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Abstract: The emergence of the recommendation system has effectively alleviated the information
overload problem. However, traditional recommendation systems either ignore the rich attribute
information of users and items, such as the user’s social-demographic features, the item’s content
features, etc., facing the sparsity problem, or adopt the fully connected network to concatenate the
attribute information, ignoring the interaction between the attribute information. In this paper,
we propose the information fusion-based deep neural attentive matrix factorization (IFDNAMF)
recommendation model, which introduces the attribute information and adopts the element-wise
product between the different information domains to learn the cross-features when conducting
information fusion. In addition, the attention mechanism is utilized to distinguish the importance
of different cross-features on prediction results. In addition, the IFDNAMF adopts the deep neural
network to learn the high-order interaction between users and items. Meanwhile, we conduct
extensive experiments on two datasets: MovieLens and Book-crossing, and demonstrate the feasibility
and effectiveness of the model.

Keywords: attention mechanism; cross-features; deep neural network; information fusion; matrix
factorization; recommendation system

1. Introduction

In recent years, the numbers and types of data sources, such as internet users and
applications, have increased rapidly, leading to an exponential explosion of internet infor-
mation. Huge volumes of data are created, collected, and processed [1]. This has resulted in
a huge contradiction between the massive data supply and the personalized needs of users.
The massive dataset makes it difficult for users to quickly obtain information that meets
their individualized needs, which is known as information overload [2]. How to balance
the massive data with the user’s personalized needs, and quickly and accurately provide
users with personalized information from the massive data has become an urgent problem
to be addressed. The recommendation system is considered to be an effective solution
to alleviate this problem. By analyzing users’ preferences, the recommendation system
can actively recommend information to users that meet their interests [3]. However, tradi-
tional recommendation systems usually adopt a single-form data, for instance, the matrix
factorization-based recommendation system is often based on the factorization of the rating
matrix composed of explicit feedback data or the interaction matrix composed of implicit
feedback data to complete the recommendation task. Adopting single-form input data has
insufficient information and is easily affected by noisy data [4,5], so it is hard to accurately
and comprehensively model users and items, and it is difficult to meet the user’s needs
for the novelty of the item, which limits the performance of the recommendation systems.
In fact, in addition to the rating information, there is other auxiliary information, such as
the user’s social-demographic features (age, gender, occupation, etc.), the item’s content
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features (category, introduction, etc.), etc. By adopting information fusion technology [6],
the recommendation system could integrate the auxiliary information into the modeling
process of the recommendation system, so the recommendation system could model user
preference and items representation more comprehensively, which could enhance the ex-
pressive ability of the model and improve the performance of recommendations, as well as
increase the novelty of the recommendation results.

Based on the characteristic that deep neural network can fuse arbitrary continuous
features and category features, some recommendation systems try to introduce auxiliary
information into matrix factorization-based recommendation system. By utilizing neural
networks, the recommendation system can extract feature representations of auxiliary
information and combine them with the matrix factorization. It improves the model’s
expression ability. However, when fusing the feature representations extracted from the
auxiliary information, most of models utilize the fully connected networks to combine
and transform these features, which combines different categories of feature vectors by
simple splicing. We can generally understand the method that the fully connected network
processes feature vectors as addition operations, and addition is equivalent to the “or”
relationship in logic. Therefore, such a feature fusion method can be simply and intuitively
understood as an “or” operation. However, the “or” operation ignores the interaction
between different feature domains. In practical applications, the interaction of features, that
is, the “and” relationship between features, often contains higher-value information. There-
fore, other feature combination methods are requested to introduce the “and” relationship
between features.

In this paper, we propose the information fusion-based deep neural attentive matrix
factorization (IFDNAMF) recommendation model. We introduce the auxiliary information
to the model based on the feature that deep neural network can fuse arbitrary continuous
features and category features. When conducting information fusion, to complete the
interactive fusion between features of different information domains and to get different
cross-features in a targeted way, we adopt the element-wise product. Meanwhile, to dis-
tinguish the importance of diverse cross-features on recommendation results, we also
introduce the attention mechanism to learn the weights of different cross-features.

Furthermore, the recommendation system based on matrix factorization suffers from
the limitation of the simple linear inner product. In addition, during the inner product
of traditional matrix factorization, the results of all dimensions are accumulated with
the same weight, which could be seen as the connection weights all being 1, to get the
final scalar result. Both of these make it non-effective to model the complex non-linear
relationships between the user and the item. To solve these ends, He et al., proposed the
generalized matrix factorization (GMF) [7], which utilizes the neural network to endow
MF with non-linear learning capability through the activation function and combines the
values of different dimensions with different weights by introducing weight matrix. GMF is
empowered with the ability to model the second-order non-linear interaction between users
and items. The expression ability of the model gets significant improvement. Despite all
these advantages, it is not effective for GMF to capture the high-order interaction between
users and items that contains richer information because of the shallow network structure,
which may limit the performance of the recommendation system. Therefore, hidden layers
are introduced on the second-order interaction obtained by the non-linear element-wise
product in IFDNAMF, by the deep neural network, we could model the complex non-linear
high-order interaction between the user and the item.

