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Abstract: Structural control of civil infrastructure in response to large external loads, such as earth-
quakes or wind, is not widely employed due to challenges regarding information exchange and
the inherent latencies in the system due to complex computations related to the control algorithm.
This study employs front-end signal processing at the sensing node to alleviate computations at
the control node and results in a simplistic sum of weighted inputs to determine a control force.
The control law simplifies to U = WP, where U is the control force, W is a pre-determined weight
matrix, and P is a deconstructed representation of the response of the structure to the applied ex-
citation. Determining the optimal weight matrix for this calculation is non-trivial and this study
uses the particle swarm optimization (PSO) algorithm with a modified homing feature to converge
on a possible solution. To further streamline the control algorithm, various pruning techniques
are combined with the PSO algorithm in order to optimize the number of entries in the weight
matrix. These optimization techniques are applied in simulation to a five-story structure and the
success of the resulting control parameters are quantified based on their ability to minimize the
information exchange while maintaining control effectiveness. It is found that a magnitude-based
pruning method, when paired with the PSO algorithm, is able to offer the most effective control for a
structure subject to seismic base excitation.

Keywords: structural control; wireless sensors; particle swarm optimization; pruning

1. Introduction

Civil infrastructure (e.g., bridges and buildings) is highly susceptible to damage when
subject to large external load events, such as high winds or earthquakes. Active structural
control is an attractive method for mitigating this undesired response in such structures
as it applies counterbalancing forces using an actuating device [1]. Such systems require
a high level of integration between sensors that measure the response of the structure
(e.g., displacement, velocity, and acceleration), computational nodes that determine appro-
priate reactions, and actuators that apply these counteracting forces. While active control
methods have been successfully implemented in civil infrastructure [2–4], the successful
coordination of communication between nodes and the necessary rapid response at the
computational node have proved to be challenging. In order to increase the flexibility of
these systems, the research community has turned to using low-power computing nodes
equipped with wireless communication capabilities for the three control tasks (i.e., sensing,
computing, and actuating) [5–7].

Wireless sensing units (WSUs) are individualized data acquisition units that are
typically comprised of several key components. In particular, they contain an on-board
microcontroller which enables localized data processing and allows them to serve as the
controller in the actuation network. They are equipped with analog-to-digital converters
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that allow them to seamlessly interface with transducers and serve as a sensing node.
They also contain digital-to-analog converters or pulse width modulation output, such
that they can interface with actuators and act as the actuation node. Finally, their on-board
wireless transceiver enables peer-to-peer communication to allow for information exchange
across the network. While the wireless technology does streamline communication, it also
creates additional challenges such as a higher probability of data loss, which can degrade
the control effectiveness [7]. Furthermore, while the on-board microcontroller does increase
the flexibility of the unit, complex control algorithms can inhibit the real-time control
capabilities of the system due to the limited computational capacity of the unit.

This work focuses on addressing these challenges by using a simplistic weighted-sum
control algorithm that is designed to shift the computational demand to the sensing nodes
and enable real-time control, while also minimizing communication. To achieve this, a
method for determining weights in the control algorithm is needed and it is proposed to
pair the particle swarm optimization (PSO) method with pruning mechanisms to further
streamline the control law. This paper is structured as follows: (1) in Section 2, a literature
review is presented; (2) in Section 3, the particle swarm optimization algorithm and the
weighted-sum control algorithm are introduced; (3) in Section 4, the benchmark structure
is defined and the algorithm is applied; (4) in Section 5, a pruning technique with PSO
retraining is applied; and (5) Section 6 concludes the paper with a discussion.

2. Literature Review

Numerous researchers have explored various control architectures for civil structures
that can be embedded on low-power computing cores, with a specific attempt to address
the communication constraints of WSUs. In particular, these often focus on distributing
traditional optimal control algorithms across a network of computing nodes and typically
depend on using complex state estimators. In [8], a partially decentralized linear quadratic
regulator (LQR) control scheme that leverages a Kalman filter to estimate unknown system
states was validated on a full scale structure. In [9], a sparse representation of the LQR
was proposed, which requires less information for decision-making than a traditional
centralized approach, thereby reducing information flow requirements. In [10], the authors
proposed a distributed H∞ algorithm for civil infrastructure, and in [11], the authors
explored distributing the H∞ algorithm across multiple communication subnets of wireless
sensing nodes. While these studies demonstrate the successful use of low-power computing
cores in control architectures, they also highlight several challenges associated with this
technology. Such challenges include increased computational requirements at the already
resource-constrained sensing node and decision-making based on reduced information,
resulting in some degradation in the control effectiveness.

The proportional-integrator-derivative (PID) controller has also been considered in
numerous studies due to its ease of implementation, which often makes it less computa-
tionally expensive. Developing the control parameters for the PID controller for seismic
control of structures is challenging because the off-diagonal terms in the damping and
stiffness matrices of the structure cause cross-coupling in the system. As a result, tradi-
tional empirical methods for deriving the control parameters, such as the Ziegler–Nichols
method, are often ineffective. However, numerous researchers have focused on using
metaheuristic algorithms, such as the particle swarm optimization [12–15] and the genetic
algorithm [16–19], to determine the PID control parameters for a variety of applications and
these can be extended to the control of civil structures. In [20], the PSO algorithm was used
to derive the PID coefficients for mitigating the effect of high-impact loads on a highway
bridge, modeled as a single input–single output system. In [21], a genetic algorithm was
used to derive the control parameters for a PID controller for a single active tuned mass
damper (ATMD) and was applied to numerically control an 11-story building. In [22], the
authors combined the LQR control scheme with a PID controller using the cuckoo search
algorithm and validated the controller in simulation on a seismically excited 10-story struc-
ture equipped with a single ATMD. In [23], a new evolutionary algorithm was proposed to
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derive the variables for a combined PID-LQR controller, which is numerically validated
on a four-degree-of-freedom building that was equipped with an active control device on
each floor. While all of these studies demonstrate the effectiveness of these methods, all
but one is limited to a single output mechanism and they did not discuss communication
considerations that would be encountered in real-world implementations of the structure.
In [24], the authors did account for these communication and computational constraints by
including time delays, while also exploring various metaheuristic methods for developing
PID control parameters, and found that such delays could severely inhibit the control
effectiveness.

