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Abstract: We develop a global variable substitution method that reduces n-variable monomials in
combinatorial optimization problems to equivalent instances with monomials in fewer variables. We
apply this technique to 3-SAT and analyze the optimal quantum unitary circuit depth needed to solve
the reduced problem using the quantum approximate optimization algorithm. For benchmark 3-SAT
problems, we find that the upper bound of the unitary circuit depth is smaller when the problem
is formulated as a product and uses the substitution method to decompose gates than when the
problem is written in the linear formulation, which requires no decomposition.

Keywords: quantum approximate optimization algorithm; circuit depth; 3-SAT

1. Introduction

The quantum approximate optimization algorithm (QAOA) was introduced to ap-
proximately solve combinatorial optimization problems [1,2]. QAOA research has mostly
focused on a small subset of combinatorial optimization (CO) problems such as MaxCut,
MaxIndSet, and Max k-cover [3–9]. These problems can be easily written as quadratic
unconstrained binary optimization (QUBO) problems by identifying each variable with a
qubit. QUBOs are implementable on current hardware [10,11]. Recent work has examined
how QAOA can be used on CO problems that can be written as polynomial unconstrained
binary optimization (PUBO) problems [12,13]. When solving a CO problem using QAOA,
each monomial in k vertices in the problem formulation corresponds to a k qubit gate.
The unitary circuit depth for one layer of QAOA for combinatorial optimization problems
was shown in [14] to be the edge chromatic number of the graph, or hypergraph, derived
from these problems. Here the unitary circuit depth is the number of layers of one- and
two-qubit unitary operators that are performed in series to implement the circuit. When the
combinatorial optimization problem can be written as a QUBO, the derived graph is not a
hypergraph, so the edge chromatic number is either the maximum degree, or the maximum
degree plus one [15]. When the derived graph is a hypergraph, the edge chromatic number
may be more difficult to compute.

Some classes of combinatorial optimization problems, however, can be written in more
than one way, where each formulation may have monomials of different sizes. For example,
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Boolean satsfiability problems (SAT) can be written as a QUBO or a more general PUBO.
SAT problems have been studied extensively in a classical setting [16,17] but there have
been few studies into solving them in a quantum setting [18]. They form the backbone
of complexity theory and can be written in a linear form, which requires two-qubit gates
to implement, or a product form, which requires larger multi-qubit gates. Since these
larger multi-qubit gates are not easily implementable on current hardware, polynomial
formulations must be decomposed into sums of two variable monomials. We show in
the context of 3-SAT that decomposing the PUBO can lead to a shallower circuit needing
fewer qubits than using the natural QUBO formulation [14]. This has implications for more
general combinatorial problems, as modeling approaches can have a significant impact on
the design of the resulting circuit.

In this paper, we first review QAOA, the classical linear and product formulations
of SAT problems, and how they translate to QUBOs in Section 2. Then, in Section 2.5, we
introduce a substitution method, called the global variable substitution (GVS) method,
to decompose monomials consisting of k ≥ 3 variables into ones that can be implemented
on current hardware. Next, we discuss how to optimize GVS for 3-SAT problems in
Section 2.6 and then apply this work to instances from the SATLIB Benchmark Problems
suite [19] in Section 3. Finally, we summarize the results and discuss future work in
Section 4.

2. Materials and Methods

In this section, we review QAOA, dualization, and the 3-SAT problem.

2.1. QAOA

In order to use QAOA to solve a CO problem, we apply two operators, U(C, γ) = e−iCγ

and U(B, β) = e−iBβ, in succession on an initial state. The initial state is the uniform
superposition, |s〉 = 1√

2n ∑z |z〉, where the sum is over the computation basis |z〉. The
outcome of one iteration of QAOA is

|γ, β〉 = U(B, β)U(C, γ)|s〉.

Here C encodes the problem to be solved and B is a mixing operator. Often, C is the sum
over a collection of clauses, C = ∑a Ca, and B is typically B = ∑v∈V(G) Bv, where Bv = σx

v

is the Pauli-X operator acting on the vth qubit. For more detail about QAOA, see [1,2,20].
There is a direct correlation between the circuit depth and level of noise in a quantum

circuit [21–23], so it is important to consider the circuit depth when developing a circuit
that implements QAOA. Throughout this paper, we use unitary circuit depth to mean the
depth of the unitary operators needed in a circuit. The actual circuit depth would be the
unitary circuit depth times the number of gates needed to implement each operator. In the
next subsection, we review dualization and the related previous work that determines the
unitary circuit depth of one iteration of QAOA.

2.2. Dualization and Unitary Circuit Depth

Previously [14], we considered the method of dualizing constraints to solve CO
problems of the form

min c(x) (1)

s.t. pi(x) ≤ bi ∀i ∈ P (2)

x ∈ {0, 1}n (3)

where pi is contained in the collection of polynomial constraints P. Both pi and c are poly-
nomial functions in Rn[x1, x2, ..., xn] and bi ∈ R. We eliminate constraints via dualization by
subtracting bi from both sides, adding in slack variables, squaring both sides, and adding
the new expression to the objective function [14]. The derived (hyper)graph from dualization
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is one in which there is a vertex for each variable and (hyper)edges between variables that
appear in a monomial together. For example, if x1x2 appears in the dualization, there is an
edge between vertices x1 and x2.

In graph theory, a proper edge coloring of a graph is a function f : E(G)→ [k] such
that if two edges share a vertex, they receive different values, e.g., uv and xv, f (uv) 6= f (xv).
Given the set [k] = {1, ..., k}, each element of this set can be thought of as a color, hence the
name edge coloring. The smallest number m such that a proper edge coloring of a graph G
is possible with m colors is denoted χ′(G) and called either the chromatic index or the edge
chromatic number. It has been shown that chromatic index of the derived (hyper)graph is
directly related to the unitary circuit depth of one iteration of QAOA, if the size of each
monomial in the objective function is at most the gate size the hardware can support [14].
In particular, the following theorem holds:

Theorem 1. Let H be the hypergraph derived from a combinatorial optimization problem instance.
Every proper edge coloring of H corresponds to a valid circuit for a PUBO, where the unitary depth
of the shallowest circuit is χ′(H) + 1.

