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Abstract: This paper presents the intrinsic limit determination algorithm (ILD Algorithm), a novel
technique to determine the best possible performance, measured in terms of the AUC (area under
the ROC curve) and accuracy, that can be obtained from a specific dataset in a binary classification
problem with categorical features regardless of the model used. This limit, namely, the Bayes error, is
completely independent of any model used and describes an intrinsic property of the dataset. The
ILD algorithm thus provides important information regarding the prediction limits of any binary
classification algorithm when applied to the considered dataset. In this paper, the algorithm is
described in detail, its entire mathematical framework is presented and the pseudocode is given to
facilitate its implementation. Finally, an example with a real dataset is given.

Keywords: machine learning; intrinsic limits; ROC curve; binary classification; area under the curve;
naïve Bayes classifier

1. Introduction

The majority of machine learning projects tend to follow the same pattern, namely,
many different machine learning model types (such as decision trees, logistic regression,
random forest, neural network, etc.) are first trained from data to predict specific outcomes,
and then tested and compared to find the one that gives the best prediction performance
on validation data. Many techniques to compare models have been developed and are
commonly used in several settings [1–3]. For some specific model types, such as neural
networks, it is difficult to know when to stop the search [4]. There is always the hope that a
different set of hyperparameters, as the number of layers, or a better optimizer, will give a
better performance [4,5]. This makes the model comparison laborious and time-consuming.

Many reasons may lead to a bad accuracy: deficiencies in the classifier, overlapping
class densities [6,7], noise affecting the data [8–10], and limitations in the training data
being the most important [11]. Classifier deficiencies could be addressed by building better
models, of course, but other types of errors linked with the data (for example, mislabeled
patterns or missing relevant features) will lead to an error that cannot be reduced by any
optimization in the model training, regardless of the effort invested. This error is also
known in the literature as Bayes error (BE) [4,12]. The BE can, in theory, be obtained from
the Bayes theorem if one would know all density probabilities exactly. However, this is
impossible in all real-life scenarios, and thus the BE cannot be computed directly from the
data in all non-trivial cases. The Naïve Bayes classifier [12] tries to approximately address
this problem, but it is based on the assumption of the conditional independence of the
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features, rarely satisfied in practice [11–13]. The methods to estimate the BE developed in
the past decade tend to follow the same strategy: reduce the error linked to the classifier
as much as possible, thus being left with only the BE. Ensemble strategies and meta
learners [11,13,14] have been widely used to address this problem. The idea is to exploit
the multiple predictions to provide an indication of the limits to the performance for a
given dataset [11]. This approach has been widely used with neural networks, given their
universal approximator nature [15,16].

In any supervised learning task, knowing the BE linked to a given dataset would be
of extreme importance. Such a value would help practitioners decide whether or not it is
worthwhile to spend time and computing resources in improving the developed classifiers
or acquiring additional training data. Even more importantly, knowing the BE would
let practitioners assess if the available features in a dataset are useful for a specific goal.
Suppose for example that a set of clinical exams are available for a large number of patients.
If such a feature set gives a BE of 30% (so an accuracy of 70%) in predicting an outcome
but the desired BE is smaller than 20%, it is useless to spend time in developing models.
Therefore, time would be better spent in acquiring additional features. The problem of
determining the BE intrinsic of a given dataset is addressed and solved in this work from a
theoretical point of view. The problem of determining the BE of a given dataset is addressed
in this paper.

The contribution of this paper is twofold. First, a new algorithm, called Intrinsic
Limit Determination algorithm (ILD algorithm), is presented. The ILD algorithm allows
computing the maximum performance in a binary classification problem, expressed both as
the largest area under the ROC curve (AUC) and as the accuracy that can be achieved with
any given dataset with categorical features. This is by far the most significant contribution
of this paper, as the ILD algorithm for the first time allows evaluating the BE for a given
dataset exactly. This paper demonstrates how the BE is a limit not dependent on any chosen
model but is an inherent property of the dataset itself. Thus, the ILD algorithm gives the
upper limit of the prediction possibilities of any possible model when applied to a given
dataset, under the conditions that the features are categorical and that the target variable
is binary. Second, the mathematical framework on which the ILD algorithm is based is
discussed and a mathematical proof of the algorithm validity is given. The algorithm’s
computational complexity is also discussed.