In this study, the authors seek to address the real-world challenges experienced
when implementing seismic control of structures through consideration of communication
constraints and the computational complexity of the control algorithm. In particular, we
propose to use a novel sensing node that is capable of real-time spectral decomposition to
alleviate computations at the controlling node. This node also deviates from traditional
Nyquist data acquisition rates and, as a result, minimizes the amount of transmitted data
across the network. By leveraging the front-end signal processing of the sensing node,
the control algorithm is reduced to a simplistic weighted sum of inputs that is easily
executed. Other metaheuristic methods were previously explored in [25] and the PSO
method was proven to be an effective method for determining parameters in this weighted-
sum algorithm. This study continues to use the PSO method and focuses on further
streamlining the weighted-control parameters to enhance the real-time control capabilities.

3. Adaptation of Particle Swarm Optimization and the Proposed Weighted
Control Algorithm

Particle swarm optimization (PSO) is an iterative, population-based learning technique
that is derived from the idea of swarm intelligence [26]. In PSO, a number of particles are
dispersed randomly in a search space and each particle location is evaluated according to a
specified fitness function. With each iteration of the algorithm, every particle moves to a
new location in the search space based on its own history as well as on the behavior of other
nearby particles. The overarching goal of the particle is to move closer to the optimum
of the fitness function. To achieve this, each particle in the swarm tracks three vectors: x,
which is the current position of the particle, v, which is its current velocity, and xb, which
is the previous best position of the particle. Each particle also interacts with neighboring
particles and stores the best position found from all neighbors, g, in order to leverage the
benefits of the swarm.

Each particle updates its three vectors every iteration through the equations:

vi(k + 1) = λvi(k) + ρ1γ1(xb,i(k)− xi(k)) + ρ2γ2(g(k)− xi(k)), (1)

xi(k + 1) = xi(k) + vi(k + 1), (2)

and
λ = λ× τ, (3)

where i is the particle number, k is the iteration number, ρ1 and ρ2 are random numbers
between 0 and 1, and γ1 and γ2 are the acceleration coefficients which are both assigned
to be 2 as recommended in [26]. Equation (3) also includes an inertia weight, λ, which
affects the convergence and plays a role in balancing the desire of the particle to search
locally versus globally [27]. An inertia damping constant, τ, is used to gradually modify
this balance. λ is initially assigned to be 1 and is decreased using τ equal to 0.99 [28],
which results in a global search that gradually becomes more localized. At the end of each
iteration, each position of the particle is evaluated according to a fitness function and the
best position is updated if applicable.

As will be discussed, the search space in this particular application has high dimen-
sionality (x ε R275x1) and each element in the vector can assume a large range of values,
from -1E8 to 1E8. As a result, it is easy for a particle to diverge from a localized optimal
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solution, resulting in an extremely large cost function. To alleviate this challenge, the
algorithm was modified to include a homing mechanism for the particle. If the fitness
function of the particle significantly exceeds the fitness found from the best position of all
of the neighbors, the particle returns to its previously identified local best position. The
particle also resets its velocity to zero to prevent it from quickly diverging again. This
modified PSO algorithm is termed PSO-H. The algorithm is depicted in the block diagram
shown in Figure 1.

Figure 1. Flow chart for PSO-H algorithm.

The PSO-H algorithm is used to optimize the necessary control parameters for execut-
ing a control algorithm that was originally proposed in [25]. At the core of this algorithm is
a novel sensing paradigm that is based on the mechanisms employed by the mammalian
cochlea, first implemented by Peckens and Lynch for structural monitoring purposes [29,30].
In this paradigm, the response of the structure is decomposed into its frequency compo-
nents in real-time using a series of overlapping bandpass filters. As discussed in [11,12],
this bank of bandpass filters is optimized to fit the input signal by modifying the number
of filters in the bank as well as their center frequency increments and passband frequency.
The ability of this filter bank to decompose a signal into frequency components is attractive
for the purposes of control, as it allows for instantaneous feature extraction, resulting in
minimal signal processing at the actuation node.