The main contributions of our proposed approach can be summarized as follows.

1. We first propose a new recommendation model, the information fusion-based deep
neural attentive matrix factorization (IFDNAMF) recommendation model, in which
we introduce the auxiliary information to assist the model in describing the user
features and item features more comprehensively and specifically;

2. Then, we propose a new method of information fusion, in which the inner product
between the different information domains is adopted to learn the cross-features,
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so that the IFDNAMF could obtain the “and” relationship containing the higher-
value information between the auxiliary information. Meanwhile, to distinguish the
importance of diverse cross-features on recommendation results, we also introduce
the attention mechanism to learn the weights of different cross-features;

3. Finally, we conduct extensive experiments on two datasets: MovieLens and Book-crossing.
The experimental results demonstrate the outstanding performance of IFDNAMF.

2. Related Work

The key of the recommendation system is the recommendation algorithm. There are
mainly three recommendation algorithms: content based [8], collaborative filtering [9],
and hybrid based [10], among which collaborative filtering is the most commonly used. The
matrix factorization (MF) algorithm proposed by Simon Funk (Available online: http://
sifter.org/simon/journal/20061211.html (accessed on 26 September 2021)) is an effective
collaborative recommendation algorithm, which gets widely used in many real-world
scenarios [11]. The traditional recommendation system based on matrix factorization
decomposes the user rating matrix into the user-factor matrix and the item-factor matrix
through a set of potential feature factors and utilizes potential factor vectors to describe
users and items, that is, users and items are mapped into a shared latent vector space,
and the interaction between users and items is expressed by the inner product between the
mapped vectors, and then a Top_N recommendation list is generated for the user according
to the inner product result [12].

However, the traditional matrix factorization-based recommendation system often
takes the rating matrix or interaction matrix as the input. The single-form input data
contain a small amount of information, thus it is difficult to model user preference and item
representation comprehensively and accurately. Furthermore, MF faces the problem of high
sparsity of rating matrices and interaction matrices since each user only interacts with a
tiny fraction of a great quantity of items, which limits the performance of recommendation
systems [13]. In fact, in practical application scenarios, users and items have a wealth
of auxiliary information, such as social trust relationships [14,15], tags [16], context [17],
and so on. Introducing the auxiliary information to the model can assist the recommenda-
tion system in modeling user preferences and item representations more comprehensively,
and further improve the model’s performance of recommendation systems. Therefore,
to make full use of the rich auxiliary information to assist in modeling user preferences
and item representations, Yuka Wakita et al. [18] employed the auxiliary information in the
recommendation model to solve users’ brand recommendation task. A large number of
user and item features are modeled in the model, including the user’s age, acceptable price
range, item materials, design methods, sewing methods, etc. These learned feature repre-
sentations are mapped to the softmax output layer through multi-layer neurons with ReLU
as activation function to obtain predicted ratings. Similarly, Yi et al. [19] proposed a deep
learning based collaborative filtering framework, namely, deep matrix factorization (DMF),
which integrates various side information to generate latent factors of users and items by
concatenation operation. P Covington et al. [20] proposed a recommendation algorithm
based on neural networks, in which multiple fully connected layers are utilized to integrate
rich continuous features and category features, including historical user activity records
and social-demographic features (age, gender, occupation, etc.), to improve performance of
recommendation systems of the model. Furthermore, Greg Zanotti et al. [21] employed the
neural network language model to fuse information from multiple sources, including user
data, item data, and tag data, to extract rich feature representations of users and items.

The above researches introduce a great quantity of auxiliary information with various
forms to the model through the deep neural network, including continuous features and
category features, to model user preferences and item representations more comprehen-
sively and accurately. However, when fusing the features of various information, most
of these researches utilize the traditional fully connected network to simply concatenate
the features to obtain the implicit feature representations of users and items. In brief,
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we can understand this combination mode as “or” in logic. This approach has certain
limitations and it is not sufficient to model the interaction between features. In other
words, the fully connected network cannot obtain cross-features, and cannot express the
“and” relationship between different features, but in practical applications, the “and” re-
lationship between features often contains high-value information, efficiently utilizing
this information could assist the model in further improving the performance of recom-
mendation systems. Similarly, Shen et al. [22] propose a recommendation framework,
namely DVMF, which introduces the implicit feedback information and side information
to model low-dimensional feature representation of users and items and greatly improves
the recommended performance. However, DVMF still combines the features of side infor-
mation by splicing, which limits the model performance. Based on the MF and the LSTM,
Sun et al. [23] proposed a novel probability framework, named as joint matrix factorization
(JMF), which can effectively extract side information to form latent vectors. It also concates
the features of the side information by splicing and ignores the interaction of the feature
of side information. In addition, Ji et al. [24] propose a hybrid recommendation model
based on user ratings, reviews and social data. Social relationship and reviews informa-
tion are used as auxiliary information to improve recommendation performance. Zafran
Khan et al. [25] propose a context-based recommendation model to improve item feature
extraction, which extracts context features through convolutional neural network (CNN),
it not only resolve the sparsity problem, but also addresses the information loss due to the
negative values in latent factors. Although both of them introduce auxiliary information
to improve recommendation performance, they ignore the interaction between different
features. Of course, some works think about the interaction between the features of side
information. For instance, in fusing auxiliary information, Zhao et al. [26] take into account
capturing the correlation information between different types of side information, they
put forward the HAF framework, which using heterogeneous network to unified model
various side information and capture the interaction relationship between different types
of side information. To some extent, the performance of recommendation system gets
improved. However, when combining features, they still adopt simple splicing, so the side
information still cannot be fully utilized to improve performance. In addition, the method
generating metagraphs by hand-crafting requires a lot of labor costs and recommendation
performance is easily affected by experience. Therefore, the IFDNAMF proposed in this pa-
per introduces a large amount of auxiliary information into the matrix factorization-based
recommendation model. When conducting the auxiliary information fusion, a targeted
neural network structure is adopted to complete the cross fusion of information of different
feature domains in a targeted manner, by which the recommendation system could model
user preferences and item representations more comprehensively and accurately.