Although the applicability conditions may seem greatly limiting, there are a large
number of cases where the ILD can be applied. Consider for example medical datasets, that
typically have a large portion of features that are categorical (i.e., presence of absence of
certain conditions) [17–21] Many of the continuous features (like age for example) are usu-
ally transformed into categorical (age ranges for example). Therefore, in all these cases, the
ILD algorithm will give very important information to doctors on the datasets themselves.

The paper is organized as follows. The necessary notation and dataset restructuring
for the ILD algorithm are discussed in Section 2. In Section 3, the complete mathematical
formalism necessary for the ILD algorithm is explained in detail and in Section 4 the funda-
mental ILD Theorem is given and proof is presented. Application of the ILD algorithm
to a real dataset is provided in Section 5. Finally, in Section 6 conclusions and promising
research developments are discussed.

2. Mathematical Notation and Dataset Aggregation

Let us consider a dataset with N categorical features, i.e., each feature can only assume
a finite set of values. Let us suppose that the ith feature, denoted as Fi, takes ni possible
values. For notational simplicity, it is assumed that the categorical feature is encoded in
such a way that its possible values are integers from 1 to ni, with i = 1, . . . , N (note that each
ni can assume different integer values). Each possible combination of the features is called
here a bucket. The idea is that the observations will be aggregated in buckets depending
on their features. The number of observations present in the dataset are indicated with M.
All the observations with the same set of features are said to be in the same bucket.
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The problem is a binary classification one, aiming at predicting an event that can have
only two possible outcomes, indicated here with class 0 and class 1. In general, in the jth
bucket, there will be a certain number of observations (that we will indicate with m[j]

0 ) with

a class of 0, and a certain number of observations (that we will indicate with m[j]
1 ) with a

class of 1.
The feature vector for each observation, denoted as xk (with k = 1, . . . , M), is thus

defined by an N-dimensional vector (F1,k, F2,k, . . . , FN,k) ∈ NN , where Fi,k denotes the value
of the i-th feature of the k-th sample.

The following useful definitions are now introduced.

Definition 1. A feature bucket B[j] is a possible combination of the values of the N features, i.e.,

B[j] = {(F[j]
1 , F[j]

2 , . . . , F[j]
N ) ∈ NN | F[j]

i ∈ {0, 1, . . . , ni − 1}, i = 1, . . . , N} (1)

In the rest of the paper, the feature bucket is indicated as

B[j] = (F[j]
1 , F[j]

2 , . . . , F[j]
N )

to explicitly mention the feature values characterizing the bucket B[j]. The total number NB
of feature buckets is thus equal to NB = ∏N

i=1 ni.
As an example, in the case of two binary features F1 and F2, four possible feature buckets

can be constructed, namely, B[1] = (0, 0), B[2] = (0, 1), B[3] = (1, 0) and B[4] = (1, 1).

Definition 2. The set M[j] of the indices of observations belonging to the j-th feature bucket B[j] is
defined as

M[j] = {k ∈ [1, M] | F0,k = F[j]
0 and F1,k = F[j]

1 and . . . FN,k = F[j]
N } (2)

The cardinality of the set M[j] will be denoted as |M[j]|. In a binary classification
problem, the observations belonging to the feature bucket B[j], denoted as

O[j] = {xk | k ∈ M[j]} (3)

will contain m[j]
0 ∈ N0 observations with a target variable equal to 0 and mj]

1 ∈ N0 observa-
tions with a target variable equal to 1. Note that by definition

|M[j]| = m[j]
0 + m[j]

1 (4)

and

M ≡
NB

∑
j=1
|M[j]| =

NB

∑
j=1

(m[j]
0 + m[j]

1 ) (5)

Based on the definitions above, the original dataset can be equivalently represented
by a new dataset of buckets, an aggregated dataset B, each of which contains a certain
number of samples |M[j]| = m[j]

0 + m[j]
1 . A visual representation of the previously de-

scribed rearrangement of the original dataset is reported in Figure 1 for a dataset with two
binary features.
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Figure 1. An intuitive representation of the dataset aggregation step for a dataset with two binary
features F1 and F2. Observations with, for example, F1 = 0 and F2 = 0 will be in bucket 1 in the
aggregated dataset B. Features with F1 = 0 and F2 = 1 in bucket 2 and so on.

In the aggregated dataset B, each record is thus a feature bucket B[j], characterized by
the number of observations of class 0 (m[j]

0 ) and the number of observations of class 1 (m[j]
1 ).