The frequency selectivity of the jth filter is defined by the second-order transfer
function for a bandpass filter [31], expressed as

Hj(s) = H0
ωj

Q0,j
s

(
s2 +

ωj

Q0,j
s + ωj

2

)−1

, (4)
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where H0 is set to 1.0 to ensure a unit gain in the filter and Q0,j is related to the frequency
selectivity of the filter, defined as (2ξj)−1, such that ξj is the damping ratio of the filter and
ωj is the center frequency of the filter (rad/s). By making these substitutions for H0 and
Q0,j in Equation (4), the impulse response of that filter is determined through the inverse
Laplace transform, yielding

hj(t) = −2ξ jωj

(√
1− ξ j

2
)−1

eξ jωjt sin
(

ωj

√
1− ξ j

2t− θ
)

, (5)

with
θ(t) = tan−1

(
ωj

√
1− ξ j

2t− θ
)

. (6)

The convolution integral can be used with the input signal, y(t), and the impulse
response of that filter, hj(t), to obtain the continuous time output of each jth bandpass
filter, zj(t),

zj(t) =
∫ t

0
y(τ)hj(t− τ)dτ. (7)

Decomposing the signal into numerous components via bandpass filters increases
the amount of information to manage, which is actually counterproductive to the goal
of streamlining the control algorithm and communication. As such, the filtered signals,
zj(t), are passed through a simple peak-picking algorithm and only these peak values are
transmitted to the controller in an asynchronous sampling scheme. This allows for the
control law to become a weighted sum of these peaks, expressed as

u(tc) = ŴP
(
kp
)

, (8)

where u(tc) is the calculated control value at control time increment tc, Ŵ ε R1xn is a control
weighting vector, and P

(
kp
)

ε Rnx1 is the vector of the detected peak values for all filters,
given that n is the total number of filters. This complete process is depicted in Figure 2.
For simplicity, the architecture shown in Figure 2 is a single input–single output system
but it could easily be extended to a multiple input–multiple output system.

Figure 2. Control architecture using the weighted sum of peaks from the filtered system response.

There is no empirical method for determining the parameters in the control weighting
vector, Ŵ , as shown in [25], and the PSO is one option for determining these control pa-
rameters. In the PSO optimization technique, each particle represents a potential weighting
vector, Ŵ, where Ŵ = [w1 w2 · · · wn]. After completing the optimization, the particle with
the smallest fitness function is chosen as the resulting weighting vector. This optimization
is completed offline and prior to the control event, thereby minimizing the computational
demand on the actuating node during the actual seismic event.
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4. Application of Control Parameter Optimization on Five-Story Benchmark Structure

To validate the PSO-H optimization on the control weighting vector, the five-story
Kajima-Shizouka building was used as a benchmark structure (Figure 3). All simulations
were executed using MATLAB. The structure was modeled as a lumped mass system,
similar to that proposed by [32], which is based on the actual structure used in the study
conducted in [33]. The structural properties are given in Table 1, yielding five natural
frequencies of 1.00, 2.82, 4.49, 5.80, and 6.77 Hz. The damping in the structure was modeled
as a 5% damping ratio based on Rayleigh damping that is both mass-proportional and
stiffness-proportional [34]. It is assumed that only the horizontal degrees-of-freedom is
measurable and controllable. Each floor is assumed to include an installed transducer,
which measures inter-story displacement, and an ideal actuator, which is capable of sup-
plying the demanded control force. In other words, the actuator block in Figure 2 is set to a
value of one and u(tc) equals f (tc).

Figure 3. Five-Story Kajima-Shizouka building used as a benchmark structure.

Table 1. Benchmark structure properties.

Floor Seismic Mass (kg) Inter-Story Stiffness (kN/m)

1 215.2 × 103 147 × 103

2 209.2 × 103 113 × 103

3 207.0 × 103 99 × 103

4 204.8 × 103 89 × 103

5 266.1 × 103 84 × 103

The base-excited structural system is modeled in continuous time as an m degree-
of-freedom, linear time-invariant, lumped mass shear structure. This can be generalized
through m equations of motion [34]:

M
..
y(t)+Cd ẏ(t) + Ksy(t) = −Mι

..
yg(t) + l f (t), (9)

where M, Cd, and Ks ε Rmxm are the mass, damping and stiffness matrices, respectively.
The displacement vector relative to the base of the structure is y ε Rm,

..
yg is the ground

acceleration, and l ε Rm is the ground acceleration influence vector, where each term takes
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a value of one. The locations of the actuators are described by the matrix l ε Rmxp and
f ε Rp is a vector of control forces given that p is the number of input control forces.
The variable t represents continuous time. By setting the control force, f , equal to zero, the
uncontrolled response of the structure to the base excitation is approximated using the
integration method proposed by Newmark [34]. In this simulation, the control frequency
was set to 100 Hz and the simulation time-step was 488 µsec. It is assumed that the control
force is held constant in between control time-steps.

To introduce the weighted-sum control algorithm, it is assumed that each floor is
outfitted with a bank of bandpass filters that are optimized to fully capture the displacement
signal of that floor. Previous parametric studies have shown that a sensor with 11 filters,
each having a center frequency every 0.7 Hz and a passband of 0.5 Hz, is optimal for
representing the response of the structure to seismic base excitation [30]. The dynamics of
each filter is modeled using Equations (5) and (6). It is assumed that every unit in the filter
bank is able to broadcast the peaks from its filtered signal to the controller on each floor
and therefore every filter on every floor in the filter bank has a weighted connection with
every controller on every floor. For the five-story structure, this resulted in a weight matrix,
W, that was 55 × 5 elements. The 55 rows in this matrix were derived from five sensors,
each having eleven filters, and the five columns were due to the connections with the five
actuators (Figure 4). For the PSO algorithm, this matrix was rearranged into a 275-element
particle and when represented in vector format, it is termed Ŵ.

Figure 4. Visual representation of the connections between sensors and controllers; each line between the sensor and
controller represents weighted information exchange.