In addition, the performance of traditional recommendation systems based on matrix
factorization is limited by simple linear inner product, although some recommendation
tasks [27–30] have been done to improve the matrix factorization model of recommendation
system in different directions, which improves the model’s performance of recommenda-
tion systems, the performance of recommendation model is still limited by employing the
inner product to model the interaction between users and items. The linear product may
not be sufficient to capture the non-linear structures of interaction between users and items.
That is, the simple and fixed inner product has its limitations, which will cause a limitation
to the model. To solve this problem, He et al. [7] applied the neural network in the MF
model to learn the non-linear interaction between the user and the item according to the
non-linear learning ability of the neural network, which greatly improves the performance
of recommendation systems of the model. However, GMF only contains the embedding
layer and the output layer, which only models the second-order interaction between the
user and the item and cannot well capture the high-order interaction which hides richer
information. In other words, GMF is a shallow model, which can effectively model the
low-level features of interaction between users and items, but it is not sufficient to capture
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the high-order interaction that contains a lot of richer and more abstractive information,
which may limit the performance of recommendation systems of the model.

In recent years, more and more works have attempted to combine matrix factorization
with deep neural network for recommendation tasks because of the ability of the deep
neural network to learn high-level and more abstractive features. The work of Aäron van
den Oord [31] combined matrix factorization with deep convolutional neural networks.
Zhang et al., utilized heterogeneous network embedding and deep learning embedding
methods to automatically extract semantic representations from structural knowledge, text
knowledge, and visual knowledge in the knowledge base, and then combined them with
the matrix factorization model in collaborative filtering to make recommendations [32].
Wang et al. [10] proposed the CDL model, which has good expressive power by performing
deep representation learning on content information and collaborative filtering on the rating
matrix. Yan et al. [33] proposed an asymmetric neural matrix factorization recommendation
system. By adopting the deep neural network, the model could learn the high-order
embedding vector representations of users and items from the interaction matrix and
then complete the score prediction based on matrix factorization. These methods utilize
deep neural networks to learn high-order features of users and items, which endows
the model the ability to learn the interaction of high-order abstract features of users
and items. However, for the part of collaborative filtering, they still apply MF which
combines the feature vectors of users and items by simple linear inner product, it limits
the performance of recommendation systems of the model to a certain extent. Therefore,
in IFDNAMF recommendation model, by adding hidden layers on the non-linear second-
order interaction, IFDNAMF could utilize deep neural networks to model non-linear high-
order interaction between users and items, as well as solve the problem that is generated
by the simple linear inner product of MF.

3. Preliminary Work

In this section, we first present the IFDNAMF recommendation model’s framework
and describe how it works. Then, we elaborate how our proposed IFDNAMF address the
limitations of the existing methods, namely completing feature crosses between different
auxiliary information feature domains to model the user preference and item representation
more comprehensively, adopting the attention mechanism to learn the importance of
different cross-features when conducting information fusion, and modeling the second-
order and non-linear high-order interaction by deep neural network.

3.1. An Overview of IFDNAMF Framework

To make full use of the auxiliary information to model user preference and item repre-
sentation more comprehensively and accurately, and, at the same time, learn the complex
non-linear high-order interaction between users and items, and then further improve the
recommendation performance, this paper proposes information fusion-based deep neural
attentive matrix factorization recommendation model, in which, when fusing information,
element-wise product operation is employed to complete the interaction between features
of different information domains in a targeted manner. In addition, the IFDNAMF adopts
the attention mechanism to distinguish the importance of different cross-features on the
final latent feature representation during the fusion process. Furthermore, the deep neural
network is utilized to model the complex non-linear high-order interactions between users
and items. Figure 1 shows the model framework. The framework is mainly composed of
6 parts: input layer, interaction layer, pooling layer, GMF layer, hidden layer, and output
layer. The input layer obtains the continuous features and category features of the user
and the item, including the user ID, item ID, and other attribute features, the embedding
vectors of the user and the item are obtained by embedding technology, and then the
cross-features are captured by pairwise element-wise product operation between these
embedding vectors. After that, the cross-features are entered into the pooling layer based
on the attention mechanism to fusion by different weights learned from the attention
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mechanism to obtain the latent features of the user and the item, and then the IFDNAMF
models the second-order interaction between the user and the item in the GMF layer by
performing element-wise operation on these latent features. The result from the GMF
layer is trained iteratively by the deep neural network in the hidden layer to model the
high-order interaction between the user and the item. Finally, the user’s prediction ratings
for the items are generated in the output layer, and a Top_N recommendation list based on
the predicted rating is recommended to the user.
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Figure 1. Information fusion-based deep neural attentive matrix factorization recommendation
model structure.

