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Abstract: The Ant Colony Optimization (ACO) is a probabilistic technique inspired by the behavior
of ants for solving computational problems that may be reduced to finding the best path through
a graph. Some species of ants deposit pheromone on the ground to mark some favorable paths
that should be used by other members of the colony. Ant colony optimization implements a similar
mechanism for solving optimization problems. In this paper a warm-up procedure for the ACO
is proposed. During the warm-up, the pheromone matrix is initialized to provide an efficient new
starting point for the algorithm, so that it can obtain the same (or better) results with fewer iterations.
The warm-up is based exclusively on the graph, which, in most applications, is given and does not
need to be recalculated every time before executing the algorithm. In this way, it can be made only
once, and it speeds up the algorithm every time it is used from then on. The proposed solution is
validated on a set of traveling salesman problem instances, and in the simulation of a real industrial
application for the routing of pickers in a manual warehouse. During the validation, it is compared
with other ACO adopting a pheromone initialization technique, and the results show that, in most
cases, the adoption of the proposed warm-up allows the ACO to obtain the same or better results
with fewer iterations.
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doi.org/10.3390/a14100295 The Ant Colony Optimization (ACO) is a combinatorial optimization technique in-

spired by the behaviour of some species of ants. Broadly, when an ant must choose one
route instead of the other, he/she looks at the quantity of pheromone left by other members
of the colony. A higher level of pheromone means a better route, usually because it is
shorter if compared to the others. This curious behavior inspired the creation of a proba-
bilistic technique of operational research for solving computational problems, which can be
reduced to finding the best path through a graph. The first version was proposed by [1], and
it was originally called Ant System. Since then, many versions and different applications
of the ACO were studied, and the algorithm is nowadays known to be a well-established
and efficient approach for many practical problems, primarily the well-known traveling
salesman problem (TSP) [2]. Consequently, an improvement in the ACO would lead to
great benefits in many industrial and nonindustrial fields. Being the ACO a metaheuristic
algorithm, most of the problems approached with it are strictly time-critical. Usually, they
are NP-hard problems, in which the global optimum is refused a priori to seek a reasonably
good suboptimal solution. However, the ACO, like all the evolutionary algorithms, needs
many iterations to converge to a good solution, and, in the case of large-size problems,
this process can be very time-consuming [3]. For this reason, the implementation of the
ACO for solving large-size problems in real-time (i.e., a few seconds or even less) might be
problematic. This is the first open problem highlighted also by [4], and this is because the
adoption of a technique able to speed up the ACO may be very useful.
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current quantity of pheromone on each edge of the graph, and it, therefore, determines
the probability to include each specific edge in a newly generated solution. In the classic
version of the ACO, every time the algorithm is executed, all the elements of the pheromone
matrix are set equal to a starting (generally low) value. Then, as the computed iterations
increase, the pheromone on the most promising paths is increased and that on the less
convenient paths is reduced. Although, in most real implementations, the graph of nodes
is given and is the same in every execution. Furthermore, it was verified that, given a
graph, in many cases, each time the ACO was executed, after a certain number of iterations,
the pheromone matrix was always very similar. The warm-up procedure proposed in
this paper aims to carry out a fine-tuning of the pheromone matrix on a specific graph,
so that, every time the ACO is executed, it starts from an already weighted graph, where
the promising paths were highlighted with a high level of pheromone and the bad paths
excluded a priori. This process is supposed to reduce the number of iterations that the ACO
requires to converge every time it is executed. The remainder of this paper is organized
as follows. Firstly, a brief overview of the scientific contributions to ACO is presented in
Section 2. Then, the warm-up procedure proposed in this paper is described in Section 2.
The computational experiments are shown in Section 4, where the ACO with warm-up is
compared to the classic ACO, and two other ACO versions that carry out an initialization
of the pheromone matrix. Finally, the conclusions are presented in Section 5.