In order to optimize the weighting vector for the purposes of control using PSO, a
viable fitness function is needed. Several cost functions that were proposed in [35] were
used as a measure for quantifying the effectiveness of control for a given weighting vector.
These metrics are chosen as they offer a dimensionless quantification, which makes them
easily adaptable to a fitness function for the PSO algorithm and they have been used in
numerous other studies, for example, in [8,25], and [36]. Two of these cost functions focus
on minimizing the inter-story drift of the structure, which reduces the likelihood of damage
to the building system. One of these cost functions quantifies the reduction of the absolute
maximum drift, expressed as

J1 =
max(|d(t)controlled|)

max(|d(t)uncontrolled|)
, (10)

and the other cost function quantifies the overall time history reduction of the inter-story
drift, expressed as

J2 =
d(t)controlled

d(t)uncontrolled
. (11)

In these equations, d(t)uncontrolled is the time history of the inter-story drift for all floors
without any implementation of control, while d(t)uncontrolled represents the response of the
structure when subject to a control scenario. Furthermore, |·| is the absolute value function
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and ‖ · ‖ denotes the l2-norm function. The other two cost functions focus on minimizing
the acceleration of the structure, which is related to the occupational comfort during the
event. Similar to the displacement cost functions, the acceleration cost functions quantify
the reduction of the absolute maximum acceleration,

..
y(t), expressed as

J3 =
max

(∣∣ ..y(t)controlled
∣∣)

max
(∣∣ ..y(t)uncontrolled

∣∣) , (12)

and the time history response, expressed as

J4 =

..
y(t)controlled

..
y(t)uncontrolled

. (13)

The demanded control force is also quantified through a cost function provided in [35],
which is defined as

J5 =
max(| f (t)|)

Ws
, (14)

where f (t) is the time history of the control force for each floor and Ws is the seismic weight
of the building based on the above ground mass of the structure.

Each cost function is a m-dimensional vector, where m is the number of floors in the
structure, thereby providing quantification for each floor in the structure. As the PSO
algorithm, in general, requires a single fitness function, these five resulting vectors are
summed together across all floors, yielding

O =
m

∑
l=1

J1,l + J2,l + J3,l + J4,l + 5J5,l . (15)

In an uncontrolled scenario, the first four cost functions, J1 to J4, each take on a value of 1.0
for all floors, which sums to 20 for the five-story structure. It is observed that J5 typically
takes on values of 0.2 or less for each floor in this simulation in order for it to be an equally
weighted objective and a scalar of 5.0 is included with this cost function. Therefore, if the
fitness function is less than 25, it can be concluded that the weight matrix is effective, as
the uncontrolled response is likely less than the controlled response.

To determine the optimal weight matrix, W, the five-story structure was subject to
seismic base excitation in simulation using the 1940 El Centro (SE) earthquake ground
acceleration record (Figure 5). The dynamics of the structure and the associated sensing
nodes were modeled using Equations (4)–(7) and (9), and the response of the structure to
the excitation was approximated using the Newmark integration method [34]. To cover
an adequate search space, the algorithm uses 50 particles. To confirm convergence of
the algorithm, the particles are trained until the best solution, g, does not change for
50 consecutive iterations. This does not ensure locating a global minimum, but with an
adequate number of particles and with executing the homing feature, the algorithm does
locate a competitive local minimum. Using these metrics, the weight matrix is trained using
the PSO-H algorithm, resulting in the cost functions shown in Table 2, denoted as Weighted-
sum in the table. A sample time history response for the drift is shown in Figure 6. To
ensure that the weight matrix is not over-trained to the El Centro record, it is also validated
using the 1995 Kobe (NS JMA) and 1989 Loma Prieta (CORRALITOS) earthquake ground
acceleration records (Figure 5). These results are shown in Tables 3 and 4.

As a comparison to the weighted-control algorithm, a traditional full-state feedback
linear quadratic regulator (LQR) [37] was also considered. This controller assumes that all
necessary states (i.e., displacement and velocity) of all floors are measurable or estimates
them using techniques such as the Kalman filter.



Algorithms 2021, 14, 292 9 of 19

Figure 5. Seismic signals used as base excitation in the simulation in time (a) and frequency (b) domains. Abbreviations: SE,
southeast; NS, north–south; and JMA, Japan Meteorological Agency.

Figure 6. Inter-story drift response of the fifth floor when subject to the El Centro earthquake, shown on a full-time scale (a)
and sub-section of time (b).

The LQR uses the algebraic Ricatti equation to minimize the cost function

J =
∫ ∞

0
(yTQy+uT Ru)dt (16)

subject to the full state feedback control law, expressed as u = -K, where yε R1×2m =
[
y

.
y
]

is a vector of the inter-story displacement and velocity of all the floors of the structure and
K ε Rpx2m is the resulting constant feedback gain matrix, given m states (or floors) and p
control forces.

This minimization is subject to two parameters: Q ε R2mx2m, which applies a weight
to the cost of the structural response and R ε Rpxp, which applies a weight to the cost of the
control effort. In the algorithm, Q and R are chosen using the commonly accepted Bryson’s
Rule [38] that establishes these values as proportional to the inverse of the square of the
maximum acceptable displacement and control force, respectively. For this application, the
non-zero entries of Q are 1010 and the non-zero entries of R are 10−5.4. Based on limitations
described in [7], it is assumed that the control sampling frequency is limited to 40 Hz,
which subjects the control effort to realistic experimental constraints.The results from this
controller are shown in Tables 2–4 for the El Centro, Kobe, and Loma Prieta earthquakes.
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Table 2. Cost functions J1 through J6 for El Centro earthquake. Bold indicates the cost function that
yields the minimum cost function for each floor.

