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Abstract: The extended utilization of digitized Whole Slide Images is transforming the workflow of
traditional clinical histopathology to the digital era. The ongoing transformation has demonstrated
major potentials towards the exploitation of Machine Learning and Deep Learning techniques
as assistive tools for specialized medical personnel. While the performance of the implemented
algorithms is continually boosted by the mass production of generated Whole Slide Images and
the development of state-of the-art deep convolutional architectures, ensemble models provide an
additional methodology towards the improvement of the prediction accuracy. Despite the earlier
belief related to deep convolutional networks being treated as black boxes, important steps for
the interpretation of such predictive models have also been proposed recently. However, this
trend is not fully unveiled for the ensemble models. The paper investigates the application of an
explanation scheme for ensemble classifiers, while providing satisfactory classification results of
histopathology breast and colon cancer images in terms of accuracy. The results can be interpreted by
the hidden layers’ activation of the included subnetworks and provide more accurate results than
single network implementations.

Keywords: ensemble classifiers; explainability; EfficientNets; digital pathology; whole slide images;
guided-grad cam; breast cancer; colon cancer

1. Introduction

Machine learning techniques with a dedicated emphasis on deep learning methodolo-
gies have been applied successfully on the field of health informatics as an assistive tool
for the relief of workload that specialized medical personnel need to carry [1,2] and for
educational purposes [3]. The iterative process of continuously evolving the concerned
algorithms has brought to light more effective implementations that exceed the human
eye discriminative capability [4–6] and enhance the objectivity criteria by means of visual
patterns’ quantification. These improved implementations are, therefore, applied for the
reliable and precise prognosis and diagnosis of pathologic cases.

The processing of traditional medical imaging material such as MRI’s, X-ray’s, Ul-
trasounds, Endoscopy, Thermography, Tomography, Microscopy, and Dermoscopy has
been transformed to each digital version providing numerous benefits in a variety of tasks
that were earlier performed manually [2,7–13]. The abovementioned tasks fall under the
umbrella of well-known computer vision tasks, namely, semantic segmentation [14,15],
generation [16], registration [17,18], image classification [15], and object detection [19]. In
the last decade, the registered and documented ability of deep convolutional networks to
identify visual patterns beyond the human perspective is gaining popularity in the field of
digital pathology as well. Driven by the rise of digital scanners that produce whole slide
images, the assessment of human tissue in histopathology images can be conducted by
means of a virtual microscope. A whole slide image, containing in average 10 GB, can
satisfy the needs of data hungry deep convolutional networks and alleviate issues concern-
ing the creation, handling, and preservation of glass slides. In this framework, patches,

Algorithms 2021, 14, 278. https://doi.org/10.3390/a14100278 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9234-0069
https://orcid.org/0000-0003-2860-399X
https://doi.org/10.3390/a14100278
https://doi.org/10.3390/a14100278
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14100278
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14100278?type=check_update&version=2


Algorithms 2021, 14, 278 2 of 22

extracted from whole slide images, are inserted as inputs in deep convolution networks in
a supervised or unsupervised manner, exploiting the benefits of latest developments in the
field of deep learning such as transfer learning with pretrained models and the unlabeled
training via autoencoders or Generative Adversarial Networks (GANs) [20,21]. Apart from
deep learning techniques, machine learning algorithms have been utilized in the field of
digital pathology for content-based image retrieval and classification of histopathology
images. While firstly introduced for text classification, the Bag of Words technique is
utilized in [22,23] for the description of dense imagery content and its exploitation on the
designated tasks. However, whole slide imaging is introduced to the scientific community
with a newly breed set of challenges that needs to be addressed, mainly related to the poly-
morphism of the data formats, the big data management, the standardization of staining
and the transparency, and explainability of predictions.

In this work, we focus on breast and colon cancer, which are distinguished as two of
the most lethal cases, among different kinds of cancer that cause high rates of mortality
worldwide. Breast cancer is the first leading disease in terms of incidents for women [24],
whereas colon cancer is classified as second for women and third for men [25]. Utilizing
automated machine learning techniques for the prognosis and diagnosis is vital for the
early detection of malignancies in both cases aiming at total healing and avoidance of
metastasis [26,27]. Towards this direction, researchers in the field of digital pathology have
been occupied with the specific forms of cancer systematically. Although the availability
of datasets is immense and reported results of the deep learning techniques are high [28],
the need for explaining the connection between the input and the result is overlooked, yet
compelling especially in the case of predictive models in healthcare information systems
where the responsibility for high-stake decisions is heavy. “In order to build trust in
intelligent systems and move towards their meaningful integration into our everyday lives,
it is clear that we must build ‘transparent’ models that have the ability to explain why they
predict what they predict” [29].

Ensemble classifiers existed before the rise of deep learning and were utilized in ma-
chine learning methods with a main purpose to increase the performance of the classifiers
that they consist of. Starting from ancient Greece and the foundation of Democracy, the
idea of ensemble classifiers derives from the human best practice of seeking for opinions of
different experts before taking high risk decisions. The experts’ opinion in the domain of
machine learning is represented by the prediction of a classifier. In an ensemble classifier,
the input is analyzed by a set of classifiers, each implementing an algorithmic logic, result-
ing in a set of corresponding predictions that need to be combined in various manners in
order to reach a final total prediction. Ensemble models have shown remarkable perfor-
mance and the capability of correcting the faulty prediction of each included predictive
model [30]. Such an example of exploiting the benefits of ensemble classifiers in the field of
medical imaging can be manifested in [31], where authors employ a new weighted voting
procedure on a self-supervised scheme towards the improved performance of medical
X-ray and computed tomography images’ classification task. Apart from the advantage
of providing a boost to the performance metrics, their simple implementation that relies
on different architectural combinations provides the advantage of imposing explainability
modules on top of existing architectures. In [32], the authors presented a weighted patch
ensemble method that requires the modification of the ensemble classifier for the integra-
tion of the explainability scheme. In this work, the proposed methodology maintains the
classification scheme without modifications. This is an important feature to consider, since
the alteration of (removal or addition) layers may significantly influence the performance
of the classifier. Therefore, leaving the neural network intact when integrating an explain-
ability scheme is an important advantage. This integration is made possible as well, due
to the nature of the well-known gradient weighted class activation mapping Grad-CAM
technique [29] that can be applied effortlessly to the last convolutional layer of existing
deep learning schemes without interfering with the functionality of the predictive model.
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In this paper, we propose an ensemble classification scheme that is based on imple-
mentations of state-of-the-art deep convolutional networks, namely, EfficientNets [33].
Our contribution lies on the combination of this ensemble classifier with a Grad-CAM
explanation scheme that can highlight the visual patterns which are responsible for each
class prediction, while providing promising results. Furthermore, a standalone application
that follows the principles of distributed computing is available for online validation and
experimentation, providing its functionality (classification and explainability) as a web ser-
vice. The remainder of the paper is organized as follows. In Section 2, the utilized datasets,
hardware, and deep convolutional (CNN) architectures and methods are described in detail
and in Section 3 the performance and explainability results are shown. In Section 4, the
provided results are discussed in terms of a broader context and future work directions are
indicated, whereas Section 5 concludes the paper.