Unitary Circuit Depth Example: MaxCut

We will consider MaxCut as an example for how to construct a quantum circuit with
minimal unitary depth. This process applies when determining the unitary circuit depth
for QAOA to solve a general combinatorial optimization problem. Consider the triangle
graph, which consists of three vertices that are pairwise adjacent, as seen in Figure 1. In the
combinatorial optimization problem MaxCut, the vertices of a graph, G = (V, E), are
partitioned into two sets such that the number of edges with an end point in each set is
maximized. This problem can be formulated as

min
x∈{0,1}n ∑

ij∈E(G)

xj(xi − 1) + xi(xj − 1) = min
x∈{0,1}n ∑

ij∈E(G)

2xixj − xi − xj

In order to solve MaxCut on the triangle graph, we want to minimize

2(x1x2 + x1x3 + x2x3)− 2(x1 + x2 + x3).

x1

x2

x3

Figure 1. A triangle graph.

There are three vertices in the derived graph for this function, namely x1, x2 and x3.
There are also three edges, which are x1x2, x1x3, and x2x3. Thus, the derived graph for
this combinatorial optimization problem is also a triangle. To calculate the unitary circuit
depth, we will properly edge color this graph in Figure 2. This graph requires three colors
to be properly edge colored. Since each edge color class must be implemented in series, the
unitary circuit depth is four, which is seen in Figure 3.
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x1

x2

x3

Figure 2. The edge colored graph derived when solving MaxCut on a triangle.The solid black is one
color class, and red densely dotted and blue dashed are the other two. There are three colors needed
to properly edge color this graph, so the unitary circuit depth is four.

|x1〉
Cx1,x2

Cx1,x3 B1

|x2〉
Cx2,x3

B2

|x3〉 Cx1,x3 B3

Figure 3. The unitary circuit required to solve MaxCut using QAOA. Note that no two qubit unitary
operators can be implemented simultaneously since any two act on one common qubit. Here, Cx1,x3 is
a two qubit unitary, but is drawn as two single qubit unitary operators to avoid overlapping with |x2〉.

2.3. SAT

A Boolean satisfiability problem (SAT) is one type of CO problem that has the form
of Equations (1)–(3). It is defined by a collection of clauses, C, consisting of N literals.
The goal is to determine if the values TRUE or FALSE can be assigned to each literal in a
clause such that every clause is TRUE. This problem is classically NP-complete [24], even
when each clause contains only three literals. When each clause contains precisely three
literals, the problem is known as a 3-SAT problem. We will use 3-SAT as the key example
throughout the paper. Each clause has the form yi ∨ yj ∨ yk where yi ∈ {xi,v xi}. Now,
we look at two formulations of 3-SAT problems.

2.3.1. SAT Linear Formulation

Let {zc}c∈C be the collection of variables indicating if clause c is satisfied, and xi be
the indicator variable denoting if literal i is satisfied. Let TRUEc be the set of literals that
must be true to satisfy c, and FALSEc the rest. Then, 3-SAT can be written as

max ∑
c∈C

zc (4)

s.t. ∑
xi=TRUEc

xi + ∑
xi=FALSEc

(1− xi) ≥ zc ∀c ∈ C (5)

xi, zc ∈ {0, 1}. (6)

Equation (5) has this form because 3-SAT is defined to have only OR conditions, so
at least one xi must be satisfied when zc = 1. Standard QAOA does not have a way to
incorporate constraints; we therefore adopt the aforementioned strategy of dualizing the
constraints to yield an unconstrained optimization problem suitable for QAOA as follows.

Before we can dualize Equation (5), we must change the inequality so it matches that
of Equation (2). We therefore take the contrapositive of each constraint so Equation (5)
has the form ∑xi=TRUE(1− xi) + ∑xi=FALSE xi ≤ 2 + zc. We can express this constraint as
an equality,

∑
xi=TRUE

(1− xi) + ∑
xi=FALSE

xi + δc,1 + δc,2 = 2 + zc,
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by introducing two slack variables δc,1 and δc,2 that guarantee equality holds for any choice
of xi satisfying the constraint.

Let us define

fc({xi, δc,j}, zc) = ∑
xi=TRUE

(1− xi) + ∑
xi=FALSE

xi + δc,1 + δc,2 − (2 + zc).

The quantity fc({xi, δc,j}, zc) is equal to zero when the constraints are satisfied. 3-SAT can
now be expressed as an unconstrained optimization problem by introducing −λ f 2

c as a
penalty term

max ∑
c∈C

(zc − λ fc({xi, δc,i}, zc)
2)

xi, δc,i, zc ∈ {0, 1}.

where λ is a large number [25]. The variables xi, δc,j, and zc can take values of either
0 or 1, however, choices that violate fc = 0 give penalties λ fc({xi, δc,i}, zc)2 < 0. This
ensures that the optimal solution is identical to the original constrained problem. Since we
introduce two δ variables and one z per clause in the dualization, this formulation requires
3|C| ancillary qubits. The term −λ ∑c∈C fc({xi, δc,j}, zc)2 must be expanded in order to
determine all of the edges of the derived graph.

The unitary circuit depth for one layer of QAOA is the chromatic index plus one,
and the chromatic index is either the maximum degree of the derived graph, or the
maximum degree of the derived graph plus one. Thus, the unitary circuit depth is either
the maximum degree of the derived graph plus one or the maximum degree of the derived
graph plus two.

To compute the maximum degree, let Cxi ⊂ C be the set of clauses containing xi. Then
the degree of the xi in the derived graph is

deg(xi) = 5|Cxi | − ∑
j,j 6=i

(|Cxi ,xj | − 1)

where Cxi ,xj = Cxi ∩ Cxj is the set of clauses containing both xi and xj. This value lies
between 3|Cxi | and 5|Cxi |. The lower bound is because xi is adjacent to both δ variables
and one z per clause and the upper bound is because xi can also be adjacent to distinct
xj and xk in each clause. Notice that deg(δi,j) = 5 and deg(zc) = 5. Since deg(xi) ≥ 5 for
some i, the maximum degree of the graph is maxi{deg(xi)}, so the unitary circuit depth
for one layer of QAOA is either maxi{deg(xi)}+ 1 or maxi{deg(xi)}+ 2.