Control Scenario

Floor
1 2 3 4 5

J1

Weighted-sum 0.359 0.425 0.468 0.452 0.385
Weighted-sum–220 0.347 0.413 0.451 0.401 0.347

LQR 0.415 0.350 0.318 0.306 0.305

J2

Weighted-sum 0.305 0.300 0.320 0.341 0.392
Weighted-sum–220 0.293 0.288 0.306 0.298 0.328

LQR 0.237 0.199 0.195 0.200 0.204

J3

Weighted-sum 0.841 0.815 0.789 0.803 0.679
Weighted-sum–220 0.757 0.787 0.712 0.750 0.661

LQR 1.024 0.932 0.868 0.918 0.703

J4

Weighted-sum 0.743 0.687 0.693 0.634 0.564
Weighted-sum–220 0.741 0.686 0.666 0.610 0.533

LQR 0.701 0.581 0.518 0.468 0.413

J5

Weighted-sum 0.055 0.045 0.081 0.064 0.152
Weighted-sum–220 0.077 0.102 0.075 0.066 0.145

LQR 0.052 0.077 0.119 0.153 0.178

J6
Weighted-sum: LQR 1.284
Weighted-sum–220:

LQR 0.806

Table 3. Cost functions J1 through J6 for Kobe earthquake. Bold indicates the cost function that yields
the minimum cost function for each floor.

Control Scenario

Floor
1 2 3 4 5

J1

Weighted-sum 0.541 0.497 0.566 0.483 0.511
Weighted-sum–220 0.526 0.464 0.565 0.438 0.458

LQR 0.392 0.318 0.325 0.287 0.262

J2

Weighted-sum 0.510 0.510 0.539 0.518 0.521
Weighted-sum–220 0.499 0.491 0.518 0.469 0.458

LQR 0.348 0.295 0.285 0.276 0.261

J3

Weighted-sum 0.810 0.858 0.914 0.924 0.669
Weighted-sum–220 0.909 0.854 0.909 0.753 0.634

LQR 0.757 0.727 0.659 0.533 0.412

J4

Weighted-sum 0.768 0.650 0.776 0.843 0.707
Weighted-sum–220 0.760 0.637 0.754 0.856 0.684

LQR 0.542 0.488 0.522 0.556 0.451

J5

Weighted-sum 0.067 0.048 0.087 0.080 0.245
Weighted-sum–220 0.090 0.097 0.102 0.097 0.202

LQR 0.042 0.072 0.105 0.141 0.174

J6
Weighted-sum: LQR 1.044
Weighted-sum–220:

LQR 0.525

The weighted-sum control algorithm has similar control effectiveness as the LQR
algorithm when considering the El Centro earthquake for all cost functions (Table 2).
However, the LQR controller is much more adaptable to other earthquakes as demonstrated
by its continued effectiveness at mitigating inter-story displacement and acceleration for
both the Kobe and Loma Prieta earthquakes. The weighted-sum control algorithm is
able to reduce the displacement measures (i.e., J1 and J2) when the structure is subject
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to the other Kobe and Loma Prieta earthquakes, but it is significantly less effective at
reducing the acceleration measures (i.e., J3 and J4) when compared to the LQR controller
(Tables 3 and 4). In application, retraining the weight matrix for the characteristics of the
anticipated seismic response could improve the performance of the control algorithm.
For all control scenarios, the controllers were more effective at reducing displacement
than acceleration, which is typically a trade-off when controlling structures during seismic
events. For all earthquakes, the weighted-sum control algorithm did place minimal demand
on the actuators, as denoted by the J5 cost function, and this will contribute to its decrease
in control effectiveness.

Table 4. Cost functions J1 through J6 for Loma Prieta earthquake. Bold indicates the cost function
that yields the minimum cost function for each floor.

Control Scenario

Floor
1 2 3 4 5

J1

Weighted-sum 0.414 0.383 0.364 0.360 0.614
Weighted-sum–220 0.386 0.379 0.326 0.302 0.514

LQR 0.286 0.226 0.204 0.213 0.222

J2

Weighted-sum 0.468 0.449 0.446 0.490 0.613
Weighted-sum–220 0.454 0.439 0.421 0.456 0.514

LQR 0.241 0.201 0.191 0.189 0.187

J3

Weighted-sum 1.030 0.465 0.579 0.671 0.696
Weighted-sum–220 1.252 0.463 0.597 0.637 0.601

LQR 0.459 0.366 0.423 0.399 0.367

J4

Weighted-sum 0.975 0.631 0.593 0.519 0.492
Weighted-sum–220 0.873 0.621 0.573 0.496 0.443

LQR 0.395 0.327 0.295 0.273 0.257

J5

Weighted-sum 0.123 0.129 0.143 0.161 0.477
Weighted-sum–220 0.154 0.225 0.179 0.295 0.400

LQR 0.060 0.094 0.141 0.179 0.222

J6
Weighted-sum: LQR 1.45
Weighted-sum–220:

LQR 1.00

As communication overhead is a common challenge associated with WSUs and in
particular when applied to control applications, an additional cost function,

J6 =
NP1

NP2
, (17)

is introduced that compares the amount of data that is transmitted during the execution of
the weighted-sum control algorithm versus the amount of data that is transmitted during
the execution of the traditional LQR algorithm. In this cost index, NP1 is the number of
peaks that are detected from all filters across all floors. NP2 is the number of data points
obtained via traditional Nyquist sampling rates, combined across all floors. While the
weighted-sum method does use asynchronous sampling to generate the number of peaks,
the bandpass filters decompose the displacement of each floor into eleven signals that
must be transmitted, albeit as peaks, to the controller nodes. For all three earthquakes, this
resulted in an undesirable increase in information flow, as indicated by J6 being greater
than 1.0 (Tables 3–5). It is hypothesized, however, that not all connections are needed in the
weight matrix and some filters can be eliminated from the algorithm. This in turn would
reduce the information flow and address one of the common challenges associated with
control using WSUs.
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Table 5. Percent difference in the fitness function, O2, from the full-state weight matrix for three
difference earthquakes.