2. Materials and Methods
2.1. Deep Learning Methods

The methodology of ensembling involves the combination of well-established clas-
sifiers in reaching a final decision. For the purposes of this study, deep convolutional
neural networks are employed as the main ‘ingredients’ of an ensemble classifier. Starting
from the newly developed group of CNNs called EfficientNets, the potential of combining
state-of-the-art approaches in classifying histopathology with an emphasis on providing
explainable results by means of a Grad-CAM technique is explored. Other types of deep
architectures that are utilized herein are the InceptionNet, ExceptionNet, and the ResNet.
When combined in an ensemble classifier and by the addition of the Grad-CAM explain-
ability scheme, the final configuration achieves higher performance and provides plausible
connections between the input and the result.

2.1.1. EfficientNets

EfficientNets are a group of deep convolutional networks that achieve and surpass
state-of-the-art accuracy in different classification tasks with up to ten times better efficiency,
thus the name (smaller and faster). Their main novelty lies on the latest achievement
of AutoML, and, specifically, on the intelligent and controlled expansion of the three
dimensions (width, depth, resolution) of a neural network by the utilization of a compound
coefficient. Throughout years of research, the basic concern has been the growth of a neural
network’s dimensions in such a way that accuracy is improved with the minimum of
operations given certain resources’ constraints. Even when the minimum of operations
is not a basic goal, increasing the dimensions of a neural network in a greedy manner
does not have the expected results due to the vanishing gradients’ phenomenon. Efficient
Nets address this issue by exploring the relation of the increase in each dimension and
applying a grid search under a fixed resources constraint instead of arbitrarily changing
these dimensions. The compound scaling method is summarized in the set of Equation (1):

d = αϕ

w = βϕ

r = γϕ

α·β2·γ2 ≈ 2
α ≥ 1, β ≥ 1, γ ≥ 1

(1)

where ϕ is a global scaling factor that controls how many resources are available and α,
β, γ determine how to allocate these resources to network depth, width, and resolution,
respectively. By assigning ϕ = 1 and applying grid search, α, β and γ can be determined
for a given convolutional architecture to achieve better accuracy. Once concluding with the
definition of α, β and γ, ϕ can be gradually increased to augment the dimensions of the
network towards better accuracy. The scaling method is applicable to any convolutional
architecture that consists of a repeated pattern of layers. However, the authors of Efficient-
Nets paper proposed a specific architecture where the main building block is the mobile
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inverted bottleneck convolution (MB Conv), shown in its three basic configurations in
Figure 1. The base model of the EfficientNets group is Efficient Net B0 and its architecture
is shown in Table 1, consisting mainly of MBConv1 and MBConv6. By utilizing MBConv
blocks and increasing the valueϕ, Efficient Net group reaches its most complicated form B7.
In the heart of these building blocks, two important innovations have found grounds to act:
the depthwise separable convolution [34] that performs the functionality of a normal con-
volution with less resources and the squeeze and excitation unit that enables the network to
perform dynamic channelwise feature recalibration [35]. Concerning depthwise separable
convolution, the convolution operation is divided into two parts. First, the convolution
is conducted depthwise, meaning that the convolution kernel is applied to each channel
individually in order to learn channel dependent features and second, pointwise, meaning
that a 1 × 1 kernel is applied to each point in order to combine the channel dependent
learned features. In reference to the squeeze and excitation unit, the unit consists of two
parts. Starting the squeeze part, global average pooling is applied to each channel leading
to the formation of an 1 × 1 × C vector (where C are the channels), followed by a fully
connected→ ReLU→ fully connected→ sigmoid block (excitation part). In this manner,
each channel is enhanced with additional information concerning the other channels and
captures in between interactions. Finally, the output of the excitation part is multiplied
with the original input.
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Figure 1. Three main building blocks of Efficient Nets architecture from left to right: Mobile Inverted
Bottleneck Convolution-1 Block-MBlock1 (left), Mobile Inverted Bottleneck Convolution-3 Block-
MBlock3 (center), Mobile Inverted Bottleneck Convolution-6 Block-MBlock6 (right).

Table 1. Efficient Net B0 architecture.

Stage i Operator Fi Resolution Hi ×Wi Channels Ci Layers Li

1 Conv 3 × 3 224 × 224 32 1
2 MBConv1, k3 × 3 112 × 112 16 1
3 MBConv6, k3 × 3 112 × 112 24 2
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Table 1. Cont.

Stage i Operator Fi Resolution Hi ×Wi Channels Ci Layers Li

4 MBConv6, k5 × 5 56 × 56 40 2
5 MBConv6, k3 × 3 28 × 28 80 3
6 MBConv6, k5 × 5 14 × 14 112 3
7 MBConv6, k5 × 5 14 × 14 192 4
8 MBConv6, k3 × 3 7 × 7 320 1
9 Conv 1 × 1, Pooling, FC 7 × 7 1280 1

2.1.2. InceptionNet, XceptionNet, ResNet

The above-mentioned building blocks and architectures are learned lessons through
months of development and experience produced in the ever-evolving domain of deep
learning and encapsulate notions that have been partially tested and evaluated in earlier
deep learning architectures such as ResNet [36], XceptionNet, and InceptionNet [37]. These
approaches achieved state-of-the-art results in computer vision tasks because they have
incorporated these blocks partially. Once combined in a structured manner by means of
a controlled augmentation mechanism such as in the EfficientNets, the performance is
further improved.