3.2. Feature Crosses-Based Information Fusion

Traditional recommendation models often take rating information composed of ex-
plicit feedback data and interaction information composed of implicit feedback data as
input, which leads to the model can only model partial user preferences and partial
item representations because of the high sparsity of the data. Therefore, we introduce
auxiliary information, namely the user’s social-demographic features (age, gender, occu-
pation, etc.) and the item’s content features (categories, profiles, etc.) into the IFDNAMF
model. Specifically, we utilize one-hot encoding to obtain the representations of category
features (age, gender, ID, etc.). To solve the problem that the number of categorical features
is large, which results in very sparse binary vectors, we adopt the embedding matrix to map
the sparse and high-dimensional vector representations to the dense and low-dimensional
space. Meanwhile, we adopt Fast-Text [34] to obtain the text attribute representations by
averaging word embedding vectors. Similarly, we multiply the text attribute representa-
tions by the embedding matrix to map the sparse vector representations to the dense space.
As introduced in Section 2, when conducting the auxiliary information fusion, most of the
existing researches utilize the fully connected network to simply concatenate the features
of different information, which can be regarded as the “or” operation in logic. The fully
connected network cannot obtain cross-features and express the interaction between fea-
tures, which makes the model ignore the “and” relationship between features. Considering
a scenario in which ad click predictions are made for different users on the sites to recom-
mend ads that meet the personalized needs of users. For the Disney advertisement on the
sites, we assume that these features, namely the location: Shanghai, younger users, and the
date: Friday, play a critical role in whether the user clicks it. Users who meet these features
are more likely to click on this ad when they see this ad. Intuitively, users matching the
above features have a higher probability of clicking than users who only match one of them.
In other words, the value of the information contained in the “and” relationship between
the features is richer than the value of the information contained in the “or” relationship
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between the features. Ignoring this “and” relationship between features may result in the
loss of much useful information in the modeling process, which may affect the performance
of recommendation systems of the model.

Therefore, to introduce the information contained in the “and” relationship between
features, we propose an information fusion method based on feature crosses in the IFD-
NAMF recommendation model. The specific implementation is shown in the interaction
layer in Figure 1. When fusing the auxiliary information, we adopt the element-wise
product between different features to complete the interaction between features of different
information domains in a targeted way and obtain different cross-features. That is, we
perform the element-wise product between the user ID and each user attribute feature and
the pairwise element-wise product between the user attribute features for the user, and we
adopt the element-wise product to model the interaction between the item ID and each
item attribute feature and the interaction between the item attribute features for the item.
The pairwise element-wise product in Figure 1 is the operation of the element-wise product
between the embedding vectors described above. Through the pairwise element-wise
product between embedding vectors, we could obtain multiple cross-features of users and
items, which is defined as:

ϕpairwise(u) = {Ut �Ut′ |t, t
′ ∈ {ID, att1, . . . attn}, t 6= t

′} (1)

ϕpairwise(i) = {It � It′ |t, t
′ ∈ {ID

′
, att

′
1, . . . att

′
m}, t 6= t

′} (2)

where Ut and Ut′ are the embedding vectors, including the user ID’s embedding vectors
and the embedding vectors of user attribute features. ID, att1, . . . attn represents the user’s
ID and n attribute features. It and It′ are the embedding vectors, including the item ID’s
embedding vectors and the embedding vectors of item attribute features. ID

′
, att

′
1, . . . att

′
m

represents the item’s ID and m attribute features.
Simultaneously, we compare the performance of the IFDNAMF model with the tradi-

tional recommendation model employing the fully connected network and demonstrate the
effectiveness of our proposed IFDNAMF, which models the interaction between features of
different information domains when conducting information fusion in Section 4.2.