In the previous example of a dataset with only two binary features, B would look like the
one in Table 1. In this easy example a dataset with any number of observations M would
be reduced to one with only 4 records, i.e., the number of possible buckets.

Table 1. An example of an aggregated dataset B with only two binary features.

Bucket Feature 1 Feature 2 Class 0 Class 1

1 F[1]
1 = 0 F[1]

2 = 0 m[1]
0 m[1]

1

2 F[2]
1 = 0 F[2]

2 = 1 m[2]
0 m[2]

1

3 F[3]
1 = 1 F[3]

2 = 0 m[3]
0 m[3]

1

4 F[4]
1 = 1 F[4]

2 = 1 m[4]
0 m[4]

1

With this new representation of the dataset, generated by aggregating all observations
sharing the same feature values in buckets, the proposed ILD algorithm allows computing
the best possible ROC curve considering all possible predictions.

3. ILD Algorithm Mathematical Framework

As the output of any machine learning model is a function of the feature values, and
as a bucket is a collection of observations all with the same feature values, any possible
deterministic model will associate to the jth bucket of features only one possible class
prediction p[j] that can be either 0 or 1. More in general, to each model can be associated a
prediction vector p= (p[1], p[2], . . . , p[NB ]). In the next sections important quantities (as TPR
and FPR) evaluated for the aggregated dataset B as functions of m[i]

0 , m[i]
1 and p are derived.

3.1. True Positive, True Negative, False Positive, False Negative

In the feature bucket i, if p[i] = 0, then only m[i]
0 observations would be correctly

classified. On the other side, if p[i] = 1, only m[i]
1 observations would be correctly classified.

For each bucket i the true positive TP[i] can be written as

TP[i] = m[i]
1 p[i] (6)
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In fact, if p[i] = 0, then TP[i] = 0, and if p[i] = 1, then TP[i] = m[i]
1 . Considering the

entire dataset, the true positive, true negative (TN), false positive (FP), false negative (FN)
are given by

TP =
NB

∑
i=1

TP[i] =
NB

∑
i=1

m[i]
1 p[i] (7)

TN =
NB

∑
i=1

TN[i] =
NB

∑
i=1

m[i]
0 (1− p[i]) (8)

FP =
NB

∑
i=1

FP[i] =
NB

∑
i=1

m[i]
0 p[i] (9)

FN =
NB

∑
i=1

FN[i] =
NB

∑
i=1

m[i]
1 (1− p[i]) (10)

where the sums are performed over all the NB buckets.

3.2. Accuracy

In a binary classification problem, the accuracy is defined [22] as

a =
TP + TN

M
. (11)

Using Equations (7) and (8), the accuracy can be rewritten as

a =
1
M

NB

∑
i=1

[
p[i](m[i]

1 −m[i]
0 ) + m[i]

0

]
(12)

The maximum value of the accuracy is obtained if the model predicts p[i] = 1 as soon
as m[i]

1 > m[i]
0 . This can be stated as

Theorem 1. The accuracy for an aggregated categorical dataset B, expressed as Equation (12), is
maximized by choosing p[i] = 1 when m[i]

1 > m[i]
0 and p[i] = 0 when m[i]

1 ≤ m[i]
0 .

Proof. The proof is given by considering each bucket separately. Let’s consider a bucket i
that has m[i]

1 > m[i]
0 . In this case, there are two possibilities:

p[i] = 1→ p[i](m[i]
1 −m[i]

0 ) + m[i]
0 = m[i]

1

p[i] = 0→ p[i](m[i]
1 −m[i]

0 ) + m[i]
0 = m[i]

0

(13)

Therefore, the ith contribution to the accuracy in Equation (12) is maximized by
choosing p[i] = 1 for those buckets where m[i]

1 ≥ m[i]
0 . With a similar reasoning, the

contribution to the accuracy for those buckets where m[i]
1 < m[i]

0 is maximized by choosing
p[i] = 0. This concludes the proof.