ResNets are driven by the intuitive need for neural networks to grow deeper in order
to understand and quantify more complex features and simultaneously compensate for
the vanishing gradient issue. The authors discovered that, by adding the identity function
between layers, the network can reach deeper architectures and cope with the vanishing
gradient issue, since the layers where the gradients diminish rapidly gets bypassed. Since
its publishing, the idea has spread around fast and is being utilized in different deep CNN
architectures including EfficientNets.

Rather than investing in deeper architectures, the authors of InceptionNet prioritized
the importance of creating wider approaches, meaning filters with multiple sizes, and
leveraged their options between these two dimensions in order to capture salient patterns
in the image that appears in different sizes. The initial version V1 was improved in terms of
accuracy and speed by adding an auxiliary classifier during the training process, factorizing
convolution operations and placing them at a wider grid. By further improvement of the
initial proposal, the InceptionNet is now transformed in its fourth version. A combined
approach of Resnet and Inception is proposed by the enhancement with residual blocks
(Inception-ResNet). Moving a step forward, an extreme version of the InceptionNet, called
XceptionNet, managed to achieve even better results, inspired by the inverse sequence of
operation in the depthwise convolution (firstly proposed in Inception Net) and the removal
of nonlinearity between convolutional layers.

In order to select the best performing DCNN architectures, multiple tests were per-
formed with the two datasets and each of the above-mentioned approaches. The results
verified the superiority of EfficientNets over the other approaches. Due to these preliminary
tests, the ensemble scheme proposed later in this paper consists only of different ranks
of EfficientNet.

2.1.3. Ensemble Classifiers

The ensemble classifiers notion lies on the founding principles of democracy as it was
first established in ancient Greece. The Greeks did not need much to realize that the best
decision is reached only when many opinions (the opinions of people) are heard and pro-
cessed. This simple yet efficient idea has become for modern humans merely an intuitive
action, since, on the verge of taking an important decision, they demand the opinion of
several experts. However, if we were to leave the empirical and intuitive evidence alone,
literature in the health informatics domain proves in a placid way that classifiers produce
more accurate results when they are gathered together and their predictions–opinions
are combined in different ways to reach a final result [38–42]. The manner utilized for
the combination of different base classifiers is one of the basic criteria of characterizing
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ensemble classifiers. The basic classification of ensemble classifiers consists of the following
three major categories: bagging, boosting, and stacking. Bagging is based on a parallel and
independent learning procedure of base classifiers that are in turn combined as dictated
by a deterministic averaging process, while boosting corresponds to a sequential adaptive
learning method that adaptively modifies the distribution of the training set based on the
performance accuracy of previously trained classifiers [41]. Stacking refers to a parallel
learning algorithm that results in a training of a meta-model. This meta-model is responsi-
ble for the combination of base learners’ predictions. Another aspect of categorizing the
different types of ensembling methods is related to the input patterns. Utilizing different
classifiers, where one is trained with the original input and others with modified input
versions, is common practice [42]. Another aspect categorizes ensemble classifiers in those
that utilize different classifiers to solve the same task and those that break the original task
into subtasks and employ a different classifier for each decomposed problem [43]. Moving
further to distinguish ensemble classifiers by means of the manner between base classifiers
achieves diversity. There exist randomized methods to populate an ensemble classifier by
other classifiers and metrics-based techniques with a main concern to increase diversity to
a certain extent that does not harm performance [44,45].

2.2. Explainability

Ensemble classifiers are widely utilized in classification tasks for the well-recognized
virtue to improve performance metrics in terms of accuracy. However, when dealing with
high stake predictive models such as those in healthcare applications, there are major
concerns also related to the explanation of decision-making and the avoidance of erroneous
ones. In our effort to construct models that can decipher the uncertainty of real-world
problems, we have created black box mechanisms that produce accurate results but are
not transparent and trustworthy [46]. For experts to embrace AI in the healthcare domain,
the provided predictions should be retraceable and reliable. In this framework, efforts
of computer vision researchers are directed towards the discovery of methods that can
highlight the relationships and interactions between the visual patterns included in an input
image and the final prediction. Unveiling these connections are of crucial importance [47]
since humans demand that health threatening decisions are thoroughly justified.

Especially in the domain of computer vision and deep learning XAI (Explainable
Artificial Intelligence), attempts to extract localization information of important visual
patterns for decision-making have been widely witnessed. One way to achieve this goal is
the construction of class activation maps [48]. Class activation mapping is a method which
indicates the discriminative regions of an image that influenced the predictive model in
reaching its final decision. Initially, it was mandatory that the predictive model should
follow a certain architecture for the technique to provide plausible results, meaning that
the output of the convolutional layers should be directed to a global average pooling
layer and then directly to SoftMax activation function. This architecture, as discussed
earlier, demands retraining of the predictive model and sacrifices complexity (added by
the insertion of fully connected layers) for explainability. A generalization of this method
(Grad-CAM) is proposed in [29]. In the same paper, the combination of Grad-CAMs with
the guided-back propagation technique is proposed to provide a fine-grained pixel to pixel
visualizations. This approach fits better to the visual characteristics of digital pathology
images, where the patterns correspond to small cellular structures as opposed to larger
structures. By computing the gradients for the score of each class with respect to the feature
maps from the last convolutional layer and performing global average pooling on them,
the importance weights for each feature map are obtained. In this fashion, the architecture
of the predictive model remains intact.
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2.3. System Architecture and Methodology

The system is developed with two main purposes:

• Image classification;
• Result explainability.

Two integrated subsystems in the whole architecture interact seamlessly and are
responsible for the fulfilment of each purpose (Figure 2).