2. Literature Review

The Ant Colony Optimization (ACO) was introduced by [1] as a novel nature-inspired
metaheuristic for the solution of hard combinatorial optimization problems. ACO belongs
to the class of metaheuristics, which are approximate algorithms used to obtain good
enough solutions to NP-hard problems in a reasonable amount of time. When searching
for food, some species of ants initially explore the area surrounding the nest randomly. As
soon as an ant finds a food source, it evaluates the quantity and the quality of the food. On
the way back, the ant deposits a chemical pheromone trail on the ground. The quantity of
pheromone deposited depends on the quantity and quality of the food and guides other
ants to the food source. As shown by [5], the communication via pheromone between
the ants enables them to find the shortest paths between their nest and food sources, and
the same consideration also applies in ant colony optimization algorithms for solving
combinatorial optimization problems. Even if the first proof-of-concept application for
the ACO was a traveling salesman problem (TSP), up to now the above algorithm was
applied to many combinatorial optimization problems. For instance, it was applied to
assignment problems [6-8], routing problems [9-11], scheduling problems [12,13]. Less
known but equally efficient applications concern the resource-constrained project schedul-
ing problem [14,15], flow shop scheduling [16], sequential ordering problem [17], and
open shop scheduling problem [18]. The scientific community also proposed many ap-
plications for nonindustrial environments such as solutions for DNA sequencing or web
page ranking [19]. The various variants of the ACO generally differ from each other in
the pheromone update rules. In particular, most applications belong to one of these two
categories: the iteration-best-update or the best-so-far-update. Basically, in the first case,
the update of pheromone takes place at every iteration, while in the second case it takes
place only when a new best solution is found, introducing in this way a much stronger bias
towards the good solutions found. The most successful ACO variants are the Ant Colony
System [20] and the Min-Max Ant System [21], which also are the most used in practice.
Since this claims to be just a brief overview of the key points concerning ACO, for a deeper
analysis of the scientific contributions on this algorithm the literature reviews by [4,22]
are suggested.
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3. Warm-Up
3.1. General Considerations

In most applications where the ACO is used or might be used, the graph of nodes
that characterizes the problem is given and constant. Consequently, even the matrix of the
costs associated with the edges is constant. This is well-known by the practitioners and
affirmed by many scientific publications: see for example [4,23,24], which, indeed, takes
the matrix of the costs as given. For instance, in classic traveling salesman problems for
vehicle routing or picker routing in manual warehouses, the nodes represent the locations
to visit and the costs associated with the edges represent the distance between the two
connected nodes. Hence, the matrix of distances does not change until the roads network
changes (in case of vehicle routing) or the warehouse layout changes (in case of picker
routing). As matter of fact, in almost all the papers that treat these topics, the matrix of
distances is defined only once using an exhaustive algorithm such as Floyd-Warshall to
find the shortest path between all the nodes of the graph (see for instance [10]). Hence,
when the graph and the matrix of costs are formalized, a warm-up may also be carried
out. The warm-up allows a tuning of the pheromone matrix used by the ACO, and, in
this way, every time the ACO is executed from then on, the number of iterations it needs
to converge to a good solution is reduced, and, consequently, its computational time is
reduced. The aim of the warm-up is therefore to highlight a priori the most promising
paths, as well as excluding a priori the worst ones. All these aspects were already affirmed
and well-described also by other scientific contributions focused on the initialization of the
pheromone matrix (see for instance [25,26]).

3.2. The Notation Used

In the remainder of this section, for describing the proposed procedure, the following
notation is used.

e m=1,..., M are the iterations of the warm-up process;

e i,j=1,...,N are the nodes of the graph;

e (Cis the matrix of costs, where each element Ci j is the cost associated to the edge (i, );

* T is the pheromone matrix of the ACO, where each element 7; ; is the pheromone on
the edge (7,/);

*  P(m) is the matrix of probabilities in iteration m, where each element p; ;j(m) is the
probability to increase the pheromone on the edge (i, j) during the iteration m;

*  U(m) is the matrix of updates in iteration m, where each element u; ;(m) says how
much the pheromone on the edge (i,]) is supposed to be increased during the
iteration m;

e a,B,p, Q, 1 are classic and well-known parameters of the ACO [1]: « and B define
the probability to select a specific edge according to the pheromone on it, p € [0, 1]
is known as evaporation rate and defines the decrease of the pheromone that takes
place at each iteration, Q defines the quantity of pheromone laid by the ants at each
iteration, and, 1y is the starting pheromone on each edge;

*  pyu is avariant of p, with a different value used during the warm-up;

e ], is the identity matrix of size AxA;

* ois the Hadamard product.