2.3.2. SAT Product Formulation

Alternatively, SAT can be written as a product of monomials. To see this, note that
xi ∨ xj ∨ xk is satisfied if (xi − 1)(xj − 1)(xk − 1) = 0. Thus, we can write SAT as the
polynomial unconstrained binary optimization (PUBO) problem

∑
C

∏
xi=TRUEc

(1− xi) ∏
xi=FALSEc

xi = 0,

where xi indicates if literal xi is satisfied. There are no ancillary qubits needed to write this
PUBO, however expanding it does give monomials in three variables, as seen in Table 1.
A straightforward implementation of an n variable monomial requires an n-qubit gate,
however, current hardware is often limited to two-qubit gates. We therefore need a method
to decompose these large monomials into products of at most two variables.
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Table 1. The product reformulation and expansion of 3-SAT clauses. In this chart, we let xbxc = ub,c.
The last three columns count the contribution to the degree of each variable from the monomials in
two vertices that are not substituted. This contribution is only added the first time the two variable
monomial appears. For example, if xaxb appears in more than one clause, we only add one to the
degrees of xa and xb. Since xbxc = ub,c, we do not add one to the degrees of xb and xc whenever xbxc

appears in a clause. The number in each degree column is added to the degree from Theorem 2 to
calculate the degree of vertex xi in the derived graph.

Clause Expansion deg(xa) deg(xb) deg(xc)

xa ∨ xb ∨ xc 1− xa − xb − xc + xaxc + xbxc + xaxb − xaxbxc 2 1 1

v xa ∨ xb ∨ xc xa − xaxb − xaxc + xaxbxc 2 1 1

xa∨ v xb ∨ xc xb − xaxb − xbxc + xaxbxc 1 1 0

v xa∨ v xb ∨ xc xaxb − xaxbxc 1 1 0

xa∨ v xb∨ v xc xbxc − xaxbxc 0 0 0

v xa∨ v xb∨ v xc xaxbxc 0 0 0

2.4. Example: Linear and Product Formulations

Consider the 3-SAT problem

Example 1.

x1 ∨ x2∨ v x3

x1 ∨ x3 ∨ x4

v x2 ∨ x4 ∨ x5

x1∨ v x2 ∨ x5.

Labeling the indicator variable for the first clause z1, the second z2, and so on, we can
write the objective function for this problem as

max
4

∑
c=1

zc

subject to the constraints

x1 + x2 + (1− x3) ≥ z1,

x1 + x3 + x4 ≥ z2,

(1− x2) + x4 + x5 ≥ z3,

x1 + (1− x2) + x5 ≥ z4,

xi, zc ∈ {0, 1}.

We consider the unitary circuit depth for one layer of QAOA to solve this problem.
First, we look at the linear characterization found in Section 2.3.1. Then, we look at the
product formulation and compare the degrees of the resulting derived graphs to determine
the unitary circuit depth for one layer of QAOA from each method, assuming three qubit
gates are possible. We next devise a variable-substitution method to use the product
formulation in Section 2.5, and analyze the unitary circuit depth for a two-qubit gate
implementation of the product formulation in Section 2.5.3.

2.4.1. Linear Formulation

When we use the linear formulation of the above problem, the contrapositive of the
simplified dualized constraint for the first clause is

−x1 − x2 + x3 − z1 ≤ 0.
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In order to dualize the constraint, we add in two slack variables, δ1,1 and δ1,2 and
change the inequality to equality to obtain

−x1 − x2 + x3 − z1 + δ1,1 + δ1,2 = 0.

Upon squaring both sides, we get all terms of the form xixj, xiz1, xiδ1,k, z1δ1,k, and
δ1,1δ1,2 where i 6= j, i, j ∈ {1, 2, 3} and k ∈ {1, 2}. The other clauses are handled similarly
and the derived graph is found in Figure 4. The degree of the vertex that is maximal in the
derived graph is thirteen, so the unitary circuit depth is either fourteen or fifteen for one
layer of QAOA.

x1

x2

x3

x4

x5

z1

z2

z3

z4

�1,1 �1,2 �2,1 �2,2

�3,1 �3,2 �4,1 �4,2

Figure 4. The derived graph for the dualization of the linear formulation of Example 1. The maximum
degree of the graph is 13, the chromatic index of this graph is either 13 or 14, and the unitary circuit
depth for one layer of QAOA is either 14 or 15.

2.4.2. Product Formulation

Instead of solving the linear formulation, each clause can be rewritten as a product
of combinations of xi and (1− xj). For Example 1, the first statement holds if and only if
(1− x1)(1− x2)x3 holds. Upon expanding, we get the expression x3− x1x3− x2x3 + x1x2x3.
The other clauses are handled similarly. If there are three-qubit gates, this method requires
no ancillary qubits.

Expanding the product formulation of a single 3-SAT clause results in a monomial
that contains three variables and possibly one or more monomials in two variables. The
variables that occur in degree two monomials are all contained in the three variable
monomial. Since each monomial represents a gate that acts on the qubits contained in the
monomial, we need only implement the three-qubit gates from each clause. Thus, we can
eliminate all edges from the derived graph and are left with a hypergraph, Figure 5. The
unitary circuit depth is equal to the chromatic index of the hypergraph plus one.



Algorithms 2021, 14, 294 8 of 21

x1

x2

x3

x4

x5

Figure 5. The derived graph for the product formulation of Example 1. There are four hyperedges:
x1x2x3 in dashed blue, x1x3x4 in black, x2x4x5 in dashdotted green, and x1x2x5 in densely dotted
red. The chromatic index of the graph is four and the unitary circuit depth is five.

2.5. Global Variable Substitution

The previous sections assume that three-qubit gates are possible on the hardware,
however, that may not always be the case. Thus, we examine how to decompose monomials
in three or more variables via a process called global variable substitution (GVS). In order
to substitute variables, we require constraints on the problem to ensure the substitution
is valid. We then eliminate the constraints via dualization and can determine the unitary
circuit depth of one layer of QAOA.

Let us define a substitution of size s as one in which s variables are combined into
one, e.g., x1x2...xs = u1,2,...,s. Throughout the remainder of this paper we use the boldface
variable j to refer to lists of indices, j = (j1, j2, ...jm), where ji ∈ N ∀i ≤ m. A substitution is
denoted uj = xj1 xj2 ...xjm . When we wish to refer to specific substitutions, we will specify
indices of the variables, e.g., ui,j = xixj.