Concerning the image classification task, an ensemble classifier consisting of three
different pretrained implementations of the EfficientNets group is employed in a parallel
configuration that results in the concatenation of three different groups of feature maps.
The pretrained models are trained by means of the ImageNet dataset [49]. The models are
trained to classify 1000 general classes, thus resulting in a generalized ability to distinguish
visual patterns in more specific tasks. In our method, the pretrained models are utilized
without modification for feature extraction. Although fine-tuning was also performed
by unfreezing a variety of top layers of the base classifiers and tuning the weights of
the remaining neural network structure to the specific task, best classification results
are reported with the same configuration. Prior to inserting an input image into the
ensemble architecture, the images are resized and pixels normalized according to the
authors’ recommended guidelines of each DCNN architecture, and the dataset is split into
two parts, in 60% (training) and 40% (validation). The training set is augmented three times
of the initial size by the utilization of three randomized operations, flip, rotation, and zoom.
The final concatenated set of features is driven into a fully connected layer that acts as a
classifier following typical best practices of deep CNNs. For the selection of the pretrained
models, a preliminary examination of the individual performance on the two datasets led
to the selection of the best performing models in terms of accuracy. The best individually
performing deep CNNs are the Inception Net, XceptionNet, and the EfficientNets group.
Consequently, an ablation study is conducted between these selections in groups of three
to determine the best selection. Upon removing a CNN, the influence of this removal is
measured by terms of difference in accuracy. The final selection results in the EfficientNets
B1, B2, and B3. Although the basic building blocks for the three networks are the same, the
required diversity in the basic classifiers of the ensemble classifier is achieved by different
values provided by the compound scaling method.
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Regarding the explainability task, the concerning modules are attached to the architec-
ture of the classification scheme while providing feedback for the localization of important
visual patterns that influence the outcome of the classifier and without interfering with its
functionality. When utilizing the Grad-CAM technique in a single classifier environment,
the feature maps of the last convolutional layers and the gradients for the score of each class
with respect to the feature maps are necessary to produce a heatmap with the explainability
visualizations. As explained in [29], the technique can be divided into three steps. The first
step refers to the calculation of the gradient G (Equation (2)), where Yc is the raw output of
the CNN before applying softmax to turn it into a probability and Ak are the generated
feature map activations. Indicator c is the class for which the heatmap is generated, since
the technique is class dependent and k reflects the number of utilized convolutional filters.
An important requirement for validating the results is the differentiability of the network
included between the final convolutional layer and the softmax layer (Figure 3). The
second step is the calculation of alpha values (Equation (3)). This operation is performed by
applying global average pooling on the gradients G. Z parameter is the number of pixels in
the feature map. The third step rests on the application of ReLU on the product of each
feature map with the corresponding alpha value (Equation (4)):

G =
dYc

dAk (2)

ac
k =

1
Z ∑v

i=1 ∑u
i=1

dYc

dAk
ij

(3)

Lc
Grad−CAM = ReLU

(
∑K ac

k Ak
)

(4)
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Figure 3. Architecture of a CNN for the Grad-CAM to be applicable. The number of feature maps is
set to three for visualization purposes.

In the ensemble environment, all the necessary information regarding the calculation
of the Grad-CAMs exists but needs the addition of a concatenation layer so as to bring
together all extracted features’ maps. This concatenation layer takes place after the last con-
volutional layer of each base classifier. This minor modification enables the integration of
the Grad-CAM explanation module into the ensemble classifier. Apart from the calculation
of Grad-CAMs, an independent procedure is conducted in parallel, namely guided back
propagation. Guided backpropagation is the combination of two distinct operations. The
first is the backpropagation at ReLU activation functions. This backward pass ensures that
values being greater than zero during the forward pass in the -1 filter are passed as is one
step backwards. The second operation is the deconvolution at ReLU. Values being greater
than zero in the current filter are passed as is one step backwards. To reach to the final
heatmap, the results of guided back propagation and Grad-CAM are multiplied.
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3. Experimental Results
3.1. Datasets and Hardware

Two widely utilized and publicly available datasets from the breast and colon cancer
domain are the main sources of visual information that are exploited in this paper for the
training and validation of the deep convolutional networks. The first dataset named Break
Histological Image Classification (BreakHis) and consists of 7909 microscopic, breast tumor
tissue images that are collected from 82 patients using different magnifying factors [50].
The images are:

• Divided in 2480 benign and 5429 malignant samples;
• 3-channel RGB (8 bits in each channel);
• In PNG format;
• In four different magnifying factors (40×, 100×, 200×, 400×);
• Their dimensions are 700 × 460 pixels.

Separation of benign images in the following four distinct histological types is pro-
vided in the BreakHis dataset: adenosis (A), fibroadenoma (F), phyllodes tumor (PT), and
tubular adenoma (TA). Four malignant tumor types are provided as well: ductal carcinoma
(DC), lobular carcinoma (LC), mucinous carcinoma (MC), and papillary carcinoma (PC).
Samples of the BreakHis dataset are shown in Figure 4 and the class distribution of the
dataset is depicted in Table 2. The second dataset is a set of 100,000 non-overlapping
image patches from hematoxylin & eosin (H&E) stained histological images of human
colorectal cancer (CRC) and normal tissue. All images are 224 × 224 pixels at 0.5 microns
per pixel (MPP). Tissue classes are: adipose (ADI), background (BACK), debris (DEB),
lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colon mucosa (NORM),
cancer-associated stroma (STR), and colorectal adenocarcinoma epithelium (TUM) [51].
Samples of the second dataset are shown in Figure 5. The class distribution of the CRC
dataset is depicted in Table 3. Training and validation of the developed implementations
take place on a remote configuration of a double-GPU equipped server. The GPUs are the
TITAN Xp (11 GB, corecount:30 and coreClock:1.582 GHz) and the GeForce GTX 970 (4 GB,
corecount:13 and coreClock: 1.392 GHz). All of the basic algorithmic operations concerning
the deep neural network approaches and the Grad-CAM technique are implemented by
using the TensorFlow 2.3 framework for Python programming language.

Table 2. Class distribution of the Breakhis dataset.

Class Subclasses
Magnification Factors

Total
40× 100× 200× 400×

Benign

Adenosis 114 113 111 106 444
Fibroadenoma 253 260 264 237 1014

Tubular Adenoma 109 121 108 115 453
Phyllodes Tumor 149 150 140 130 569

Malignant

Ductal Carcinoma 864 903 896 788 3451
Lobular Carcinoma 156 170 163 137 626

Mucinous Carcinoma 205 222 196 169 792
Papillary Carcinoma 145 142 135 138 560

Total 1995 2081 2013 1820 7909
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Figure 4. This is an overview of the BreakHis dataset. Each row depicts a specific tissue type.:
Adenosis is indicated as (a), fibroadenoma as (f), phyllodes tumor as (pt), and tubular adenoma as
(ta), ductal carcinoma as (dc), lobular carcinoma as (lc), mucinous carcinoma as (mc), and papillary
carcinoma as (pc). Each number stands for a specific magnification factor: 1 for 40×, 2 for 100×, 3 for
200×, and 4 for 400× (i.e., pc2 image depicts a papillary carcinoma in 100×magnification).
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Table 3. Class distribution of the colorectal dataset.