3.3. The Procedure

The warm-up emulates the update of the pheromone that, in classic ACO, is made during
the first iterations of the algorithm, i.e., those generally aimed to explore the graph. The
procedure is iterative and relatively easy. First of all, the pheromone matrix T is initialized, set-
ting each element 7;; = 19 (V7;; € {1,...,N}|i # j)and 7, = 0 (V7;; € {1,...,N}[i = )).
Similarly, to avoid divisions by zero, all the elements on the diagonal of the matrix of costs
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are made equal to 1 (C = C + Iy). At each iteration m, the probability matrix P(m) is built
by calculating each of its elements as in the following equation.

(i) ()P

i

Zjlio('fi,j)“ : (%)ﬁ

pij = Vijel,...,N M

Note Equation (1) is the same used by many authors and mentioned by [4] to compute
the probability to include the edge (i, j) in the new generated solution at each iteration of
the algorithm. Then, the matrix of updates U (m) is calculated as in Equation (2), according
to [1].

Qi
Upjj=— vi,jel,...,N 2)
Cijj

Then, the pheromone matrix T is updated according to Equation (3). In particular, the
pheromone on each edge is updated according to its cost, and its corresponding value in
the matrix of probabilities.

T =T+ [U(m)o P(m)] 3)

Finally, the pheromone evaporates as expressed in Equation (4).
T=pwu-T 4

The process is then repeated until the maximum number of iterations M is reached.
In general, it is possible to see how the warm-up emulates exactly the same process that
takes place during the iterations of the ACO. However, while during each iteration of the
classic ACO only the pheromone on the edges owning to a new generated best solution
is increased, in this case, at each iteration, all the edges of the graph see an increase of
the pheromone, and this increase is proportional to their attractiveness. This is also a
peculiarity of the proposed approach when compared to existing ones in literature (see
for instance [25] or [26]), which generally initialize the pheromone simply depending on
the cost associated to each edge of the graph. The author is aware that, over the years,
several versions of the ACO were proposed by the scientific community, and most of them
differ from the others for the formulas adopted to calculate the increase of pheromone [27],
the evaporation [9], and the probability to choose an edge instead of the other [28]. On
occasion of this study, reference is made to the first version by [1]. As several different
versions of the ACO exist, many different versions of this warm-up procedure can be made
by doing slight modifications to the formulas.

3.4. The Parameters Tuning

Concerning the tuning of parameters, the same setting analyzed and defined as
‘optimal’ by [1] is used (ie., a =1, =2,p = 09, Q =5, 1p = 0.1). The additional
parameters used in the warm-up that need an optimization are the evaporation rate used
during the warm-up (i.e., pwu) and the number of iterations of the warm-up (i.e., M). There
is no real optimum for these parameters that can be defined a priori; both depend on the
size of the problem, its complexity, and the type of connections in the graph. In occasion of
this study, to carry out a good setting before the computational experiments described in
the next section, three different traveling salesman problem benchmarks are used. Each
of these problems consists in the construction of the cheapest Hamiltonian cycle through
a set of nodes, and each of them has a different complexity identified by the number
of nodes to connect (i.e., 20, 30, 40). Concerning the parameters, three different levels
were identified per each of them, i.e., pwu € {0.5,0.9,1.0} and M € {200,400,600}, and
the ACO with warm-up was tested on each problem using all the possible combinations.
Moreover, because of the randomness of the procedure, given a benchmark problem, and
a combination of pyy, and M, not just a single execution of the ACO was considered;
conversely, the algorithm was executed five times under the same conditions and its
average result and standard deviation monitored. The results are reported in Table 1,
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where is visible that the best results (those highlighted in greed) are obtained for p,; =1
and M = 400. As suggested by puy = 1, the evaporation should be avoided during the
warm up.

Table 1. Parameters’ tuning.