The goal of this work is to write an n variable monomial as a product of two variables.
One variable replaces s of the variables of the original monomial, and another variable is
substituted for the remaining n− s. Since the order of the variables in each monomial is not
important, we assume without loss of generality that the first s variables are substituted for
one variable and the last n− s for the other. In this formulation, we allow no overlap in the
substitutions, i.e., if xi is a variable in the substitution of size s, then it is not a variable in
the substitution of size n− s.

In order to substitute a new variable u1,...,s for x1...xs, we add in the constraints

uj = ∑
i∈[|uj|]

xi −
muj

∑
i=1

δc,k − (|uj| − 1) (7)

uj = xi − δc,muj+k ∀i ∈ [|uj|] (8)

where |uj| denotes the number of variables uj replaces and muj ∈ {1, ..., s}, depending on if
xi takes the value of 0 or 1 for each xi. The first constraint ensures that if xi = 1 ∀ i, then
u1,2,...,s = 1, while the second guarantees that if xi = 0 for some i, then u1,2,...s = 0. Note
that |uj| = sj, so the two can be used interchangeably. After dualizing these constraints,
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we are able to determine the degree of each vertex in the derived graph. To facilitate the
discussion, in Theorem 1 we focus only on the vertices and edges associated with the
dualized substitution terms, which form a sub-graph of the total derived graph. We then
show how these are related to the total derived graph and describe how to compute the
unitary circuit depth for one layer of QAOA in Section 2.5.2.

2.5.1. Degree of Substituted Variables

We now give a formula for the degrees of vertices δc,k and uj, as well as determine the
contribution of each substitution to the degree of xi. These degrees, in conjunction with
the xixj terms, can be used to compute the unitary circuit depth, as shown explicitly in the
example of Section 2.5.3.

Theorem 2. Let U denote the set of all substitutions made. Let us denote the set of substitutions
containing xi as Ui. For uj ∈ U we let |uj| denote the number of variables substituted in substitution
uj. The number of edges incident to each vertex in the derived graph due to the substitution is
denoted degs(v) and is

degs(δc,k) ∈ {2, |uj|+ muj}
degs(xi) = ∑

uj∈Ui

[
|uj|+ muj + 1

]
− ∑

p∈[n]\i
zi,p
[
|Ui ∩Up| − 1

]
+ |C′xi

|

degs(uj) = 2|uj|+ muj + |Cuj |

where muj denotes the number of δc,k variables in Equation (7) for the substitution j, zi,p is an
indicator variable denoting whether or not Ui ∩Up = {∅}, |C′xi

| refers to the number of monomials
containing xi which do not have any us containing xi substituted, and |Cuj | refers to the number of
monomials with more than two variables using the substitution uj.

Proof. First, we will consider the degree of each δc,k by counting the number of terms
that contain δc,k in each dualized constraint. Note that in the first constraint, there are
1 + |uj|+ m variables total, so |uj|+ m of these are multiplied times a single δc,k term upon
dualization. Thus, the degree of δc,k in this constraint is |uj|+ m. In each of the following
constraints, note that there are three variables: uj, xi and δc,k. Thus, the degree of δc,k from
these constraints is 2. Since the δc,k terms in each constraint are different, they do not add,
so degs δc,k ∈ {2, |uj|+ muj}.

Next, we consider the degree of each xi in the graph derived from the dualization.
In the first constraint, there are |uj|+ muj terms containing each xi and there is exactly
one constraint aside from the first that contains xi. This constraint only has two terms
containing xi, but the contribution to the degree from this is one since the edge ujxi already
exists in the graph from the first constraint. Now, we must consider how many uj contain
xi as a variable. If there is more than one substitution containing xi, there are multiple
constraints that have the form of the first one. Each of those constraints contain new uj
variables and new δc,k variables since the substitutions are different. Thus, the only double
counting that can happen is in products of xixj, since these are the only other edges possible
in the graph derived from the dualization. We must subtract the number of times each
of these terms occurs in each constraint except for one. Additionally, we must count the
clauses that contain xi but in which xi is not contained in a substitution, since it will be
incident to the substitution in the derived graph. We denote the number of these clauses as
|C′xi
|. Then, degs(xi) =

[
∑uj∈Ui

|uj|+ muj + 1
]
−∑p∈[n]\i zi,p

[
|Ui ∩Up| − 1

]
+ |C′xi

|.
Finally, we need to consider the degree of each substituted variable, uj. The first

constraint contributes |uj|+ m to the degree and the other |uj| constraints contribute 1
to the degree since the first constraint accounts for the ujxi terms. Finally, each uj is
substituted into a clause, so is multiplied by the variable not contained in the substitution.
We denote the number of clauses into which uj is substituted as |Cuj |. Thus, degs uj =
2|uj|+ muj + |Cuj |.
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The derived graph for the problem consists of variables and edges induced by the
substitution, as well as variables and edges xixj that exist in the original problem. The
variables specific to the substitutions, δc,k and uj, have degrees determined solely by
Theorem 2. The chromatic index of the derived graph is the unitary circuit depth for one
layer of QAOA, and the maximum of the degrees from Theorem 2 plus one provides a
lower bound for this quantity. We show how to compute the exact unitary circuit depth in
Section 2.5.2, including the extra edge terms xixj.

2.5.2. 3-SAT

Notice that Theorem 2 reduces to

deg(δc,k) ∈ {2, 3}
deg(xi) =

[
∑

uj∈Ui

4
]
+ |C′xi

|

deg(uj) = 5 + |Csj |

for 3-SAT since |uj| = 2, zi,p|Ui ∩Up| ∈ {0, 1}, and m = 1. This is the degree for each
variable due to the substitution. In order to determine the total degree, we need to look at
two variable terms in the expansions and add one to the degree for each unique term.

To compute the unitary circuit depth for one layer of QAOA, we must compute the
maximum vertex degree in the derived graph. We focus here on the example of 3-SAT.
A similar approach can be used to decompose other classes of combinatorial optimization
problems. In order to calculate the total degree of a vertex in the derived graph from
3-SAT, we need to add the degrees of a vertex due to a substitution uj, from Theorem 2,
to the degree from two vertex monomials that were not substituted. Since δc,k and ui,j are
introduced in order to make the substitutions, their degrees are exactly the quantity in
Theorem 2.