Class Number of Samples Percentage (%)

ADI 10,407 10.4
BACK 10,566 10.56
DEB 11,513 11.51
LYM 11,556 11.56
MUC 8896 8.9
MUS 13,537 13.54
STR 8763 8.76

NORM 10,446 10.45
TUM 14,316 14.32
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Figure 5. This is an overview of colon cancer dataset. Each image depicts a specific tissue type.:
adipose is indicated as (ADI), background as (BACK), debris as (DEB), and lymphocytes as (LYM),
mucus as (MUC), smooth muscle as (MUS), normal colon mucosa as (NORM), cancer associated
stroma as (STROMA), and colorectal adenocarcinoma epithelium as (TUM).

3.2. Evaluation Metrics

In terms of classification performance, the two datasets analyzed in Section 3.1 are
split in 60–40% train-validation ratio for the colon cancer dataset and 70–30% for the
breast cancer dataset. Although the 60–40% split in the first case is considered rather
strict, this choice supports the purposes of this study concerning the trade-off between
performance and explainability. Single EfficientNets achieve accuracy near perfection
for the colon cancer dataset. The choice of split (60–40%) manages to lower the accuracy
metric of single EfficientNets and, therefore, demonstrate the improvement in performance
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when utilizing ensemble classifiers. The utilized performance metrics for the binary and
multiclass classification tasks are described hereafter:

• Accuracy metric is defined as the fraction of the correctly classified instances divided
by the total number of instances, as shown in Equation (5):

Accuracy = (TP + TN)/(TP + TN + FP + FN) (5)

Correctly classified instances are analyzed in true positives (TP) and true negatives
(TN), where TP are the instances predicted as positive and truly are positives (ground truth)
and TN are the instances predicted as negative and truly are negative. The total number of
instances consists of TP, TN, the false positive (FP), and false negative (FN) instances. FP
are the instances that are predicted as positive by the classifier but are negative in reality,
whereas FN are the instances predicted as negative but are positive;

• Precision metric is defined as the fraction of the true positives divided by the true
positives and false positives as shown in Equation (6):

Precision = TP/(TP + FP) (6)

• Recall metric is defined as the fraction of the true positives divided by the true positives
and false negatives as shown in Equation (7):

Recall = TP/(TP + FN) (7)

• Area under Curve (AUC) metric is defined as the area under the receiver operating
curve. The receiver operating curve is drawn by plotting true positive rate (TPR)
versus false positive rate (FPR) at different classification thresholds. TPR is another
word for recall, whereas FPR is the fraction of the false positives divided by the true
negatives and false positives as shown in Equation (8):

FPR = FP/(TN + FP) (8)

Although balanced accuracy is the appropriate performance metric when dealing with
imbalanced datasets such as BreakHis, accuracy is chosen in order to provide comparison
feedback in reference to the state of the art. In terms of measuring the performance of the
explanation scheme, an evaluation tool runs on for specialists to test and review the results
of explanation schemes. The results of this evaluation are reported in the following section.

3.3. Results

In order to determine which pretrained deep convolutional neural networks are better
performing in the specific datasets, a preliminary experiment is conducted with single
classifiers. We choose from the pool of the TensorFlow 2.3 API (https://www.tensorflow.
org/, accessed on 23 September 2021) the following well established architectures:

• EfficientNets B0-B7;
• InceptionNet V3;
• ExceptionNet;
• VGG19;
• ResNet152V2;
• Inception-ResNetV2.

The hyperparameters for the deep convolutional architectures were set after experi-
mentation to the values shown in Table 4.

https://www.tensorflow.org/
https://www.tensorflow.org/
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Table 4. Hyperparameters settings for the utilized deep CNN architectures.

Hyperparameters Values

Epochs 10
Optimizer Adam

Learning Rate Custom
Regularizer L2
Batch size 8

To further improve the performance of each classification scheme, experiments are
conducted with different custom learning rate schedulers that result in the learning rate
scheduler which is expressed by Equation (9):

Lr(epochs) = Lrstart + (Lrmax − Lrstart)/(k × epoch) (9)

where Lr defines a function that depends on epochs, Lrmax is set to 0.00005, and Lrstart to
0.0001. The difference in accuracy increases by 1.6% in the case of EfficientNet B0 when
utilizing the above learning rate scheduler in contrast to using a plain Adam optimizer and
k a hyperparameter that is computed by heuristic methods. In Table 5, the corresponding
results for the binary (benign vs. malignant) breast cancer and for the multiclass colon
cancer classification task (adipose vs. background vs. debris vs. lymphocytes vs. mucus
vs. smooth muscle vs. normal colon mucosa vs. cancer associated stroma vs. colorectal
adenocarcinoma epithelium) are depicted. By forming different groups of three baseline
classifiers and removing one each turn, two ensemble architectures were formed. Each
architecture contains the baseline implementation that had the greater impact in perfor-
mance metrics when removed. The two qualified architectures are the EfficientNet group
consisting of B0, B1, B2 and the group consisting of B1, B2, B3. In order to evaluate the
effect of utilizing ensemble architectures against the baselines, Table 6 demonstrates the
performance metrics for each configuration. The performance of the baseline architectures
leaves a small space for improvement even when the dataset is split in a 60–40% ratio. Even
so, the Efficient B0-2 ensemble method is on par for the colon cancer dataset.

Table 5. Performance metrics for the breast and colon cancer dataset for baseline architectures.

Breast Cancer Colon Cancer

Architecture Accuracy AUC Accuracy AUC

EfficientNetB0 0.9766 0.9945 0.9946 0.9993
EfficientNetB1 0.9798 0.9964 0.9898 0.9984
EfficientNet B2 0.9817 0.9982 0.9920 0.9988
EfficientNet B3 0.9855 0.9988 0.9897 0.9984
EfficientNet B4 0.9858 0.9980 0.9910 0.9982
EfficientNet B5 0.9804 0.9975 0.9924 0.9982
EfficientNet B6 0.9728 0.9953 0.9894 0.9986
ExceptionNet 0.9785 0.9942 0.9909 0.9985

InceptionNetV3 0.8868 0.9430 0.9844 0.9981
VGG16 0.9320 0.9769 0.9795 0.9969

ResNet152V2 0.8720 0.9431 0.9564 0.9913

Table 6. Performance metrics for the breast and colon cancer dataset for ensemble architectures.