3.3. Sensitivity and Specificity

The sensitivity or true positive rate (TPR) is the ability to correctly predict the positive
cases [22]. Considering the entire dataset, the TPR can be expressed using Equations (7)
and (10) as

TPR =
TP

TP + FN
=

NB

∑
i=1

m[i]
1 p[i]

NB

∑
i=1

[
m[i]

1 p[i] + m[i]
1 (1− p[i])

] =

NB

∑
i=1

m[i]
1 p[i]

NB

∑
i=1

m[i]
1

(14)
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Analogously, the specificity or true negative rate (TNR), which is the ability to correctly
reject the negative cases [22], can be written using Equations (8) and (9) as

TNR =
TN

TN + FP
=

NB

∑
i=1

m[i]
0 (1− p[i])

NB

∑
i=1

[
m[i]

0 (1− p[i]) + m[i]
0 p[i]

] =

NB

∑
i=1

m[i]
0 (1− p[i])

NB

∑
i=1

m[i]
0

(15)

3.4. ROC Curve

The receiver operating characteristic (ROC) curve is built by plotting the true positive
rate TPR on the y-axis, and the false positive rate (FPR) on the x-axis. For completeness,
the FPR = 1− TNR is

FPR = 1− TNR =

NB

∑
i=1

[
m[i]

0 −m[i]
0 (1− p[i])

]
NB

∑
i=1

m[i]
0

=

NB

∑
i=1

m[i]
0 p[i]

NB

∑
i=1

m[i]
0

(16)

3.5. Perfect Bucket and Perfect Dataset

Sometimes a bucket may contain only observations that are all in class 0 or 1. Such a
bucket is called in this paper perfect bucket and is defined as follows.

Definition 3. A feature bucket j is called perfect if one of the following is satisfied:{
m[j]

0 = 0

m[j]
1 > 0

(17)

or {
m[j]

0 > 0

m[j]
1 = 0

(18)

It is also useful to define the set of all perfect buckets P.

Definition 4. The set of all perfect buckets, indicated with P is defined by

P ≡ {Bj j = 1, . . . , NB |(m[j]
0 = 0 and m[j]

1 > 0) or (m[j]
0 > 0 and m[j]

1 = 0)} (19)

Note that by definition, the set B/P contains only imperfect buckets, namely, buckets
where m[j]

0 > 0 and m[j]
1 > 0.

An important special case is that of a perfect dataset, one in which all buckets are
perfect. Indicating with B the set containing all buckets, we have B = P. It is easy to
see that we can create a prediction vector that will predict all cases perfectly, by simply
choosing, for feature bucket j

p[j] =

{
0 if m[j]

0 > 0

1 if m[j]
1 > 0.

(20)

Remember that all feature buckets are perfect, and in a perfect feature bucket m[j]
0 and

m[j]
1 cannot be greater than zero at the same time. To summaries our definitions we can

define the following.
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Definition 5. A dataset B (where B is the dataset containing all feature buckets) is called perfect if
B = P.

and

Definition 6. A dataset B (where B is the dataset containing all feature buckets) is called imperfect
if P ⊂ B.

4. The Intrinsic Limit Determination Algorithm

Let us introduce the predictor vector pS ≡ (1, 1, . . . , 1), for which it clearly holds{
TPR|pS = 1

FPR|pS = 1
(21)

TPR|pS and FPR|pS indicate TPR and FPR evaluated for pS, respectively.
Let us indicate as a flip the change of a component of a prediction vector from the

value of 1 to the value of 0. Any possible prediction vector can thus be obtained by a finite
series of flips starting from pS, where a flip is done only on components with a value equal
to 1. Let us denote with p1 the prediction vector obtained after the first flip, p2 after the
second, and so on. After NB flips, the prediction vector will be pNB ≡ (0, 0, . . . , 0). The
TPR and FPR evaluated for a prediction vector pi (with i = 1, . . . , NB) are indicated as
TPR|pi and FPR|pi . The set of tuples of points’ coordinates is indicated with P :

P = {(FPR|pS , TPR|pS), . . . , (FPR|pNB
, TPR|pNB

)}. (22)

A curve can be constructed by joining the points contained in P in ordered segments,
where ordered segments means that the point (FPR|pS , TPR|pS) will be connected to
(FPR|p1 , TPR|p1); (FPR|p1 , TPR|p1) with (FPR|p2 , TPR|p2); and so on. The segment that
joins the point (FPR|pS , TPR|pS) with (FPR|p1 , TPR|p1) is denoted as s[0]; the one that
joins the points (FPR|p1 , TPR|p1) and (FPR|p2 , TPR|p2) is denoted as s[1], and so on. In
Figure 2, a curve obtained by joining the tuples given by the respective prediction vectors
obtained with three flips is visualized to give an intuitive understanding of the process.