In order to count the number of edges induced by pairs that are not substituted, we
define P as the set of all two variable monomials that result from the expansion of the
product formulation of each clause in a 3-SAT instance. These two variable monomials
will be denoted si,j. For example, if we have the clauses (1− x1)x2x3 = x2x3 − x1x2x3
and (1− x2)x4(1− x5) = x4 − x2x4 − x4x− 5 + x2x4x5 and the substitutions u1,3 and u4,5
are made, in this case, P = {x2x3, x2x4}. The subset of P containing a vertex a is denoted
Pa. Here, P2 = P, since x2 is in each monomial, P3 = {x2x3}, and P4 = {x2x4}. Let
||P|| = (|P1|, |P2|, ..., |Pn|).

These sets can be used to determine the number of edges incident to a vertex xi that
are from the two variable terms in the expansions of each clause, which we denote dege(xi).
Let us fix variable xi. Since |Pi| counts the number of two variable terms containing xi, it is
added to Theorem 2. If one of the two variable terms from the expansion of the clauses
is substituted, i.e., if xixj ∈ Pi and ui,j is a substitution, then adding |Pi| to the degree
double counts the edge xixj. Thus, the number of substitutions that appear in Pi need to
be subtracted. If Si is the set of substitutions containing variable xi and ys is an indicator
variable that determines if the substitution si,j was used, the total degree of xi is

deg(xi) = 4 ∑
si,j∈Si

ysi,j − ∑
si,j∈Pi

ysi,j + |Pi|+ |C′xi
| = degs(xi) + dege(xi),

where dege(xi) = −∑si,j∈Pi
ysi,j + |Pi|.
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The QAOA unitary circuit depth is then given as max{deg(δc,k), deg(xi), deg(ui,j)}, where

deg(δc,k) ∈ {2, 3} (9)

deg(xi) = 4 ∑
si,j∈Si

ysi,j − ∑
si,j∈Pi

ysi,j + |Pi|+ |C′xi
| (10)

deg(ui,j) = 5 + |Cui,j |, (11)

for 3-SAT. Note that δc,k ∈ {2, 3} since the size of each substitution |ui,j| = 2 and
m = n− |ui,j| = 3− 2 = 1, which also simplifies deg(ui,j). Furthermore, note that Ui ∩
Up ∈ {0, 1} ∀ i 6= p, i, p ∈ [n], which simplifies deg(xi).

2.5.3. Example: Global Variable Substitution

To give an example of the GVS method, we will apply it to the product formulation
of Example 1. We want to decompose the three-variable terms into two-variable terms
by substituting a new variable to represent the product of the variables. In order to do
so, we first choose substitutions and then create the derived graph. For Example 1, we
substitute x1x3 = u1,3 and x2x5 = u2,5. Thus, the first clause, which can be written
as x3 − x2x3 − x1x3 + x1x2x3 is equal to x3 − x2x3 − u1,3 + u1,3x2. With the substitution
x1x3 = u1,3, the edge x1x3 is already accounted for in the first constraint. We then need
only add the edge between x2 and x3 to the derived graph since the monomial x2x3 exists
in the expansion of the first clause. Note that each clause can be decomposed similarly
and will end up with a sum of terms, at least one of which contains three variables, with
the others containing one or two depending on the number of (1− xi) expressions. The
other edges that need to be added due to the two variable terms in the expansions are x1x4,
x3x4, x1x2 and x2x4. See Table 1 for the contribution of unsubstituted monomials from a
particular clause to dege(xi) for a generic substitution xbxc = ub,c. The increase in degree
ranges from 0 to 2, with the maximum addition being k− 1 for general k-SAT.

Next, we list each constraint of the form Equations (7) and (8) and dualize them.
For the first clause c = 1 in the example,

u1,3 = x1 + x3 + δ1,1

u1,3 = x1 + δ1,2

u1,3 = x3 + δ1,3.

When dualizing these constraints, the terms

(u1,3 − x1 − x3 − δ1,1)
2 = u1,3 + x1 + x3 + δ1,1 − u1,3x1 − u1,3x3−
u1,3δ1,1 + x1δ1,1 + x3δ1,1 + x1x3 (12)

(u1,3 − x1 − δ1,2)
2 = u1,3 + x1 + δ1,2 − u1,3x1 − u1,3δ1,2 + x1δ1,2 (13)

(u1,3 − x3 − δ1,3)
2 = u1,3 + x3 + δ1,3 − u1,3x3 − u1,3δ1,3 + x3δ1,3 (14)

are added to the objective function, up to constant λ, and similar terms are added for the
u2,5 substitution. Since all variables, v, in the equations above have the value zero or one,
v2 = v. The entire derived graph can be seen in Figure 6. Note that the degrees match the
theorem plus the number of edges induced by pairs that are not substituted. The largest
degree vertex is x2, which has degree eight, so the unitary circuit depth for one layer of
QAOA is either nine or ten. This is less than the unitary circuit depth for the linear 3-SAT
formulation and requires fewer ancillary qubits.
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x1

x2

x3

x4

x5

u1,3

u2,5

δ1,1

δ1,2

δ1,3

δ2,1

δ2,2

δ2,3

Figure 6. The derived graph for solving Example 1 using GVS with substitutions x1x3 = u1,3 and
x2x5 = u2,5. The vertices of this graph are the variables from the problem, xi for i ∈ [5], along with
the substitution variables, u1,3 and u2,5, and the three δc,k variables needed per substitution. The solid
edges correspond to the edges induced by the substitution, which correspond to products of two
monomials in the Equations (12)–(14). The dashed edges represent the two variable terms from the
expansion of the 3-SAT clauses that are not involved in substitutions. The maximum degree of this
graph is 8, thus the unitary circuit depth for one layer of QAOA is 9 or 10.

2.6. Optimizing Global Variable Substitutions for 3-SAT

As seen above, the number of substitutions impacts the degrees of the vertices. We
want to minimize both the number of ancillary qubits and the maximum degree of the
derived graph. This problem is difficult for large gates, but in this section, we explore how
to solve this problem with gates with three or fewer variables such as in 3-SAT.