3.3. Cross-Features Fusion Based on Attention Mechanism

After obtaining the cross-features of the user and the item through the interaction layer,
we need to fuse these cross-features obtained by feature crossing of different information
to finally obtain the user preference representation and the item representation, namely the
potential feature vector of the user and the item, pu and qi. However, it should be noticed
that different cross-features have different degrees of importance on the final prediction
result. Some cross-features may directly affect the final recommendation result. On the
contrary, some cross-features are not important for the final result. If we combine these
cross-features with the same weight without distinguishing the importance of these cross-
features, these insignificant cross-features may become noise and offset the positive impact
of the important cross-features on the final recommendation result, which ultimately affects
the performance of recommendation model. Here, we still take the Disney advertising
click prediction scenario as an example. The cross-feature obtained by the cross of age and
date has a great influence on the click prediction result, and the cross-feature obtained by
the cross of height and accent is irrelevant for users’ clicks on Disney advertising. For two
users, assuming that the cross-features representation obtained by the cross of their age
and date are very different, the final click prediction result should be greatly different.
However, if the two cross-features are fused with a weight of 1, the possible result is that the
cross-feature obtained by the cross of height and accent makes up for the great difference
of the cross-feature obtained by the cross of age and date, which cause the two users’ click
prediction results are same. Therefore, it is necessary to distinguish the contribution of
these cross-features on the final result by different importance levels. Here, we adopt
the attention mechanism to learn the importance of different cross-features on prediction
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results, by which we fuse different cross-features. Specifically, by applying the attention
net of the pooling layer based on the attention mechanism on the different cross-features,
the attention scores of different cross-features of users and items aij and a

′
ij are, respectively,

learned, which represents the contribution of different cross-features to the prediction.
The calculation formula is formulated as follows:

aij(Ut, Ut′ ) =
ehT ReLU(W(Ut�U

t′
)+b)

∑Ut�U
t′
∈ϕpairwise(u) ehT ReLU(W(Ut�U

t′
)+b)

(3)

a
′
ij(It, It′ ) =

ehT ReLU(W(It�I
t′
)+b)

∑It�I
t′
∈ϕpairwise(i) ehT ReLU(W(It�I

t′
)+b)

(4)

where W and b represent the weight matrix and bias vector of the interaction layer to
the attention net, respectively. h represents the connection weight of attention net to the
pooling layer.

Then, multiple cross-features of the user and the item are combined according to
different contribution levels through the sum pooling operation, thereby obtaining the
potential feature vector containing the attribute features of the user and the item, namely
pu and qi. The calculation process is formulated as follows:

pu = ϕ(ϕpairwise(u, aij(Ut, Ut′ ))) = ∑
t 6=t′

aij(Ut, Ut′ )Ut �Ut′ (5)

qi = ϕ(ϕpairwise(i, a
′
ij(It, It′ ))) = ∑

t 6=t′
a
′
ij(It, It′ )It � It′ (6)

3.4. GMF Structure Based on Multiple Hidden Layers

The traditional matrix factorization-based recommendation model cannot capture
the complex non-linear interaction between users and items because of adopting the lin-
ear inner products. In response to this problem, many related works have been done,
among which the GMF model is particularly conspicuous. By introducing a single layer
neural network on the second-order interaction between the user and the item, the activa-
tion function and the bias term are employed to endow the model with the ability to model
non-linear interaction between users and items. However, GMF is a shallow model, which
can well model the low-order interaction features of user and item, it is not effective to cap-
ture the more abstractive features that contain more rich information, namely high-order
interaction information. For example, if we enter the interaction information between the
user and the music into the recommendation model with a single layer neural network, we
could capture that the user prefers classical music. Then if we enter the obtained results
into the next layer neural network for learning, we could get the result that the user tends
to listen to Mozart’s music in classical music. Therefore, we introduce the GMF structure
based on multiple hidden layers in the IFDNAMF model, so that the model can not only
model non-linear second-order interaction between users and items but also capture the
high-order interaction between users and items. We can define the formulation as follows:

s1 = ϕ(pu, qi) = pu � qi (7)

Z1 = φ1(s1) = a1(WT
1 s1 + b1) (8)

Z2 = φ2(Z1) = a2(WT
2 Z1 + b2)

......

ZL−1 = φL−1(ZL−2) = aL−1(WT
L−1ZL−2 + bL−1)

(9)
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where a1 is the activation function. W1 and b1 is the connection weight matrix and bias
vector. ZL−1 is the output of the L − 1th layer network. a2 and aL−1 are the activation
functions of each hidden layer. WT

2 , WT
L−1 and b2, bL−1 are the connection weight matrix

and bias vector of each hidden layer, respectively.

4. Experiments

In this section, we conduct the experiments to demonstrate the feasibility and effective-
ness of our proposed IFDNAMF recommendation model through the comparative analysis
of the performance indicators with the baselines. The experimental analysis mainly focuses
on the following three aspects:

(1) The performance of recommendation systems of the IFDNAMF model;
(2) The impact of the latent vector dimension on the performance of the model;
(3) The impact of the number of hidden layers on the performance of the model.

4.1. Experiment Settings
4.1.1. Datasets

We perform experiments with two public datasets: MovieLens (https://grouplens.
org/datasets/movielens/1m/ (accessed on 26 September 2021)) and Book-crossing (http:
//www2.informatik.uni-freiburg.de/~cziegler/BX/ (accessed on 26 September 2021)) to
verify the performance of the models.