Problem 1 Problem 2 Problem 3
M Pwu (# Nodes: 20) (# Nodes: 30) (# Nodes: 40)
Avg. St.Dev. Avg. St.Dev. Avg. St.Dev.
0.5 58,526 3050 61,487 5541 68,708 6035
200 0.9 58,765 3257 65,716 6749 74,444 9170
1.0 46,455 720 49,971 0 55,726 948
0.5 52,711 2255 65,110 5605 71,279 5114
400 0.9 56,299 6108 67,829 4789 73,006 2915
1.0 46,017 355 49,971 0 55,609 1069
0.5 56,691 4502 64,197 3450 73,063 5743
600 0.9 72,054 2056 65,191 7032 81,485 4261
1.0 46,434 166 50,020 306 55,800 491

4. Computational Experiments
4.1. General Considerations

For validating the efficiency of the proposed warm-up approach, a set of computa-
tional experiments is presented in this section. All the experiments carried out are based
on the traveling salesman problem (TSP), which, to the author’s best knowledge, is also
the most frequent and popular application of the ACO. The objective of the algorithm is
therefore the definition of a low-cost Hamiltonian cycle: given (i) a set of nodes to visit, (ii)
a set of edges connecting them to each other, and (iii) a cost associated to each edge, the al-
gorithm has to define the sequence in which the nodes should be visited that minimizes the
total cost of covered edges. Firstly, a set of generic TSP instances is used. In particular, five
different graphs are generated, and, on each graph, five different experiments of different
complexities are done. Each experiment is taking in consideration a different set of nodes
of the graph: the greater is the set of nodes, the higher is the complexity of the problem.
Then, to validate the proposed approach in a more realistic context, the simulation of a real
industrial case is used. The layout of a manual warehouse for order picking is considered,
and the proposed algorithm is used to define the optimal (or almost optimal) paths made
by pickers to collect the desired products. No capacity limits are imposed on pickers or
aisles, hence the situation is perfectly comparable to a classic TSP, although, the graph is
more constrained and has all the characteristics of those used to model warehouses.

4.2. The Comparison Algorithms

The proposed ACO with warm-up (ACOWU) is compared to a classic ACO (i.e.,
without warm-up) having the same parameters setting, and two ACOs using a pheromone
initialization technique(i.e., [25,26]).

The first comparison algorithm with pheromone initialization proposed by [26] (here-
after simply referred to as Dai) is based on the Minimal Spanning Tree (MST). Given the
graph of nodes, once calculated the MST using the well-known Prim’s algorithm, and
given 1y the starting pheromone on nodes, the pheromone on nodes belonging to the MST
is set to Té/’g.

Conversely, the algorithm proposed by [25] (hereafter simply referred to as Bellaachia)

says to set the pheromone on edge (i, j), namely 7; ;:

1
T

T Y en+ (Ci,z)

where N* (i.e., CN) is the set of nodes, different by j, which can be reached by i.

©)
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4.3. Collected Information

The warm-up is made only once on each graph, while at each run of the algorithms
three main parameters are controlled: (i) the cost of the best solution found, (ii) the
number of iterations needed to find it, and (iii) the computational time. Being all the
observed algorithms subject to a certain randomness, to have a better understanding of
their reliability, they were all iterated 10 times on each experiment, and the average and
standard deviations are therefore reported. For sake of clarity, in all the following tables,
the results of the proposed algorithm are written in bold when it outperforms the classic
ACO, and highlighted in grey every time it outperforms all the other algorithms.

4.4. Results Obtained on Generic TSP Instances

The results obtained on the generic TSP instances are reported in Tables 2—4. In
particular, results concerning the cost of the best solution found are reported in Table 2,
results concerning the number of iterations needed to find the best solution are reported
in Table 3, and computational times are in Table 4. For sake of clarity, the results ob-
tained by the proposed ACOWU are written in bold when it outperformed the classic
ACO without warm-up, and highlighted in gray when it outperformed all the other
comparison algorithms.

Table 2. Results obtained on generic TSP instances in terms of cost.

G N ACO ACOWU Dai Bellaachia
Avg. St.Dev. Avg. St.Dev. Avg. St.Dev. Avg. St.Dev.