2.6.1. Global Variable Substitution Integer Program

Each substitution introduces new variables that correspond to ancillary qubits and
impacts the degree of each vertex in the derived graph. In order to determine which of the
possible combinations of substitutions are feasible, we create a graph G = (V(G), E(G)),
which we call the lcovering graph. There are two sets of vertices in this graph. One set is
the set of all 2-sets representing all possible two-variable substitutions ui,j = xixj. We call
this set of vertices S and denote the pairs xixj in S as si,j. Each si,j is a possible substitution,
but not each si,j will result in a substitution ui,j. The other set is the one containing all three
variable terms from the expansion, which we will call the lexpansion 3-set, ES3. Edges are
placed between vertices g and h if the variables in the label of g are a proper subset of the
variables in the label of h. There are no edges between any sets of the same size, making
the graph bipartite. See Figure 7 for an example, where S is the left set of vertices and ES3
is the right set for Example 1.
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x1x2

x1x3

x1x4

x1x5

x2x3

x2x4

x2x5

x3x4

x3x5

x4x5

x1x2x3

x1x3x4

x2x4x5

x1x2x5

Figure 7. The covering graph for Example 1. We have emphasized all three different coverings by
coloring the edges differently for each covering. They are the red dotted, blue dashed, and black
solid edges.

The nature of this problem naturally lends itself to a set covering or bipartite matching
style formulation as each substitution ui,j can cover, or be matched with, any clause
containing the literals in that substitution. We have chosen to use a set covering problem
formulation, i.e., we want to find a subset of S such that each vertex in ES3 is incident to a
vertex in the subset. Since covering a vertex in ES3 more than once leads to unnecessary
ancillary qubits and increases the degree, we need to add constraints to ensure that each
clause c ∈ C is covered by exactly one substitution ui,j. Notice that more than one covering
may be possible as seen in Figure 7.

The objective of 3-SAT is to minimize the maximum degrees found in Equations (9) and (11),

min max{deg(δc,k), deg(xi), deg(ui,j)}

which are derived from the GVS method. The covering graph developed in the previous
paragraphs is used to aid in the minimization process. The integer program formulation of
this problem is subject to the set covering constraints. Each clause xixjxk = c is covered by
a pair si,j = xixj and has a variable xk that is not in a substitution. The indicator variable
z(c, si,j, xk) is defined as

z(c, si,j, xk) =

{
1 if covering (si,j, xk) is selected to cover clause c
0 else

.

The full integer program formulation to minimize the maximum degree vertex in the
derived graph, obj, is as follows:
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min obj +
1

10|C| ∗∑
s∈S

ys (15)

s.t. 4 ∑
si,j∈Sa

ys − ∑
si,j∈Pa

ysi,j + |Pa|+ ∑
c∈C

∑
{si,j∈S | a/∈si,j}

z(c, si,j, xa) ≤ obj ∀a ∈ V (16)

5 + ∑
c∈C

z(c, si,j, xk) ≤ obj ∀s ∈ S (17)

∑
s∈S

z(c, si,j, xk) = 1 ∀c ∈ C (18)

∑
c∈c

z(c, si,j, xk)− ysi,j ≤ 0 ∀s ∈ S (19)

obj ∈ Z+ (20)

ysi,j , z(c, si,j, xk) ∈ {0, 1}. (21)

Equation (15) is our objective function. We have added the penalty 1
10|C| ∗ ∑si,j∈S ysi,j in

Equation (15) which minimizes the total number of unique substitutions to help minimize
the number of ancillary qubits. Equation (16) indicates that the maximum degree of each
vertex must be less than or equal to the objective value. The last term of this constraint
counts the number of clauses that contain variable xa but in which xa is not substituted. This
is equivalent to |C′xa | in Theorem 2 and the example. Similarly, Equation (17) indicates that
the maximum degree of any substituted variable must be less than or equal to the objective
value. These two constraints effectively allow us to minimize the maximum degree of the
graph. Note, the degree of the slack variables are not included in this formulation as they
are either 2 or 3 and will never yield the maximum degree in a problem of sufficient size.
Equation (18) is our set covering constraint. This asserts that each c ∈ C is required to
be covered by exactly one covering si,j, xk. Equation (19) asserts that if at least one c ∈ C
substitutes the pair si,j, ysi,j is set to 1.

2.6.2. IP Formulation and Solution for Example 1

Let us examine Example 1,

x1 ∨ x2∨ v x3

x1 ∨ x3 ∨ x4

v x2 ∨ x4 ∨ x5

x1∨ v x2 ∨ x5.

The reformulation and expansion of each of these four 3-SAT clauses yields a three variable
monomial c, two variable monomials si,j ∈ P, and potential coverings (si,j, xk).The first
statement holds if and only if (1− x1)(1− x2)x3 = x3 − x1x3 − x2x3 + x1x2x3 holds. The
other clauses, when expanded, give expressions 1 + x1x4 + x3x4 − x1x3x4, x2 − x2x4 −
x2x5 + x2x4x5, and x2 − x1x2 − x2x5 + x1x2x5. The two variable terms are si,j ∈ P. Each
c ∈ C has (3

2) pairs that can cover it. In this example, we have five variables and four
clauses. A summary of the clauses, their corresponding P and potential covering are found
in Table 2.
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Table 2. This table shows the result of the reformulation of each 3-SAT clause including the three
variable monomials to be covered c, the two variable monomial pairs from the expansion of each
clause s ∈ P, and each of the three potential coverings of c, (si,j, xk).

c (xixjxk) si,j ∈ P Covering 1 Covering 2 Covering 3

c0 x1x2x3 s1,3, s2,3 (s1,2, x3) (s1,3, x2) (s2,3, x1)

c1 x1x3x4 s1,3, s1,4, s3,4 (s1,3, x4) (s1,4, x3) (s3,4, x1)

c2 x2x4x5 s2,4, s2,5 (s2,4, x5) (s2,5, x4) (s4,5, x2)

c3 x1x2x5 s1,2, s2,5 (s1,2, x5) (s1,5, x2) (s2,5, x1)

S = {s1,2, s1,3, s1,4, s1,5, s2,3, s2,4, s2,5, s3,4, s4,5}
P = {s1,2, s1,3, s1,4, s2,3, s2,4, s2,5, s3,4}
||P|| = (3, 4, 3, 3, 1).