Breast Cancer Colon Cancer

Architecture Accuracy AUC Accuracy AUC

EfficientNetB0-2 0.9925 0.9985 0.9946 0.9991
EfficientNetB1-3 0.9855 0.9984 0.9856 0.9989
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Baseline architectures leave small space for improvement in performance; even when
splitting the dataset in 60–40%, the ensemble architecture managed a minor improvement
in some cases. Nevertheless, in the worst-case scenario, the proposed ensemble architec-
tures are on par with the baseline implementations. The task of classification is made more
difficult by splitting the dataset 40–60% (training–validation) and 30–70%. Each experiment
is conducted by splitting the dataset into two subsets at the beginning of the study to avoid
introducing bias. Consequently, each validation process is conducted without receiving
any information about the images used for training. Bootstrapping the splits 10 times is
performed to enhance randomness. In Table 7, the results from these two extreme splits are
demonstrated. The difference in performance metrics is not significant even as the problem
of classification becomes more difficult. Returning to the BreakHis dataset, four datasets are
generated by the partition of the initial dataset to subsets based on the magnification factor.
The four datasets correspond to the magnification factors 40×, 100×, 200×, 400×. Two
classification tasks are addressed depending on the assigned labels. The first classification
task is binary where the classes are benign and malignant, whereas the second classifica-
tion task is multiclass where the classes are adenoma, fibroadenoma, tubular adenoma,
phyllodes tumor, ductal carcinoma, lobular carcinoma, mucinous carcinoma, and papillary
carcinoma. The training–validation split is set to 70–30%. As shown in Tables 8 and 9,
ensemble classifiers achieve better performance at all magnification factors in both tasks
apart from one binary classification case at 100×, where classifiers perform equally.

Table 7. Performance metrics for the breast and colon cancer dataset for ensemble and plain architec-
tures for 40–60% and 30–70% splits.

Breast Cancer Colon Cancer

Split Architecture Accuracy AUC Accuracy AUC

40–60%

EfficientNetB0 0.9789 0.9974 0.9645 0.9874
EfficientNetB1 0.9778 0.9974 0.9688 0.9899
EfficientNetB2 0.9824 0.9986 0.9764 0.9906

EfficientNetB0-2 0.9835 0.9989 0.9822 0.9934

30–70%

EfficientNetB0 0.9712 0.9962 0.9618 0.9822
EfficientNetB1 0.9737 0.9972 0.9666 0.9831
EfficientNetB2 0.9751 0.9968 0.9703 0.9852

EfficientNetB0-2 0.9785 0.9979 0.9782 0.9925

Table 8. Performance metrics [Accuracy (Acc), Precision (Pr), and Recall (Rec)] for the breast dataset for selected baseline and
ensemble architectures at different magnification factors (40×, 100×, 200×, 400×) concerning the binary classification task.

Breast Cancer

Metrics Acc Pr Rec Acc Pr Rec Acc Pr Rec Acc Pr Rec

Magnification Factor 40× 100× 200× 400×

Architecture

EfficientNetB0 0.9699 0.9699 0.9699 0.9792 0.9792 0.9792 0.9631 0.9631 0.9631 0.9560 0.9560 0.9560
EfficientNetB1 0.9749 0.9749 0.9749 0.9679 0.9679 0.9679 0.9473 0.9473 0.9473 0.9158 0.9158 0.9158
EfficientNet B2 0.9799 0.9799 0.9799 0.9712 0.9712 0.9712 0.9631 0.9631 0.9631 0.9396 0.9396 0.9396
EfficientNet B3 0.9766 0.9766 0.9766 0.9744 0.9744 0.9744 09666 0.9666 0.9666 0.9451 0.9451 0.9451

EfficientNetB0-2 0.9883 0.9883 0.9883 0.9712 0.9712 0.9712 0.9719 0.9719 0.9719 0.9469 0.9469 0.9469
EfficientNetB1-3 0.9866 0.9866 0.9866 0.9824 0.9824 0.9824 0.9859 0.9859 0.9859 0.9697 0.9697 0.9697
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Table 9. Performance metrics [Accuracy(Acc), Precision (Pr) and Recall(Rec)] for the breast dataset for selected base-
line and ensemble architectures at different magnification factors (40×, 100×, 200×, 400×) concerning the multiclass
classification task.

Breast Cancer

Metrics Acc Pr Rec Acc Pr Rec Acc Pr Rec Acc Pr Rec

Magnification Factor 40× 100× 200× 400×

Architecture

EfficientNetB0 0.9097 0.9215 0.9030 0.8702 0.8849 0.8622 0.8313 0.8569 0.8207 0.8333 0.8552 0.8114
EfficientNetB1 0.8796 0.8948 0.8679 0.8638 0.8696 0.8446 0.8313 0.8569 0.8207 0.8205 0.8340 0.8004
EfficientNet B2 0.8796 0.8948 0.8979 0.8798 0.8918 0.8718 0.8629 0.8723 0.8401 0.8040 0.8275 0.7729
EfficientNet B3 0.8963 0.9103 0.8829 0.8846 0.8893 0.8750 0.8594 0.8703 0.8489 0.8443 0.8681 0.8351

EfficientNetB0-2 0.9114 0.9248 0.9047 0.8686 0.8744 0.8590 0.8629 0.8915 0.8524 0.8443 0.8641 0.8150
EfficientNetB1-3 0.9264 0.9368 0.9164 0.8963 0.9103 0.8829 0.8664 0.8775 0.8436 0.8571 0.8716 0.8333