The ILD algorithm provides a constructive process to select the order of the compo-
nents to be flipped to obtain the curve C̃ characterized by the theoretical maximum AUC
that can be obtained from the considered dataset, regardless of the predictive model used.

(1, 1)TPR

(FPR|pS
,TPR|pS

)

(FPR|p1
,TPR|p1

)

(FPR|p2
,TPR|p2

)

(FPR|p3
,TPR|p3

)

FPR

s[0]

s[1]

s[2]

Figure 2. Example of a curve constructed by joining 3 segments obtained after 3 flips.

To be able to describe the ILD algorithm effectively and prove its validity, some
additional concepts are needed and described in the following paragraphs.
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4.1. Effect of One Single Flip

Let us consider what happens if one single component, say the jth component, of pS
is changed from 1 to 0. The TPR and FPR values clearly change. By denoting with p1 the
prediction vector in which the jth component was changed, the following equations hold:

TPR|p1 = 1− m[j]
1

NB

∑
i=1

m[i]
1

FPR|p1 = 1− m[j]
0

NB

∑
i=1

m[i]
0

.

(23)

Therefore, TPR and FPR will be reduced by an amount equal to the ratio m[j]
1 / ∑NB

i=1 m[i]
1

and m[j]
0 / ∑NB

i=1 m[i]
0 , respectively. As an example, the effect of multiple single flips on TPR

and FPR is illustrated in Figure 3. Here are shown the ROC curves resulting from a ran-
dom flipping starting from pS for a real-life dataset, namely, the Framingham dataset [23]
(see Section 5). As expected, flipping components randomly results in a curve that lies
close to the diagonal. As the diagonal corresponds to randomly assigning classes to the
observations, randomly flipping does not bring to the best prediction possible with the
given dataset.

By ordering the points in P in ascending order based on the ratio TPR|pj /FPR|pj , a
new set of points P̃ is constructed. It can happen that in a given dataset, multiple points
have FPR|pj = 0. In this case, this ratio cannot be calculated. If this happens, all the points
with FPR|pj = 0 can be placed at the end of the list of points. The order between those

points is irrelevant. It is interesting to note that a flip for perfect buckets for which m[j]
0 = 0

will have TPR|pj = 0 and for all perfect buckets for which m[j]
1 = 0 will have FPR|pj = 0.

With the set of ordered points P̃ , a curve C̃ can be constructed by joining the points in
P̃ as described in the previous paragraph. Note that the relative order of all points with
TPR|pj = 0 is also irrelevant, in the sense that this order does not affect the AUC of C̃.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at
e

ROC curve 1
ROC curve 2

Figure 3. Two examples of ROC curves obtained from random flipping using the dataset as described
in the text.
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4.2. ILD Theorem

The ILD theorem can now be formulated.

Theorem 2 (ILD Theorem). Among all possible curves that can be constructed by generating
a set of points P by flipping all components of pS in any order one at a time, the curve C̃ has the
maximum AUC.

Proof. The Theorem is proven by giving a construction algorithm. It starts with one set
of points P0 generated by flipping components of pS in a random order. Let us consider
two adjacent segments generated with P0: s[j] and s[j+1]. In Figure 4A, the two segments
are plotted in the case where the angle between them β[j,j+1] < π. The angles α[j] and
α[j+1] indicate the angles of the segments with the horizontal direction and β[j,j+1] the angle
between the two segments j and j + 1. The area under the two segments and any horizontal
line that lies below the segments can be increased by simply switching the order of the two
flips, as it is depicted in Figure 4B. Switching the order simply means flipping first the j + 1
component and then the j component.

α[j]

α[j]

α[j+1]

α[j+1]β[j,j+1]

β[j+1,j](A) (B)
s[j]

s[j+1]

s[j+1]

s[j]

s[j+1]

s[j]
s[j]

s[j+1]

(C)

Figure 4. Visual explanation for the ILD Theorem. Panel (A): two consecutive segments after flipping
components j and then j + 1; Panel (B): two consecutive segments after flipping components j + 1
and then j; Panel (C): parallelogram representing the difference between the area under the segments
in panel (A) and the area under the segments in panel (B).

It is important to note that in Figure 4A β[j,j+1] < π, while in panel (B) β[j+1,j] > π.
It is evident that the area under the two segments in panel (B) is greater than the one in
panel (A). The parallelogram in Figure 4C depicts the area difference.