After determining these sets, we are able to formulate our constraints. First we add a
constraint for each literal vertex va ∈ V in the form of Equation (16). For a = 1:

deg(x1) =3ys1,2 + 3ys1,3 + 3ys1,4 + 4ys1,5 + z(c0, s2,3, x1) + z(c1, s3,4, x1) + z(c3, s2,5, x1)

+ 3 ≤ obj.

Next, we add a constraint for each unique substitution us corresponding to an s ∈ S in the
form of Equation (17). For s = (x1, x2):

deg(u1,2) = 5 + z(c0, s1,2, x3) + z(c3, s1,2, x5) ≤ obj.

For each c ∈ C we add a constraint in the form of Equation (18) to assert that a clause
c must be covered by exactly one of its three potential coverings found in Table 2. For
clause c0:

z(c0, s1,2, x3) + z(c0, s1,3, x2) + z(c0, s2,3, x1) = 1.

Finally, for each covering containing a pair si,j, we add a constraint in the form of Equation (19).
This asserts that if any covering containing si,j is selected for a substitution, xsi,j is forced to
1. For s = (x1, x2) we add the constraints

z(c0, s1,2, x3)− ys1,2 ≤ 0

z(c3, s1,2, x5)− ys1,2 ≤ 0.

The solution to this IP is

y1,3, y2,5 = 1

z(c0, s1,3, x2), z(c1, s1,3, x4), z(c2, s2,5, x4), z(c3, s2,5, x1) = 1,

which indicates that the optimal solution is to substitute pairs s1,3 and s2,5. Using these
substitutions, ∆G = 8 and the degree of each vertex in the derived graph is

deg(x1) = 7 deg(x2) = 8 deg(x3) = 6 deg(x4) = 5

deg(x5) = 4 deg(u1,3) = 7 deg(u2,5) = 7

so the unitary circuit depth is at most nine.
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2.6.3. Heuristic Approximation

The previous integer programming approach will provide an optimal solution. How-
ever, depending on the 3-SAT instance, it might be a very difficult problem to solve. As an
alternative, we have developed a heuristic to approximate it. Greedy algorithms are a com-
mon way to approximate large scale set covering problems [26]. Generally, this involves a
greedy selection of elements that cover the greatest amount of sets until all sets are covered.
We have chosen to use a similar approach as the degree of the graph derived using GVS is
directly impacted by the number of substitutions made. Therefore, we expect by selecting
the coverings with the highest degree in the covering graph, we will be able to minimize
the total number of substitutions made and obtain a locally minimal solution. Let U be
the set of uncovered clauses. Let K be the set of covered clauses. At the beginning of the
iteration, K is empty and U = C, where C is the set of all clauses in the 3-SAT instance.
The greedy algorithm is described in Algorithm 1. Often in step 2, multiple si,j pairs may
cover the same number of clauses. To break these ties, we randomly select a pair si,j of the
current largest degree in the covering graph.

Algorithm 1 Greedy by Covering Heuristic

while |U| > 0 do
select si,j ∈ S which covers the the greatest number of u ∈ U
add all covered u to K
remove all covered u from U
remove si,j from S

3. Results

In this section, we evaluate the performance of the product 3-SAT model and covering
heuristic formulated to apply the global variable substitution method to large 3-SAT
instances. Since the unitary circuit depth for one iteration of QAOA is the maximum degree
plus one or the maximum degree plus two, in all cases, we take the unitary circuit depth
to be the maximum degree plus two since is the upper bound of the unitary circuit depth
for one iteration. Thus, we compare the upper bound of the unitary circuit depth for one
iteration achieved using the integer programming model and covering heuristic, which we
denote ∆′I.P and ∆′C, respectively, to the upper bound of the unitary circuit depth, denoted
∆′L, calculated using the linear model described in Section 2.3.1. We apply each formulation
and method to 3-SAT problem instances from the SATLIB Benchmark Suite developed by
Holger Hoos and Thomas Stütze [19]. This suite is composed of thousands of SAT instances
of varying families and sizes. We choose the first instance of each problem set to evaluate.

The results in Table 3 indicate that the graphs derived using the product formulation
combined with the GVS method result in significantly lower unitary circuit depth for
one iteration of QAOA than the graphs derived from the linear formulation. For every
problem instance, ∆′IP < 1/2∆L. The heuristic does not yield as large of a reduction, but
most instances see a significant reduction in degree compared to the linear method. It is
interesting to note that as the size of each 3-SAT instance increases, the ∆ of the derived
graph does not increase significantly. We can attribute this to the uniformity in the ratio of
the literals to clauses and the uniformity of the distribution of those literals amongst all
problem instances.

In nearly every 3-SAT instance, the GVS integer program makes more than or ap-
proximately equal to the amount of substitutions made by the covering heuristic method.
However, the maximum degree of the IP derived graphs ∆IP are significantly lower than
∆′C. This trend can be seen in Figure 8a,b which plot the maximum degree of the derived
graph against the number of substitutions made for the uniform 3-SAT instances. This
seems to indicate that simply minimizing the number of substitutions does not necessarily
minimize the maximum degree of the GVS derived graph. In particular the uf50-218 in-
stance from [19], which is a satisfiable instance with 50 variables and 218 clauses, achieves



Algorithms 2021, 14, 294 17 of 21

∆′IP = 41, which is accomplished by making 141 substitutions. The covering heuristic
makes three more substitutions than the LP, but produces ∆′C = 54. The unsatisfiable
instance of the same size, uuf50-218, achieves ∆′IP = 41 by making 138 substitutions. The
covering heuristic in this instance made only six more substitutions, but resulted in a
∆′C = 50. To investigate this trend, we plot the distribution of the degrees of each vertex in
the derived graph for each method.

Table 3. The unitary circuit depth upper bound for each SATLIB 3-SAT instance using the linear
formulation and product formulation with GVS methods. The IP and Covering Heuristic columns
also displays the number of substitutions made to cover every c ∈ C.

