is large (S mature).
u Relation between the number of triangles in subset NS and the

threshold NT .
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