The MovieLens is a movie dataset widely used in recommendation systems. It contains
multiple versions with different data sizes. Here we use the MovieLens 1M dataset,
referred to as MovieLens. The MovieLens contains 1 million rating records from 6000 users
on 4000 movies, with scores ranging from 1 to 5. The user’s attribute features include
gender, age, job, and zip code. The movie’s attribute features include the movie title and
movie category.

Book-crossing is an open book dataset, which is composed of 278,858 users, 271,397 books,
and 1,149,780 rating records, with a rating range from 1 to 10. The user’s attributes include
age and region. The book’s attributes include title, author, publication year, and publisher.
Since we adopt the leave-one-out evaluation strategy, in order to ensure that model eval-
uation can be carried out, each user needs to have at least one training data and one test
data. Therefore, we filter out users and books with less than 5 interaction records. The fil-
tered dataset contains more than 600,000 rating records of 21,915 users on 39,702 books.
Although we filter the data, the data sparsity is still as high as 99.93%, so this is still a
scenario with highly sparse datasets.

For each user, we sort all the interactions by timestamp, and select the last interaction
record, which is the most recent interaction record and 99 non-interactive samples obtained
by random sampling as the test sample to form the test set. The rest of the interaction
records are regarded as the training sample to form the training set.

4.1.2. Evaluation Protocol and Baselines

Because it is too time-consuming for each user to predict their preference on all non-
interactive items, we follow a general strategy [12,18]. Through applying the sampling
method described in Section 4.1.1, the test set composed of 1 positive sample and 99 neg-
ative samples is collected for each user, then the user’s preference on these 100 items is
predicted, after that the prediction rating is ranged from large to small to generate a top
10 ranking list. The performance of recommendation systems is measured by hit ratio
(HR) and normalized discounted cumulative gain (NDCG) [35]. HR intuitively evaluates
whether the test item is on the top 10 list. NDCG is used to measure the location of the
positive test sample in the ranking list.

We compare IFDNAMF with the following models:

• GMF: GMF is an improved matrix factorization algorithm [7]. The matrix factorization
model is generalized by the activation function and the connection weights with

https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/1m/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/


Algorithms 2021, 14, 281 10 of 17

incomplete weights of 1 so that the model can model the non-linear second-order
interaction between the user and the item;

• GMF+MLP: By removing the interaction layer, attention layer, and pooling layer of
the IFDNAMF model, the IFDNAMF model can be generalized to the improved GMF
model with the multi-layer hidden layer network, referred to as GMF+MLP, which is
utilized to demonstrate the effectiveness of deep neural networks to model high-order
interactions between the user and the item;

• Concat: The concat is the variant of the IFDNAMF model, which is the common
method for traditional recommendation models to process the attribute information.
This method completes the combination of features of information through the fully
connected layer, which ignores the interaction between different feature domains,
and lacks pertinence;

• Sum pooling: To verify the effectiveness of the method that endows the cross-features
with different weights by the attention mechanism, the IFDNAMF model is compared
with the model that contains the same network structure with the IFDNAMF model
removing the attention layer, referred to as sum pooling, which crosses the features by
element-wise product and combines the cross-features by sum pooling operation.

We implemented the above models and IFDNAMF recommendation model based
on Tensorflow. For the neural network model, the model is initialized by a truncated
normal distribution with a mean of 0 and a variance of 0.01. The model is optimized by the
cross-entropy loss function and the Adam gradient descent algorithm. The batch size and
initial learning rate are 256 and 0.001, the activation function of the hidden layer and the
output layer are ReLU and Sigmoid, respectively.

4.2. Experimental Results and Analysis

We conduct the experiments to demonstrate the feasibility and effectiveness of our
proposed model through the comparative analysis of the performance indicators with the
baselines from the following three aspects.

4.2.1. Result 1: Performance Comparison

To explore the performance of IFDNAMF, we compared the performance of the
proposed IFDNAMF model with the four models: GMF, GMF+MLP, concat, sum pooling,
and GMF. The five models were trained and tested on MovieLens and Book-crossing,
respectively. Table 1 shows the performance of these models’s HR@10 and NDCG@10.

Table 1. The performance of the five models on MovieLens and Book-crossing.

Dataset MovieLens Book-Crossing

Baseline HR@10 NDCG@10 HR@10 NDCG@10
GMF 0.7141 0.4357 0.6518 0.3739
GMF+MLP 0.7318 0.4502 0.6831 0.4150
concat 0.7369 0.4528 0.6878 0.4157
Sum pooling 0.7450 0.4600 0.6953 0.4212
IFDNAMF 0.7501 0.4633 0.6984 0.4229