The proof is based on repeating the previous step until all angles β[j,j+1] > π. This is
described in pseudocode in Algorithm 1.

Algorithm 1: Algorithm to construct the curve C̃
Generate a set of points P0 by flipping the components of pS in a random

sequence;
while true do

c = 0;
for i = 1, . . . , NB do

if β[i,i+1] < π then
Switch points i and (i + 1) in P0;
c = c + 1;

end
end
if c = 0 then

Exit While loop and end the Algorithm
end
The final set of points P0 obtained in the loop above will generate the curve C̃.

end

The area under the curve obtained with Algorithm 1 cannot be made larger with any
further switch of points in P .
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Note that Algorithm 1 will end after a finite number of steps. This can be shown by
noting that the described algorithm is nothing else than the bubble sort algorithm [24]
applied to the set of angles α[1], α[2], . . . , α[NB ]. Therefore, this algorithm has a worst-case
and average complexity of O(N2

B).

4.3. Handling Missing Values

Missing values can be handled by imputing them with a value that does not appear in
any feature. All observations that have missing values in a specific feature will be assigned
to the same bucket and considered similar, as we have no way of knowing better.

5. Application of the ILD Algorithm to the Framingham Heart Study Dataset

In this section, a practical application of the ILD algorithm is illustrated. The ap-
plication to a real dataset has the purpose of giving an intuitive understanding of the
method and highlight its power. Here, the medical dataset named Framingham [23] were
chosen, which is publicly available on the Kaggle website [25]. This dataset comes from
an ongoing cardiovascular risk study made on residents of the town of Framingham (MA,
USA). Different cardiovascular risk score versions were developed during the years [26],
the most current of whom is the 2008 study in [27], to which the ILD algorithm results are
also referred for comparison of performances. The reader interested in descriptive statistics
on the dataset’s features (averages, standard deviations, counts, description, etc.) can find
all information in [23].

The classification goal is to predict, given a series of risk factors, the 10-years risk of a
patient of future coronary heart disease. This is a high impact task, as 17.9 million deaths
occur worldwide every year due to heart diseases [28] and their early prognosis may be of
crucial importance for a correct and successful treatment. Note that the dataset available
in [25] has 16 features. To make the comparison as meaningful as possible, seven of the eight
features used in the original study [23] were selected. The high-density lipoprotein (HDL)
cholesterol variable is unfortunately missing with respect to the original Framingham
dataset employed in [27] and therefore could not be used. Thus, the dataset used in this
study contains 4238 patients and 7 features: gender (0: female, 1: male); smoker (0: no,
1: yes); diabetes (0: no, 1: yes); hypertension treatment (0: no, 1: yes); age; total cholesterol;
and systolic blood pressure (SBP). The last three features are continuous variables and were
discretized as follows:

• age: 0 if age < 40 years, 1 if age ≥ 40 years and age < 60 years,
2 if age ≥ 60 years;

• total cholesterol: 0 if total cholesterol < 200 mg/dL,
1 if total cholesterol ≥ 200 mg/dL and total cholesterol < 240 mg/dL,
2 if total cholesterol ≥ 240 mg/dL;

• SBP: 0 if SBP < 120 mmHg, 1 if SBP ≥ 120 mmHg.

The outcome variable is binary (0: no coronary disease, 1: coronary disease). Finally,
to create the buckets all missing values are substituted by a feature value of −1.

The application of the algorithm starts with the population of the buckets as described
in the previous sections. A total number of 177 buckets are populated. The dataset is split
into two parts: a training set ST (80% of the data) and a validation one SV (20% of the data).
For comparison, the Naïve Bayes classifier is also trained and validated respectively on ST
and SV . The performance of the ILD algorithm and the Naïve Bayes classifier are shown
through the ROC curve in Figure 5. The AUC for the ILD algorithm is 0.78, clearly higher
than that for the Naïve Bayes classifier, namely, 0.68.



Algorithms 2021, 14, 301 11 of 15

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve

 R
at
e

ILD Algorithm
Naïve Bayes classifier

Figure 5. Comparison of the performance of the ILD algorithm (red) and Naïve Bayes classifier
(sblue) implemented on categorical features based on one single training and validation split using
the dataset as described in the text.