Method El Centro EQ Kobe EQ Loma Prieta EQ

Minimal-value deletion pruning–220 −5.27% −3.85% −5.71%

Minimal-value deletion pruning–230 −1.93% 3.27% 0.15%

5. Integration of Pruning for Stream-Lined Control

As previously noted, the weighted control matrix has high dimensionality (W ε R55x5)
and can assume a large range of values (Figure 7). It is hypothesized that due to the
high connectivity, not all weight values within the matrix are necessary and some can be
removed. This hypothesis is based on experiences with artificial neural networks (ANNs),
which share a similar architecture to the proposed weighted-control algorithm. Similar
to the structure of the weighted-control algorithm, ANNs typically need to predefine the
network architecture, which can cause over-fitting if too many weights are defined or
under-fitting if not enough weights are defined. Numerous methods exist for eliminating
or pruning the weights in ANNs, such as minimal-value deletion [39], ref [40] that focus
only on the magnitude or other methods that develop criteria to assess the importance of
the weight [41–44]. The architecture of the proposed control method is more basic than
a traditional ANN, only having a single layer of weights and, as a result, some of the
elimination criteria in these studies is overly complex. As such, three methods are explored:
(1) minimal-value deletion [39], (2) optimal brain surgeon (OBS) [41], and (3) a brute force
method, termed minimum error pruning.

Figure 7. Pictorial representation of values of the weighted control matrix, W ε R55x5. Note: bandpass filter numbers
11 ×l − 10 to 11 ×l correspond to the filters on the lth floor.

With each method, the effect of the minimized weighted control matrix is evaluated
using the percent change in the fitness function,

C =
O2,1 −O2,0

O2,0
∗ 100%, (18)

where C is the percent difference, O2,1 is the fitness function after implementing a pruning
method, and O2,0 is the original fitness function from the PSO-H optimization using the El
Centro earthquake record, both of which use a modified fitness function (Equation (19)).
As the weighted control matrix becomes sparse, it is possible for all connections to be
eliminated to an actuator. When this occurs, elements of the J5 cost function become zero
while the displacement or acceleration of the structure may be undesirably increasing. As a
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result, a modified fitness function is used for the assessment of the effectiveness of the
pruning method that omits the control force cost function (i.e., J5),

O2 = ∑m
l=1 J1,l + J2,l + J3,l + J4,l . (19)

The effectiveness of the pruning algorithms was also evaluated using the number of
removed weights and the number of removed filters. A filter is removed when it is no
longer connected to any of the five controllers, indicating that its information is not required
for any of the control force calculations. It is the removal of a filter, rather than just a weight,
that is most beneficial to the network as it results in less information exchange across the
network, which translates to power savings and also a more streamlined control-force
calculation at the controller.

The first pruning method that was considered is a minimal-value deletion algorithm
that eliminates a single weight with each iteration of the algorithm based on its magni-
tude [39]. For this algorithm, the weight with the smallest absolute magnitude is eliminated
and the fitness function is evaluated for the reduced weighted control matrix. The process
is repeated for the weight with the second smallest absolute magnitude. This elimination
of weights continues until 270 weights have been eliminated and only five weights remain.
The resulting percent change in the fitness function as a function of the removed weights
is shown in Figure 8a. The resulting number of removed filters as a function of removed
weights is shown in Figure 8b.

Figure 8. Percent difference in the fitness function from the unpruned, full-state weighted control matrix for the three
pruning methods ((a), note that a negative value indicates an improved performance) and the total number of filters
removed through pruning (b).

Next, the optimal brain surgeon (OBS) algorithm was considered [41]. OBS uses the
Hessian matrix, H, to create a vector of saliencies, L, where each qth entry in the vector is
defined as

Lq =
1
2

w2
q

[H−1]qq
, (20)



Algorithms 2021, 14, 292 14 of 19

given that wq is the qth weight in the weight vector, Ŵ. The inverse Hessian matrix is
calculated as

H−1
r+1 = H−1

r −
H−1

r ·X[r+1]·X[r+1]T ·H−1
r

X[r+1]·X[r+1]T ·H−1
r

, (21)

such that (·)−1 is the inverse function, r is the iteration number, and X is a vector of partial
derivatives. As the standard application of OBS is for multi-layer networks, X is truncated
to only include derivatives with respect to the input-to-output layers, similar to the hidden-
to-output weights discussed in [41]. For the weighted control algorithm, the output layer
uses a linear activation function, which reduces it down to X[r]T = Ŵ ∗ z(r) , where z(r)
is the output of the bandpass filters on the rth iteration. In this instance, the number of
iterations equals the number of time-steps in the simulation.