It is not hard to see from Table 1 that on both datasets, the performance of the two
indicators HR@10 and NDCG@10 is: IFDNAMF > sum pooling > concat > GMF+MLP > GMF.
The performance of our proposed IFDNAMF model is superior to the baselines on both
datasets. Compared with the sum pooling model, the two indicators of the IFDNAMF
model on the Book-crossing have increased by 0.31% and 0.17%, while the two indicators of
the IFNDAMF model on MovieLens have improved by 0.51% and 0.33%. Compared with
the GMF model, the HR@10 and NDCG@10 of IFDNAMF have increased by 3.6% and 2.67%
on MovieLens, while 4.66% and 4.9% on the Book-crossing. Among these models, GMF
performs the worst, followed by the GMF+MLP model. This may be caused by the fact
that the GMF and GMF+MLP only model the user ID feature and item ID feature, which
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leads to the loss of the partial user preference and item representation, that is, they could
only represent the partly information of user preference and item representation. The other
three models have fused features of other attribute information of users and items, as well
as the user ID feature and the item ID feature. Through the auxiliary information, they
could model user preference and item representation more comprehensively and accurately
from multiple aspects, thereby the performance of recommendation systems gets improved.
This also demonstrates the effectiveness of the way that introduces auxiliary information
into the model to more comprehensively model user preference and item representation.

Furthermore, compared with the sum pooling model and IFDNAMF model, the per-
formance improvement of the concat model is relatively worse. This indicates that, when
fusing attribute information, the simple concatenating operation on the segmented at-
tribute feature vectors through the fully connected network is not effective to capture the
interactive relationships between the features, which will lead to the limitation on the
performance of the model, while through the element-wise product, the cross between
different feature domains is completed in a targeted manner, and the cross information
between features will be captured, which enhances the model’s ability to represent different
data patterns. Meanwhile, Table 1 shows that the IFDNAMF model performs better than
the sum pooling model on both datasets. This is due to that different cross-features have
different degrees of importance in the rating prediction task, compared with the sum pool-
ing model, the IFDNAMF model can assign different weights to different cross-features
through the attention mechanism, thereby effectively distinguishing the correlation of
different features on the result. This indicates that it is feasible and effective to introduce
the attention mechanism to the model. In addition, the HR@10 and NDCG@10 of the
GMF+MLP perform better than the GMF model on both datasets. This is caused by the fact
that the GMF is a shallow model, although it can well model the non-linear second-order
interaction between users and items, it cannot effectively model the high-order interac-
tion between users and items. This indicates that by adding hidden layers, the model
could capture more abstractive information between users and items to model high-order
interactions through the deep network.

Furthermore, because we split the training and test sets by random sampling, we
perform the statistical significance tests. We repeat the experiment 20 times with random
sampling, and the final experimental result was obtained by averaging the results of
20 experiments. Here, we use the no-repeat two-way ANOVA method to test the difference
significance of the experimental results of GMF and IFDNAMF model under different
datasets with different metrics, respectively. The results are showed in the Tables 2 and 3.
The difference significance test results are explicit that there are significant differences in
the experimental results on different datasets and different metrics, and the differences are
extremely significant.

Table 2. The results of statistical significance tests with HR and NDCG on MovieLens.

Metrics HR NDCG

Difference F p-Value F Crit F p-Value F Crit

row 6013.799 3.1× 10−25 4.38075 0.809181 0.67545 2.168252
column 43,481.85 2.18× 10−33 4.38075 0.557571 0.893962 2.168252

Table 3. The results of statistical significance tests with HR and NDCG on Book-crossing.

Metrics HR NDCG

Difference F p-Value F Crit F p-Value F Crit

row 7990.425 2.1× 10−26 4.38075 1.080408 0.433948 2.168252
column 649,512 1.53× 10−44 4.38075 1.986402 0.071824 2.168252
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4.2.2. Result 2: The Impact of the Latent Vector Dimension on the Performance

To explore the impact of the latent vector dimension on the performance of the model,
we compared the performance of the four models: GMF+MLP, concate, sum pooling,
and IFDNAMF under the different latent vector dimensions of 10, 20, 40, and 80 on
MovieLens and Book-crossing. The results are shown in Figures 2 and 3.
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Figure 2. The HR@10 and NDCG@10 of models with different potential vector dimension on
MovieLens. (a) HR@10. (b) NDCG@10.

Figures 2 and 3 show that with the continuing increase in the potential dimensions,
the HR@10 and NDCG@10 of the four models increase continuously, and the performance
of recommendation systems of the models gets improve continuously. This is because
before reaching the optimal latent vector dimension, as the dimension increases, the latent
vector could contain more information, which assists the model in describing the user
features and item features more comprehensively and specifically to model the latent
features of users and items better, so the performance of recommendation systems is better.
However, the dimension should not be too large. Because when the latent vector dimension
is too large, it may lead to over-fitting. This is why when the latent vector dimension reaches
40 on the MovieLens, the HR@10 and NDCG@10 of models begin to decline, and when
the latent vector dimension reaches 20 on the Book-crossing, HR@10 and NDCG@10 also
begin to decline. Meanwhile, we can conclude from Figures 2 and 3 that the optimal latent
vector dimension of the IFDNAMF model is 40 on MovieLens and 20 on Book-crossing.
Furthermore, in different dimensions (20, 40, and 80), compared to the GMF+MLP model,
the performance of the sum pooling model and IFDNAMF model which cross different
features by element-wise product achieve great improvement, while the performance of
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the concat model which concatenates the features by the fully-connected network gets
limited improvement. This demonstrates that, when fusing attribute information, it is
an effective way to simulate the interaction of features by element-wise product, while
combining the segmented feature vectors through the fully-connected network is not
effective to represent the features, so the improvement of model performance is small.
In addition, in different dimensions (20, 40, and 80), compared with the sum pooling model,
the HR@10 and NDCG@10 of the IFDNAMF model introducing the attention mechanism
increase, and the model performance has been further improved. This indicates that not all
cross-features have the same degree of association with the result, and by assigning the
cross-features with different weights, the model can obtain the ability to adjust the feature
weights according to the characteristics of the sample, which is significative to improve the
prediction ability of the model.
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Figure 3. The HR@10 and NDCG@10 of models with different potential vector dimension on Book-
crossing. (a) HR@10. (b) NDCG@10.