To further test the performance, the split and training is repeated for 100 different
dataset splits. Each time both the ILD algorithm and the Naïve Bayes classifier are applied
to the validation set SV and the resulting AUCs are plotted in Figure 6 (top panel). For
clarity, the difference between the AUC provided by the two algorithms is shown in
Figure 6 (bottom panel).
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Figure 6. Comparison between the performance of the ILD algorithm (red) and Naïve Bayes classifier
(blue) implemented on categorical features based on 100 different training and validation splits.
(Top panel): AUC; (bottom panel): difference between the AUC provided by the ILD algorithm and
the Naïve Bayes classifier.

This example shows that the application of the ILD algorithm allows the comparison of
the prediction performance of a model, here the Naïve Bayes classifier, with the maximum
obtainable for a given dataset. The maximum accuracy over the validation set SV is 85%
for the Naïve Bayes classifier (calculated for a specific threshold, i.e., 61%, which optimizes
the accuracy over the training set ST) and 86% for the ILD algorithm (calculated applying
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Theorem 1). The reported accuracies are the ones that refer to the ROC curves shown in
Figure 5. The two values are similar and have been reported for completeness, even if this
result may by misleading. The reason lies in the strong dataset unbalance, as only 15% of the
patients experienced a cardiovascular event. In particular, both the Naïve Bayes classifier and
ILD algorithm obtains a true positive rate and a false positive rate near zero in the point of the
ROC curve which maximises the accuracy over the validation set, with a high misclassification
in positive patients, which however cannot be noticed from the accuracy result. As it is known,
the accuracy is not a good metric for unbalanced datasets, and the AUC is a much widely
used metric that does not suffer from the problem described above.

The authors are aware that this is an unbalanced dataset and that balanced datasets
are easier to deal with when studying classification problems. The goal was to give an
example that reflects real use cases. For example, in medical problems, datasets are almost
always extremely unbalanced since the event to be predicted is thankfully rare (for example
death or the onset of diseases). It is not uncommon to find datasets with an unbalance of
99% vs. 1%. This was also the reason why the ILD algorithm concentrates on the AUC, as
this is the typical metric used when dealing with such use-cases.

6. Conclusions

The work presents a new algorithm, the ILD algorithm, which determines the best
possible ROC curve that can be obtained from a dataset with categorical features and binary
outcome, regardless of the predictive model.

The ILD algorithm is of fundamental importance to practitioners because it allows

• to determine the prediction power (namely, the BE) of a specific set of categorical features,
• to decide when to stop searching for better models, and
• to decide if it is necessary to enrich the dataset.

The ILD algorithm thus has the potential to revolutionize how binary prediction
problems will be solved in the future, allowing practitioners to save an enormous amount
of efforts, time, and money (considering that, for example, computing time is expensive
especially in cloud environments).

The limitations of the ILD algorithm are the two restrictions for its applicability. First,
the features must be categorical. The generalization of this approach to continuous features
is the natural next step and will open new ways of understanding datasets with continuous
features. Second, the ILD algorithm works well when the different buckets are populated
with enough observations. The ILD algorithm would not give any useful information on a
dataset with just one observation in each bucket (as it would be a perfect dataset). Consider
the example of gray levels images. Even if pixel values could be considered categorical
(the gray level of a pixel is an integer that can assume values from 0 to 255), two major
problems would arise if the ILD algorithm would be applied to such a case: the number of
buckets would be extremely large and each bucket would contain only one image therefore
making the ILD algorithm completely useless, as only perfect buckets will be constructed.

An important further research direction is the expansion of the ILD algorithm to
detect the best performing models that do not overfit the data. In the example of images, it
is clear that being a perfect dataset one could theoretically construct a perfect predictor,
therefore giving a maximum accuracy of 1. The interesting question is how to determine
the maximum accuracy or the best AUC only in cases in which no overfitting is occurring.
This is a nontrivial problem that is currently under investigation by the authors. To address,
at least partially, this problem, the authors have defined a perfection index (IP) that can
help in this regard. IP is discussed in Appendix A.

It is useful to note that this method differs significantly from other works as, for
example, that in [29], where the authors describes RankOpt, a linear binary classifier which
optimizes the area under the ROC curve (the AUC) or that in [30], which presents a Support
Vector Method for optimizing multivariate nonlinear performance measures like the F1-
score. This method is completely model-agnostic (in other words it does not depend on any
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model type) and determines the absolute maximum of the AUC with the given datasets. It
does not try to maximize it, but it finds its absolute maximum.