Regarding the explainability task of the proposed methodology, a test bench appli-
cation was developed for visual inspection and verification of the produced results by
specialized medical personnel. The web interface (Figure 6) is available in the URL http:
83.212.75.102:3005/ (accessed on 23 September 2021) and upon uploading of a histopathol-
ogy image, the sample is sent to the back end where the best performing ensemble architec-
ture returns the classification result along with the generation of a heatmap of the original
image. The visual patterns of the image that are characterized as highly related to the
result are painted red, whereas those irrelevant with blue. The explainability capability of
the different deep frameworks or ensemble classifiers are evaluated on a qualitive basis
by expert pathologists in the respective field. The specialists inspect the highly related
visual patterns and assess the results according to their prior experience in histopathology
image-based diagnosis. The initial qualitive results show significant accordance concern-
ing the areas responsible for the characterization of results between specialists and the
ensemble classifier. The images are selected randomly from the validation set of BreakHis
dataset and the Bachs dataset [52] and processed by both Grad-CAM and Guided Grad-
CAM explainability techniques. The visualization and classification results are analyzed
by specialized personnel and commented on terms of their opinion concerning the clas-
sification in benign or malignant class and the localization of important visual patterns
that are responsible for the classification result. In Figure 7, a benign adenosis is depicted
in ×400 magnification. The ensemble classifier classifies the image as probably benign
but not being totally representative with high confidence in contrast to the experienced
physician that refers to this image as not being totally representative of the benign class in
terms of morphological patterns. The red highlighted regions are localized on epithelial
tissue, though not totally. Humans tend to point their attention on the specific kind of
tissue because carcinomas are malignant neoplasms of epithelial tissue. On the other hand,
nearby stromal and epithelial areas are colored with yellow as they are in the vicinity of
the most important regions. Concerning the Guided Grad-CAM algorithm, the coloring of
respective areas is fuzzier but still more intense on the epithelial patterns.

http:83.212.75.102:3005/
http:83.212.75.102:3005/


Algorithms 2021, 14, 278 16 of 22

Algorithms 2021, 14, x FOR PEER REVIEW 15 of 21 
 

histopathology image, the sample is sent to the back end where the best performing en-
semble architecture returns the classification result along with the generation of a 
heatmap of the original image. The visual patterns of the image that are characterized as 
highly related to the result are painted red, whereas those irrelevant with blue. The ex-
plainability capability of the different deep frameworks or ensemble classifiers are evalu-
ated on a qualitive basis by expert pathologists in the respective field. The specialists in-
spect the highly related visual patterns and assess the results according to their prior ex-
perience in histopathology image-based diagnosis. The initial qualitive results show sig-
nificant accordance concerning the areas responsible for the characterization of results be-
tween specialists and the ensemble classifier. The images are selected randomly from the 
validation set of BreakHis dataset and the Bachs dataset [52] and processed by both Grad-
CAM and Guided Grad-CAM explainability techniques. The visualization and classifica-
tion results are analyzed by specialized personnel and commented on terms of their opin-
ion concerning the classification in benign or malignant class and the localization of im-
portant visual patterns that are responsible for the classification result. In Figure 7, a be-
nign adenosis is depicted in ×400 magnification. The ensemble classifier classifies the im-
age as probably benign but not being totally representative with high confidence in con-
trast to the experienced physician that refers to this image as not being totally representa-
tive of the benign class in terms of morphological patterns. The red highlighted regions 
are localized on epithelial tissue, though not totally. Humans tend to point their attention 
on the specific kind of tissue because carcinomas are malignant neoplasms of epithelial 
tissue. On the other hand, nearby stromal and epithelial areas are colored with yellow as 
they are in the vicinity of the most important regions. Concerning the Guided Grad-CAM 
algorithm, the coloring of respective areas is fuzzier but still more intense on the epithelial 
patterns. 

 
Figure 6. Overview of the standalone application for the classification and explanation of histopathology images. Figure 6. Overview of the standalone application for the classification and explanation of histopathol-

ogy images.

Algorithms 2021, 14, x FOR PEER REVIEW 16 of 21 
 

 
Figure 7. Application of (b) Grad-CAM and (c) Guided Grad-CAM explainability techniques on (a) 
a benign adenosis sample from the BreakHis dataset. 

Moving on to the next image presented in Figure 8 which is taken from the Bachs 
dataset and depicts an in situ carcinoma, the depicted patterns are visually representative 
of the malignant class. The classifier correctly predicts the class with high confidence and 
manages to generalize well on an unknown dataset with several variances owing to dif-
ferent production and staining procedures. Concerning the Grad-CAM technique, highly 
important regions colored as red correspond to epithelial cells, whereas, in the Guided 
Grad-CAM case, the coloring of respective regions is fuzzy. Some yellow painted regions 
are considered of less importance to the classifier and highlighted due to the vicinity to 
the most important regions and other yellow regions are colored with no obvious reason 
to experienced physicians. 

 
Figure 8. Application of (b) Grad-CAM and (c) Guided Grad-CAM explainability techniques on (a) 
an in situ carcinoma sample from the Bachs dataset. 

In other cases, both algorithms fail to highlight the regions which are considered sig-
nificant by experienced physicians. In Figure 9, drafted from the BreakHis dataset, a be-
nign fibroadenoma is depicted. Fibroadenomas are benign tumors of the epithelial and 
stromal tissue. The Grad-CAM algorithm highlights mostly epithelial and stromal regions 
and ignores epithelial tissue on the lower left part of the image which is also indicative of 
the disease. Nevertheless, in terms of morphology, the depicted patterns are not highly 
indicative of the disease as physicians state. 

 
Figure 9. Application of (b) Grad-CAM and (c) Guided Grad-CAM explainability techniques on (a) 
a benign fibroadenoma sample from the BreakHis dataset. 

A special case takes place when images contain uniform patterns of malignant or 
benign tissue as shown in Figure 10. In the figure, the depicted patterns are all indicative 
of a malignancy. Since there is no specific area of interest on the image that the algorithm 

Figure 7. Application of (b) Grad-CAM and (c) Guided Grad-CAM explainability techniques on
(a) a benign adenosis sample from the BreakHis dataset.

Moving on to the next image presented in Figure 8 which is taken from the Bachs
dataset and depicts an in situ carcinoma, the depicted patterns are visually representative
of the malignant class. The classifier correctly predicts the class with high confidence
and manages to generalize well on an unknown dataset with several variances owing to
different production and staining procedures. Concerning the Grad-CAM technique, highly
important regions colored as red correspond to epithelial cells, whereas, in the Guided
Grad-CAM case, the coloring of respective regions is fuzzy. Some yellow painted regions
are considered of less importance to the classifier and highlighted due to the vicinity to the
most important regions and other yellow regions are colored with no obvious reason to
experienced physicians.
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Figure 8. Application of (b) Grad-CAM and (c) Guided Grad-CAM explainability techniques on
(a) an in situ carcinoma sample from the Bachs dataset.