4.2.3. Result 3: The Impact of the Number of Hidden Layers on the Performance

In Section 4.1.2, we generalize the IFDNAMF model to the GMF+MLP model by
removing the interaction layer, attention layer, and pooling layer. Through the experiments
and analysis in Result 1, it is not difficult to conclude that by adding multi-layer neural
network to the GMF model, the model is endowed with the ability that models the high-
order interaction between the user and the item, so the model could learn more abstractive
features, and then the model obtains a better ability of expression. To explore the influence
of the number of hidden layers on the performance of recommendation systems of the
model, we set up control group experiments with hidden layers of 1, 2, 3, and 4, respectively.
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The model with one layer of neural network is denoted as MLP-1, MLP-2 represents the
model with two layers of neural network, etc. We conducted the experiments on MovieLens
and Book-crossing and got the HR@10 and NDCG@10 of the four models: GMF+MLP,
concat, sum pooling, and IFDNAMF of the four control groups experiments under the
optimal potential vector dimension, respectively. The results are shown in Figures 4 and 5.
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Figure 4. The HR@10 and NDCG@10 of models with different layers on MovieLens. (a) HR@10.
(b) NDCG@10.

Figures 4 and 5 show that as the number of hidden layers increases continuously
from 1, the HR@10 and NDCG@10 of the model are constantly growing, and the model’s
performance gets significantly improved. This is because the single layer neural network
can map input data to another abstract space to learn more abstractive features, and by
increasing the number of hidden layers, the model could learn richer and more abstractive
information to model the interaction between users and items better. In addition, through
introducing hidden layers, the model obtains the ability to learn non-linearity, which
improves the model’s ability of expression. This indicates that by adopting the deep neural
network, the IFDNAMF model could learn high-order interaction between users and
items, thereby the model’s performance of recommendation systems gets improved further.
However, as the number of layers of the deep neural network increases further, the HR@10
and NDCG@10 increase slowly, even when the number increases from 3 to 4, the HR@10
and NDCG@10 of the concat model on MovieLens begin to decline, which indicates that it
is not that the more layers the MLP has and the deeper the neural network is, the better the
model performance of recommendation systems is. This is because too many hidden layers
will lead to over-fitting, which will limit the performance of recommendation systems of
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the model. Meanwhile, due to too many hidden layers in the neural network, the model
parameters will increase exponentially, which will increase the difficulty to train and make
it difficult for model to converge.

In addition, the HR@10 and NDCG@10 of the models with attribute features, namely
the concat model, sum pooling model, and IFDNAMF model, are higher than the GMF+MLP
model, which further indicates that the introduction of auxiliary information is benefi-
cial to the performance of the model. Furthermore, it can be seen that the sum pooling
model performs better than the concat model, which connects feature vectors through
concatenating operation. Further, the IFDNAMF model performs best. This also verifies
that it is meaningful to improve the performance of the model by explicitly completing
the crossover between feature domains through the element-wise product and assigning
different weights to the cross-features through the attention mechanism.
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Figure 5. The HR@10 and NDCG@10 of models with different layers on Book-crossing. (a) HR@10.
(b) NDCG@10.

5. Conclusions

In this paper, we introduce the attribute features of users and items to the matrix
factorization recommendation system, and adopt the element-wise product operation
between features of different information domains to model the cross-features, which could
overcome the limitation of the fully connected network and model the user preference
and item representation more comprehensively and accurately. In addition, we also utilize
the attention mechanism to distinguish the importance of different cross-features on the
prediction results. Meanwhile, we utilize the structure that adds the hidden layer on GMF
to solve the problem of the linear inner product of matrix factorization and model the
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non-linear high-order interaction between the user and the item. Meanwhile, we conduct
extensive experiments on two datasets: MovieLens and Book-crossing, the results demon-
strate the feasibility and effectiveness of the model. Experimental results demonstrate the
feasibility and effectiveness of the model.

The element-wise product is an element-by-element multiplication between vectors,
which may ignore the interaction between elements of different dimensions of vectors.
Therefore, in the future, we may attempt to adopt the outer product to simulate the
interaction between features. Meanwhile, the IFDNAMF does not take into account the
neighbor information. Thus, introducing neighbor information into the IFDNAMF may be
explored in the future.
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