To conclude, although more research is needed to generalize the ILD algorithm, it is,
to the best knowledge of the authors, the first algorithm that is able to determine the exact
BE from a generic dataset with categorical features, regardless of the predictive models.
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Appendix A

It is very useful to give a measure of how perfect a dataset is with a single number. To
achieve this, a perfection index (PI) IP can be defined.

Definition A1. The Perfection Index IP is defined as

IP ≡
1
M

NB

∑
i=1
|m[i]

1 −m[i]
0 |. (A1)

Note that if a bucket i is perfect then either m[i]
1 or m[i]

0 are zero. In a perfect dataset
B/P = ∅. In this case, from Equation (A1) it is easy to see that IP = 1 as

IP =

∑
i∈B1

m[i]
1 + ∑

i∈B0

m[i]
0

M
= 1 (A2)

where
B1 ≡ {j ∈ [1, NB]|m[j]

0 = 0} (A3)

and
B0 ≡ {j ∈ [1, NB]|m[j]

1 = 0} (A4)

For an imperfect dataset, it is to see that IP will be less than 1. In fact,

IP =

∑
i∈B1

m[i]
1 + ∑

i∈B0

m[i]
0 + ∑

i∈B01

|m[i]
1 −m[i]

0 |

M
(A5)

where
B01 ≡ {j ∈ [1, NB]|m[j]

1 > 0 and m[j]
0 > 0} (A6)

that cannot be one as long as B01 is not empty. There is a special interesting case when
the dataset B is completely imperfect, meaning B0 = B1 = ∅, and for every bucket i with
i = 1, . . . , NB is true that m[i]

1 = m[i]
0 . In this case, regardless of the predictions a model may

make, the accuracy will always be 0.5. In this case, IP = 0. In facts, one can see that in this case

a =
1
M ∑

i∈B̃

[p[i](m[i]
1 −m[i]

0 ) + m[i]
0 ] =

1
2

(A7)
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since m[i]
1 = m[i]

0 and that

∑
i∈B̃

m[i]
0 = ∑

i∈B̃

m[i]
1 =

M
2

(A8)

This index is particularly useful since the following theorem can be proved.

Theorem A1. The perfection index satisfy the relationship

IP = max
SP

a−min
SP

a (A9)

where SP is the set of all possible prediction vectors for the bucket set B. The perfection index
measures that the ranges of possible values that the accuracy (a) can have.

Proof. To start the proof the formula for the maximum (maxSP a) and minimum (minSP a)
possible accuracy must be derived. Starting from Equation (12) and choosing (to get the
maximum accuracy) p[i] = 1 for m[i]

1 ≥ m[i]
0 and p[i] = 0 for m[i]

1 ≤ m[i]
0 the result is

max
SP

a =
1
M

[
∑

m1≥m0

m[i]
1 + ∑

m1≤m0

m[i]
0

]
(A10)

at the same time, by choosing p[i] = 0 for m[i]
1 ≥ m[i]

0 and p[i] = 1 for m[i]
1 ≤ m[i]

0 minSP a can
be written as

min
SP

a =
1
M

[
∑

m1≥m0

m[i]
0 + ∑

m1≤m0

m[i]
1

]
(A11)

To prove the theorem, let us rewrite the maximum accuracy from Equation (A10) as

max
SP

a =
1
M ∑

m1≥m0

[(m[i]
1 −m[i]

0 ) + ∑
m1≤m0

[(m[i]
1 −m[i]

0 ) + ∑
m1≥m0

m[i]
0 + ∑

m1≤m0

m[i]
1 ] (A12)

and using Equations (A2) and (A11) previous equation can be re-written as

max
SP

a = IP + min
SP

a. (A13)

This concludes the proof.

Interpretation of the Perfection Index Ip

In the two extreme cases, if IP is small then the ILD algorithm will give very useful
information. The dataset is “imperfect” enough that an analysis as described is very useful.
The more the value of IP gets close to one, the more the analysis, as it is formulated here,
is less helpful. This is because, in the case of a perfect dataset, a perfect prediction model
can be easily built, and therefore the question of what is the best possible model loses
significance. Note that there is a big assumption made, namely, that a feature bucket with a
few observations contains the same information as one with one thousand observations in
it. In real life, one feature bucket with just one (or few) observation will probably be due to
the lack of observations collected with the given set of features and therefore should be
doubted in its importance.
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