0 20 4453 162 4471 159 4496 130 5154 463
0 30 6079 513 5539 118 5497 230 5994 134
0 40 6915 422 6468 171 6782 387 7421 444
0 50 7487 199 7563 382 7565 518 8472 380
0 60 9250 392 8236 276 8106 166 9080 884
1 20 4276 115 4062 121 4146 89 4993 382
1 30 5663 298 5261 148 5627 420 6162 475
1 40 6849 589 6061 373 6301 226 7502 794
1 50 7550 637 6940 216 7414 404 8152 178
1 60 9415 1278 7861 408 8293 828 9572 479
2 20 4693 389 4494 47 4503 148 4964 136
2 30 5731 243 5500 210 5687 252 6484 254
2 40 6940 594 6233 269 6698 408 7639 585
2 50 8853 1029 7873 95 9076 552 9101 492
2 60 9462 348 8612 271 9266 801 10,457 677
3 20 3906 157 3808 68 3874 42 4512 340
3 30 5529 241 5243 141 5514 185 6359 459
3 40 7097 499 6562 140 6955 413 7914 503
3 50 7686 569 7049 217 7798 458 8308 770
3 60 9041 470 8028 150 8261 628 9309 585
4 20 4729 261 4407 167 4510 165 5206 185
4 30 5696 541 5344 270 5857 312 6271 229
4 40 7324 404 6586 266 7342 344 7710 331
4 50 8092 757 7400 139 8113 160 9145 774
4 60 9090 779 8234 296 8730 49 9355 494

As visible in Table 2 and represented in Figure 1, the proposed warm-up allows
the ACOWU to outperform all the other algorithms in almost all the experiments. The
Dai algorithm also performs better than the classic ACO, but it rarely reach equals the
results of the proposed one. The Bellaachia algorithm provides reasonably good results,
although it struggle to reach even the ACO. It is reasonable to believe the authors of
Bellaachia algorithm focused more on the reduction of iterations needed to converge to a
good solution than on the quality of the solution itself.
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Figure 1. Comparison in terms of cost on generic TSP instances.

Table 3. Results obtained on generic TSP instances in terms of solutions explored before finding

best one.
G N ACO ACOWU Dai Bellaachia
Avg. St.Dev. Avg. St.Dev. Avg. St.Dev. Avg. St.Dewv.
0 20 1080 944 1632 627 1063 737 804 938
0 30 638 1143 862 881 700 880 1157 684
0 40 992 887 1497 480 654 491 707 307
0 50 2005 549 1261 648 407 460 977 532
0 60 1064 691 647 360 1666 299 1078 1002
1 20 310 154 919 401 1100 490 381 373
1 30 713 428 935 780 728 747 1092 251
1 40 672 852 812 666 809 916 1046 958
1 50 2050 1258 1112 889 1581 593 840 497
1 60 1186 910 1081 969 1274 836 896 687
2 20 972 715 837 607 883 195 609 387
2 30 1598 982 1083 355 1321 956 612 370
2 40 598 277 1344 896 1293 794 1406 728
2 50 1072 660 1262 699 644 549 1192 953
2 60 1542 993 1613 934 1275 532 1394 610
3 20 1089 687 1101 686 987 640 648 447
3 30 1509 983 969 596 1672 881 846 533
3 40 982 1044 1202 977 981 682 973 798
3 50 1860 1034 727 947 866 1063 885 806
3 60 570 243 819 369 1836 900 766 376
4 20 739 880 1348 917 1254 1067 586 227
4 30 1065 607 1341 912 621 521 907 813
4 40 1391 770 458 635 1575 1016 911 663
4 50 1918 984 868 812 981 634 584 318
4 60 1197 1110 566 357 815 956 1178 1168
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Table 4. Resultsobtained on generic TSP instances in terms of computational time.
ACO ACOWU Dai Bellaachia
G N Avg. St.Dev. Avg. St.Dev. Avg. St.Dev. Avg. St.Dev.