As specified in [41], the weight with the smallest saliency is used to update all other
weights by deriving a weight change vector,

δw = −
wq

[H−1]qq
H−1·eq , (22)

and adding this to the weight vector, Ŵ. In Equation (22), eq is the unit vector in weight
space corresponding to the qth weight wq. After updating all weights, the identified
weight is removed from the matrix. The algorithm continues to eliminate weights in this
manner until there is an unacceptable amount of incurred error, at which point the network
could be retrained. To understand the effect of removing weights, the stopping error for
the algorithm was incrementally increased without implementing any retraining until
270 weights had been removed. The resulting percent change in the objective function as a
function of the removed weights is shown in Figure 8a. The resulting number of removed
filters as a function of the removed weights is shown in Figure 8b.

Finally, the third method that was considered for eliminating extraneous weights is
the minimum error method. In this method, one weight is temporarily removed and the
reduced weighted control matrix is evaluated using the fitness function (Equation (19)).
This weight is then inserted back into the matrix, the next weight is removed, and the
fitness function is evaluated. After all weights are considered, the weight that results in
the smallest fitness function is permanently removed. This is repeated for all remaining
weights until 270 weights have been removed. The resulting percent change in the fitness
function as a function of the removed weights is shown in Figure 8a. The resulting number
of removed filters as a function of the removed weights is shown in Figure 8b.

As can be seen from Figure 8a, there is a non-linear relationship between the weights
and the fitness function for all three methods. In particular, up to 223 weights can be re-
moved for any of the three methods and less than a 5% degradation in control effectiveness
occurs when comparing the full state to the pruned state. After that, the percent difference
rapidly increases for the minimal-value deletion pruning and OBS methods. The minimum
error pruning method, however, only incurs 1.03% error with 223 removed weights and
257 weights can be removed while still incurring less than 5% error. Another interesting
trend is that the percent change in all three methods did not always incrementally increase.
In some instances, removing additional weights actually improved the performance of the
network. This was particularly true for the minimal-value deletion pruning and OBS, but
was still evident to a smaller extent in the minimum error method. The minimum error
method significantly outperformed the other two methods and, in some cases, a negative
percent change was observed, indicating that the pruned network performed better than
the full-state network. The pruned states resulting from minimal-value deletion pruning
and OBS never performed better than the full-state network.

When considering the number of removed filters versus the number of removed
weights (Figure 8b), all three methods exhibited very similar trends. Initially, the number
of removed filters remained at zero, even as the number of removed weights increased,
because a filter was only removed when it was no longer connected to any controller units.
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However, once a significant portion of weights have been removed, the number of removed
filters rapidly increases as connections are removed. Removing filters is a competing metric
with the incurred error, as shown in Figure 8a. It is desirable to remove more filters as this
results in a more streamlined control algorithm, but as more filters are removed, the control
effectiveness degrades as indicated by an increase in percent error. Therefore, determining
the optimal number of weights to remove is a balance between these two metrics and
requires some subjectivity.

Pruning Methods with Periodic PSO-H Retraining

While the error that incurred through the removal of weights was relatively small, it
was next considered whether the control effectiveness could be improved by periodically
retraining the weighted control matrix using the PSO-H algorithm during the three pruning
processes. Each pruning method was re-executed with the modification that once groups
of 10 weights have been removed, the weighted control matrix was retrained. The PSO-H-
retraining algorithm continued to use 50 particles, with each particle also eliminating the
weights that were identified through the pruning mechanism. At the start of each retraining
session, λ, the inertia weight from Equation (3), was reset to 1.0 to allow the search to start
globally and move locally. The PSO-H algorithm iterates until the best fitness function does
not change for 50 iterations. The retraining pruning algorithms were compared against
the control effectiveness of the full-state network, each using the El Centro earthquake for
seismic excitation. The resulting percent change from the full-state network is shown in
Figure 9a for the three different pruning methods. For comparison, the pruning methods
without retraining, extracted from Figure 8a, are also overlain on the figure.

In general, all three pruning methods showed improvement over the full-state matrix
when including periodic retraining. In contrast to the pruning without retraining, the
OBS and minimal-value deletion methods now outperformed the minimum error method
and were able to improve the control effectiveness when compared to the full-state matrix
by over 6% in some cases. The pruned network produced the best results when using
minimal-value deletion pruning to eliminate 170 weights, with a 6.28% improvement in
control effectiveness. However, this only resulted in eliminating six filters, which did
not streamline data communication. When 220 weights were removed using Minimal-
value deletion pruning, this still maintained an improved control effectiveness, with 5.27%
difference, and also eliminated 20 filters or an approximate reduction of 36.4% in the
data transmission (=20 removed filters/55 total filters). Removing 230 weights is also
attractive as it improves control effectiveness, though less with a 1.93% difference, and now
eliminates 28 filters or an approximate reduction of 50.9% in the data transmission (Table 5).
The OBS method performed similarly to the minimal-value deletion pruning method
but was not able to achieve the same improvement in control effectiveness and therefore
was not considered in more detail. The minimum error method was able to improve
when integrated into periodic retraining but contrary to the results without retraining, its
performance lagged behind the minimal-value deletion and OBS methods.