Problem Name Linear Formulation IP Solution Covering Heuristic
∆′

L (∆′
IP, #Subs) (∆′

C, #Subs)

uf20-91 84 (34, 39) (42, 45)

uf50-218 100 (41, 141) (54, 143)

uf75-325 115 (48, 208) (60, 214)

uf100-430 103 (46, 330) (60, 329)

uf125-538 133 (56, 417) (71, 419)

uuf50-218 95 (41, 135) (50, 141)

uuf75-325 106 (43, 233) (60, 240)

uuf100-430 105 (47, 337) (65, 334)

uuf125-538 126 (54, 429) (73, 430)

RTI_k3_n100_m429 132 (61, 332) (75, 334)

BMS_k3_n100_m289 110 (53, 240) (63, 236)

CBS_k3_n100_m403_b10 94 (43, 315) (56, 309)

CBS_k3_n100_m403_b30 94 (45, 318) (60, 309)

CBS_k3_n100_m403_b50 96 (43, 317) (61, 319)

(a)
Figure 8. Cont.
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(b)
Figure 8. Plots of the upper bound of the maximum degree of the derived graph versus the number
of substitutions made for the uniform 3-SAT instances found in Table 3. The satisfiable instances
plotted are denoted ’ufn-|C|’. The unsatisfiable instances are denoted ’uufn-|C|’. These instance
names indicate the number of literals n and clauses C in each problem instance. We choose the upper
bound of the maximum degree to be the y-axis since the largest unitary circuit depth for one iteration
is the maximum degree plus two. Calculating the exact unitary depth requires finding the edge
chromatic number of each graph, which is NP-hard, and results in a number that differs from the
upper bound by at most one. (a) Plot of the maximum degree of the derived graph versus the number
of substitutions made for the satisfiable uniform 3-SAT instances in Table 3. (b) Plot of the maximum
degree of the derived graph versus the number of substitutions made for the unsatisfiable uniform
3-SAT instances found in Table 3.

As shown in Figure 9a–d, the degrees of the literal vertices vi are larger than those of
the substitution vertices ui,j for each 3-SAT instance we evaluated. We can attribute this to
the GVS method of determining the degree for each vertex in the derived graph and the
sparseness of the literals in each instance. Each unique pair si,j which is substituted will
add three or four edges to the degree of the literal vertices vi and vj. However, making
this substitution only adds one edge to the corresponding substitution vertex ui,j. In both
instances displayed here, a literal xi is included in approximately thirteen clauses. Clearly,
this severely limits the amount of clauses each substitution is able to cover. Consequently,
this significantly increases the degree of each literal vertex as more unique substitutions
are required to cover all clauses and simultaneously limits the degree of each substitution
vertex ui,j since each si,j is used very few times. We can see this represented in Figure 9b,d
as nearly 40% of the substitutions made in both instances only cover one clause. The most
clauses covered by a any substitution is five.

The distribution of literal vertices of the integer program differs significantly from the
distribution of the heuristics in both problem instances. A majority of the literal vertices in
the graph derived from the IP take on the value of ∆′IP. It is clear that the integer program
is not simply minimizing the number of substitutions made, but rather appears to limit the
amount of substitutions per literal xi. For these sparse and uniform 3-SAT instances, the
best method of minimizing the max degree of any vi is to attempt to distribute the number
of substitutions made evenly amongst all literal vertices vi.
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(a)

(b)

(c)

(d)
Figure 9. Histograms of the degrees of each literal vertex or substitution vertex for specific uniform
3-SAT problems. We plot the degrees of each vertex since the unitary circuit depth for one iteration is
either the maximum degree plus one or the maximum degree plus two.
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4. Discussion

In this paper, we analyze an approach to minimizing the unitary circuit depth of
the quantum approximate optimization algorithm by expressing general combinatorial
optimization problems in varying forms. We compare a linear formulation that is the
natural choice in conventional optimization algorithms with a product formulation that
we posit as natural for QAOA. The product formulation leads to monomials in more than
two variables, which cannot be directly implemented on a quantum computer with two
qubit gates. Thus, we introduce the global variable substitution method to decompose
them into two variable terms which can be implemented on a quantum computer with two
qubit gates. For each of these formulations, we analytically compute the unitary circuit
depth in terms of the maximum degree of a graph derived from the problem instance and
formulation. We demonstrate that the product formulation gives shallower circuits then
the linear formulation for benchmark 3-SAT problems.

The global variable substitution requires constraints that must be satisfied in order to
obtain the optimal solution, as does the linear formulation. We can derive graphs for the
linear and product formulations from the objective function and the appropriate constraints.
The unitary circuit depth is directly related to the maximum degree of the derived graph.

We evaluate the unitary circuit depth of the product formulation with global variable
substitutions by writing an integer program that computes the minimal unitary circuit
depth of the linear formulation and product formulation for a collection of benchmark
problems. In all cases, the product formulation gives unitary circuit depth roughly half that
of the linear formulation. The linear formulation for 3-SAT requires exactly three ancillary
qubits per clause, where the product formulation requires four per substitution, although
substitutions can sometimes be reused to reduce the number of ancillary qubits. We find
several additional interesting features of the approach.

We find that minimizing the number of substitutions per problem instance does not
necessarily minimize the maximum degree. For example, when solving “uf-100-430”, the
covering heuristic makes 329 substitutions for a maximum degree of 60, whereas the IP
makes 330 substitutions for a maximum degree of 46. We also note that the objective
function for the IP can be modified to limit the number of substitutions. While this may
drive up the degree of vertices, it also reduces the number of ancillary qubits, as each
substitution requires four additional qubits. Thus, the problem formulation can be changed
to accommodate different hardware.

The focus of this work has been on using the product formulation of 3-SAT instances
to minimize QAOA unitary circuit depth relative to a conventional linear formulation.
Extending the analysis of linear and product formulations to more general problems will
help determine additional types of problems that benefit from this approach. Additionally,
there may be other formulations for specific problems that result in shallower circuits
than the linear or product formulations. While the product formulation with GVS gives
shallower circuits for 3-SAT, future work should determine if the reformulation gives a
comparable outcome to the linear formulation in the same number of QAOA iterations. A
final note is that the global variable substitution method can be used to rewrite problems
in terms of gates acting on m qubits. If more general gates become available on quantum
computers, then a similar analysis could lead to new approaches for minimizing depth.
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