0 20 0.639 0.302 0.794 0.074 0.617 0.211 0.504 0.264
0 30 1.034 0.69 1.19 0.519 1.168 0.572 1.339 0.335
0 40 2.018 0.739 2.401 0.379 1.764 0.491 2.001 0.201
0 50 4.022 0.475 3.922 0.785 2.298 0.702 3.66 1.049
0 60 5.469 1.931 4.065 0.876 6.816 0.863 4515 2.083
1 20 0.349 0.043 0.504 0.107 0.553 0.128 0.355 0.098
1 30 1.008 0.242 1.097 0.371 0.978 0.424 1.124 0.142
1 40 1.568 0.752 1.876 0.563 1.799 0.81 2.032 0.727
1 50 3.788 1.248 3.053 0.991 3.9 0.884 2.815 0.708
1 60 4.765 1.808 4.902 2.114 5.695 2.089 4.717 1.688
2 20 0.63 0.25 0.566 0.189 0.572 0.077 0.513 0.123
2 30 1.669 0.559 1.386 0.242 1.514 0.57 1.051 0.224
2 40 1.869 0.355 2.556 0.795 2.556 0.486 2.675 0.717
2 50 3.833 1.192 4.048 1.422 3.054 1.078 3.7 1.295
2 60 5.965 2.003 6.11 1.496 5.815 1.269 5.97 1.593
3 20 0.692 0.226 0.718 0.229 0.686 0.22 0.538 0.15
3 30 1.578 0.465 1.44 0.429 1.598 0.356 1.236 0.354
3 40 2.011 0.863 2.37 0.569 2.229 0.669 2.142 1.046
3 50 4.535 1.258 2.936 1.394 3.235 1.708 3.203 1.504
3 60 4.087 0.6 4.716 0.979 6.637 1.81 4121 0.966
4 20 0.459 0.211 0.669 0.27 0.573 0.227 0.419 0.059
4 30 1.182 0.35 1.295 0.453 0.923 0.301 1.05 0.434
4 40 2.334 0.736 1.44 0.626 2.394 0.865 1.828 0.64
4 50 3.795 0.964 2.826 1.222 2.988 0.933 2.312 0.467
4 60 4.375 1.93 3.347 0.77 3.724 1.741 4.196 1.889

Tables 3 and 4, Figures 2 and 3 show the comparison in terms of computational time
and solutions explored by the algorithms before finding the best one. In this sense, the Dai
and Bellaachia algorithms are the best ones, although, the difference with the proposed
ACOWU is not that big—i.e., 100-300 milliseconds, which translate into a few milliseconds.
Moreover, even the ACOWU is able to outperform all the others in some experiments. The
experiments in which the ACOWU needs less iterations (and consequently, computational
time) to find the best solutions are also the most complicated instances where the number
of nodes to visit is higher (i.e., 40-60 nodes).

Solutions explored before finding the best

2,000 1

1750 1

1500 1

1,250 1

1000 |

750 1

500 1

250

X
D

ACO

ACOWU

Compared algorithms

Dai

Figure 2. Comparison of iterations on generic TSP instances.

Bellaachia
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Compared algorithms

Figure 3. Comparison of solutions explored on generic TSP instances.

4.5. Results Obtained in the Simulation of the Real Warehouse

After studying the effect of the proposed warm-up on a set of generic TSP instances, it
is in interest of the author to analyze its effect in a more realistic and complex environment.
The simulation of a manual warehouse for picking was therefore used, and the proposed
ant colony optimization with warm-up is used to define the routing of pickers—i.e., once
defined the picking locations the picker has to visit, the order in which they are visited
is defined. The faced problem is essentially a TSP, but the graph of nodes and paths is
more constrained, with less possible paths between nodes and many mandatory walkways.
Importantly, no additional constraints such as capacity of pickers” baskets, definition of
batches, or interference between pickers moving through the aisles are considered.

Starting from the warehouse layout, a graph of accessible positions is generated
placing a node in front of each storage location and a node where aisles cross to each
other, and then, using the well-known Floyd-Warshall algorithm, the matrix of minimum
distances between nodes is generated. The starting warehouse is made of 20 aisles with
16 storage locations each, crossed by a single cross-aisle in the middle (i.e., between the
8th and the 9th locations). Each storage location are 2x2 m, aisles are 4 m wide, while the
cross-aisle is 8 m wide. The resulting graph used in the tests is shown in Figure 4.