To once again ensure that the pruned weighted control matrix was not over-trained
to the El Centro earthquake, the matrices that were pruned using minimal-value deletion
pruning for 220 weights and 230 weights were applied to control the structure when
subject to the 1995 Kobe (NS JMA) and 1989 Loma Prieta (CORRALITOS) earthquake
ground acceleration records (Table 5). When removing 220 weights, the remaining weights
allowed for enough generality that effective control could still be achieved for these two
earthquakes, as indicated by the negative percent change in the fitness function. When
removing 230 weights, however, the remaining weights were less effective at controlling
the structure and some degradation in the control began to be apparent, perhaps indicating
overfitting. Therefore, removing 220 weights using the minimal-value deletion pruning
method is chosen as the optimal scenario as it is effective at controlling the structure but
still remains generalizable to multiple input earthquakes.
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Figure 9. Percent difference in the fitness function from the unpruned, full-state weight matrix for the three pruning
methods, with each pruning method without retraining overlain for comparison ((a), note that a negative value indicates an
improved performance), and the total number of filters removed through pruning (b).

The full results for all cost functions using the minimal-value deletion pruning for
220 weights are shown in Tables 2–4. In almost all cost functions and for all earthquakes,
the pruned matrix outperformed the full-state matrix and was closer to the performance
of the LQR controller. Similar to the full-state controller, the pruned control scheme is not
as adaptable to the Kobe and Loma Prieta earthquakes. However, across all earthquakes,
this controller scheme places more demand on the actuators, which likely contributes to its
increase in control effectiveness. The pruned matrix showed the most promise, though, in
addressing the communication challenges of the network. For the El Centro earthquake, the
pruned method transmitted 19.4% less data than the LQR and for the Kobe, it transmitted
47.5% less data. The two methods transmitted equal amounts of data for the Loma Prieta
earthquake.

6. Conclusions

While integration of feedback control systems into civil infrastructure is not a new area
of research, several challenges of the technology, such as computational delays and commu-
nication constraints, have prevented their widespread adoption. This study proposes using
a control algorithm that leverages front-end signal processing to enable streamlined control
at the actuation node and has the potential to overcome many of these challenges. The
control algorithm reduces down to a simplistic weighted combination of the inputs that can
easily be implemented in real-time on a controller node. The weights of this algorithm were
initially developed using the particle swarm optimization with a homing feature (PSO-H)
on a five-story benchmark structure. To further streamline the computations for the control
algorithm and reduce unnecessary data-sharing, three pruning methods were employed,
with the minimum error method resulting in increased control effectiveness through the
elimination of extraneous weights. As weights were removed using this method, however,
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the remaining control parameters were no longer optimized and therefore the pruning
methods were re-executed with periodic retraining using the PSO-H algorithm. This re-
sulted in a pruned weight matrix using minimal-value deletion pruning that produces
more effective control while also reducing the amount of transmitted data by 19.4%.

With the validation of the PSO algorithm and integrated pruning techniques in simu-
lation, future work will include the experimental validation of the proposed weighted-sum
control algorithm. This future step is critical in validating the real-time control of the
proposed control process and the streamlined communication capabilities. To achieve
this, the proposed control process will be applied to a small-scale, multi-story laboratory
structure that is placed on a single degree-of-freedom shake table. The structure is outfitted
with transducers for measuring inter-story displacement and actuators for mitigating the
effect of seismic base excitation. Information about the displacement of the structure will
be acquired by the novel sensing node developed in [30] and the peaks from the real-time
spectral components will be transmitted to a secondary sensing unit that both serves as the
controller and executes the weighted-sum control algorithm. Prior to implementation, the
weighting matrix will be determined for this new structure using the PSO-H algorithm. A
comparative baseline method, such as LQR, will also be implemented on this set-up. Both
the proposed control algorithm and the comparative baseline algorithm will face challenges
that were not addressed in this study. First, the limitations of the wireless telemetry natu-
rally result in lost data packets, which can degrade the control effectiveness. Accounting
for this limitation in this study was attempted through carefully chosen time sampling
schemes but experimental validation is necessary to fully validate this. Second, this study
assumed an ideal actuator with no limitations or dynamics. The actual actuator dynamics
will also affect the control time-step and place limitations on the amount of force that
can be applied. Therefore, while this study was a successful numerical application of the
proposed control algorithm, a necessary next step is experimental validation.
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Nomenclature

C Percent change in fitness function Cd damping matrix of structure
H Hessian matrix H0 filter gain
Hj(s) jth bandpass filter transfer function J LQR cost function
J1–J6 Control cost functions K LQR feedback gain matrix
Ks Stiffness matrix of structure L saliency (OBS)
M Mass matrix of structure O fitness function for PSO
NP1 Number of transmitted peak values NP2 number of transmitted data points
P Vector of detected peak values for all filters Q0,j frequency selectivity of each jth filter

Q LQR parameter that weighs the cost of the structural response R
LQR parameter that weighs the cost
of the control effort

U Control force W control weighting matrix
Ŵ Control weighting vector X vector of partial derivative (OBS)
d Inter-story drift vector of all floors e unit vector in weight space (OBS)
f(t) Control force output from actuator g best position of all particles (PSO)
hj(t) Impulse response of the jth filter l actuator location matrix
ι Ground acceleration influence vector t continuous time
tc Control time increment x current position of a particle (PSO)
xb Previous best position of a particle (PSO) xg ground displacement

y Displacement of structure y
states of the system (i.e., inter-story displacement
and velocity for all floors of the structure)

zj(t) Output of the jth bandpass filter γ1, γ2 acceleration coefficients (PSO)
ρ1, ρ2 Random number between 0 and 1 (PSO) λ inertia weight (PSO)
τ Inertial damping constant (PSO) δω weight change vector (OBS)
ξ Filter damping ratio ω filter center frequency
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