The results obtained by the compared algorithms in the simulation of the warehouse
are reported in Table 5 and can be intuitively visualised looking at Figures 5-7 respectively
in terms of (i) cost of the best solution found, (ii) solutions explored before finding the best,
and (iii)) computational times. The results broadly respect what already seen in previous
experiments. On average the proposed ACOWU is still the best in terms of cost even if
sometimes it cannot provide a better solution than the classic ACO, but the same could be
said for the other algorithms using a pheromone initialization strategy. The Dai algorithm is
still in second position and proved to be a very good alternative. Concerning the solutions
explored and therefore the computational time Bellaachia algorithm is the best (as already
seen in previous experiments). However, the proposed ACOWU is again a good alternative
as clearly visible in Figures 6 and 7. Again, as in the previous experiments on generic TSP
instances, the difference in terms of solutions explored and computational time is not that
big. However, the utilization of a pheromone initialization technique, as already proved in
literature, guarantees some advantages over the classic ACO.
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Figure 4. Graph of warehouse used for tests.

Table 5. Results obtained in warehouse.

Cost of the Best Solution Found

N ACO ACOWU Dai Bellaachia
Avg. St.Dewv. Avg. St.Dev. Avg. St.Dev. Avg. St.Dev.
20 543 13 552 15 537 9 714 37
30 604 14 626 15 616 18 864 34
40 804 30 781 18 778 18 1070 44
50 806 30 755 8 792 43 1138 69
60 1026 144 1001 56 995 46 1420 74
Solutions Explored before Finding the Best
N ACO ACOWU Dai Bellaachia
Avg. St.Dewv. Avg. St.Dev. Avg. St.Dev. Avg. St.Dewv.
20 1157 738 707 520 610 555 335 246
30 1111 542 860 665 1091 293 921 477
40 1266 590 1041 343 1660 846 1230 280
50 1009 771 1721 781 1656 861 1096 466
60 1273 1036 1925 401 1460 950 544 373
Computational Times
N ACO ACOWU Dai Bellaachia
Avg. St.Dev. Avg. St.Dev. Avg. St.Dev. Avg. St.Dev.
20 0.473 0.162 0.366 0.111 0.365 0.121 0.289 0.055
30 0.982 0.249 0.872 0.309 0.948 0.131 0.876 0.218
40 1.824 0.43 1.617 0.266 1.961 0.494 1.722 0.217
50 2.334 0.838 3.103 0.748 3.022 0.716 2.494 0.553
60 3.821 1.626 4.847 0.425 3.983 1.274 2.672 0.653
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Figure 5. Results obtained in warehouse in terms of cost.
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5. Conclusions

In this paper, a warm-up procedure for the ACO was proposed and validated. During
the warm-up, the pheromone matrix of the ACO is initialized to provide an efficient new
starting point for the algorithm so that it can obtain the same (or better) results with less
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iterations. The warm-up is based exclusively on the graph made by the nodes and the
edges that formalize the problem. This graph, in most applications, is given, and does
not need to be recalculated every time before executing the algorithm. Because of this,
the warm-up procedure can be made only once when setting the hyper-parameters of the
algorithm to speed it up every time it is used from then on. Firstly, a parameters tuning
was made to find the optimal setting for the warm-up. Then, two set of the experiments
were carried out to validate the proposed approach. The first set of experiments was done
using some generic TSP instances, then, to validate algorithm in a more realistic context,
a second set of experiments in a warehouse for picking was made. The ant colony with
warm-up was compared with a classic ACO (without warm-up), and with two ACO using
a pheromone initialization technique. The results obtained are promising, and the warm-up
approach is generic enough to find application in almost all the contexts where the ACO
can be applied. Of course, the impact and the efficiency of the warm-up might change from
one application to the other, but the preliminary results shown in this paper prove that its
analysis is worth studying, paving the way for many studies and possible extensions.

Funding: This research received no external funding.
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at https:/ /github.com/mattianeroni/AntColony.
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