In other cases, both algorithms fail to highlight the regions which are considered
significant by experienced physicians. In Figure 9, drafted from the BreakHis dataset, a
benign fibroadenoma is depicted. Fibroadenomas are benign tumors of the epithelial and
stromal tissue. The Grad-CAM algorithm highlights mostly epithelial and stromal regions
and ignores epithelial tissue on the lower left part of the image which is also indicative of
the disease. Nevertheless, in terms of morphology, the depicted patterns are not highly
indicative of the disease as physicians state.
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Figure 9. Application of (b) Grad-CAM and (c) Guided Grad-CAM explainability techniques on
(a) a benign fibroadenoma sample from the BreakHis dataset.

A special case takes place when images contain uniform patterns of malignant or
benign tissue as shown in Figure 10. In the figure, the depicted patterns are all indicative
of a malignancy. Since there is no specific area of interest on the image that the algorithm
individually detects as being highly responsible to the outcome, it returns medium mea-
surements for all areas of the image, while some artifacts might be considered the cause for
the assignment of high values on the edges.
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To compare the explainability properties between single and ensemble classifiers, ex-
periments were conducted with images from the BreakHis and Bachs dataset. In Figure 11,
the interpretability results of an adenosis (BreakHis) are depicted along with the respective
heatmaps, whereas, in Figure 12, the corresponding outcome for an in situ carcinoma
(Bachs) is shown for single and ensemble classification schemes. A closer look in results
for all images and generated heatmaps concerning the base classifiers delineates that each
classifier focuses on regions of interest (ROIs) that differ and/or overlay each other. To be
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more specific, single classifiers Efficient B1 and B2 in Figure 11 have highlighted the bottom
right tile of image with high values of importance corresponding to orange and dark red
colors, whereas the EfficientNet B3 classifier shows no interest on the specific tile. In the
same figure, the tiles situated on the upper left corner are considered of importance to B1
and B3 classifiers, but not to B2. On the other hand, results of the ensemble classifier B1-2-3
incorporate the ROIs of the containing base classifiers on a weighted scheme in order to
support the polyphony of base classifiers. This weighted aggregation of designated ROIs
instead of their partial selection leads to increased accuracy performance in the case of
the ensemble classifier. In Figure 11, the ensemble classifier focuses its attention on the
tile situated on the lower and the upper right corner as well as the upper left area of the
image by highlighting each area according to the weighted classification scheme. Taking
into consideration all the tiles that base classifiers deem as important results in improved
classification results. The same behavior is observed on the in situ sample in Figure 12,
although the image derives from a different dataset.
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ensemble classifiers. The upper row depicts the outcome of the average sum between the heatmap
and the original image, whereas the lower row shows the generated heatmap.
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4. Discussion

The main goal of the article is the proposal and evaluation of an explainability scheme
in an ensemble environment and therefore the classification performance was highlighted
as a secondary feature of the proposed methodology. In the proposed framework, the
experimental results are produced by application of the presented methodology on two
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well-known datasets, BreakHis and Bachs. The utilization of different datasets enables the
exploration of generalization properties.

Evaluating the classification accuracy with the utilization of images belonging to the
same dataset shows that the task is trivial even for the plain architectures (not ensem-
ble ones), the EfficientNets series supersede other well-established architectures (VGG,
InceptionNet, ResNet, ExceptionNet) and achieve higher performance in both accuracy
and AUC metrics for breast and colon datasets even when the training–validation split
is 60–40%. The results leave small space for improvement in the case of applying the
ensemble architecture. However, in some cases, such improvement occurs. The signs of
better performance are more evident when splitting the datasets in a 40–60% or a 30–70%
ratio. These extreme set ups make it more difficult for the plain architectures to perform
as well as the ensemble configurations and, therefore, stress out the fact that the added
complexity of ensemble classifiers is useful in further improving accuracy.

Utilizing ensemble architectures in order to achieve better results hinders the effort
of explainability due to the added complexity. However, that is not the case for the Grad-
CAM and Guided Grad-CAM technique which are seamlessly integrated in the network’s
architecture. The quality of highlighting and detecting correctly the most important regions
concerning the final prediction is evaluated by experienced physicians. The explainability
module manages to highlight in red (highly significant) regions of the images that are
indicative of the presence or absence of the respective pathology in most of the cases
concerning images of the same dataset. The red highlighted regions are usually epithelial
cells, and, in the case of malignancies, usually are atypical cells with hyperchromatic
(dark colored) nuclei, which is in accordance with the common practice of the physicians.
However, the highlighting is not performed for all similar regions in an image which would
be desirable, and, in some cases, it is localized in dark colored artefacts. Therefore, the
implementation of an artefact removal methodology would further enhance the generated
results. Yellow colored regions (less important regions) are generated by the explainability
module of the Grad-CAM technique in regions in the vicinity of red highlighted regions.
A positive aspect of the method, as shown in Figure 7, as a representative sample of cases
deriving from the Bachs dataset, is the fact that it generalizes well on unseen data. An
important drawback of the proposed explainability methodology is the failure to highlight
important regions when the morphological characteristics of the disease are uniform. To a
certain extent, it is acceptable since there is no particular region that excels to highlight, and
the granularity of the proposed methodology is coarse. Although the Guided Grad-CAM
technique was intended to solve the issue of granularity, the provided visualizations are
fuzzier than the ones presented by Grad-CAM, in contrast to the results provided by
Grad-CAM that are more expressive.

Concerning the comparison of explainability properties between baseline and ensem-
ble classifiers, it has been noted that taking into consideration all the visual patterns that
baseline classifiers individually consider important can be beneficial in the same way that
ensemble classifiers perform better as they combine the decisions of single classifiers on a
weighted scheme.

5. Conclusions

In this work, we have investigated the application of the Grad-CAM and Guided Grad-
CAM explainability techniques on ensemble classification schemes based on pretrained
deep convolutional network architectures. It has been shown that the combination of dif-
ferent architectures improves the performance of the designated classifiers on two different
use case scenarios. Concerning the explainability results, generated by the standalone
web application, the initial feedback is promising in many cases but fails to distinguish
important patterns where the depicted malignancy is visually uniform. Another drawback
is the deficiency to localize on specific depicted morphology findings, since the Grad-CAM
technique can highlight certain rectangular regions and Guided Grad-CAM is fine grained
and focuses on specific pixels. Therefore, future work should be redirected towards the
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combination of these techniques with complementary ones that manage to distinguish
morphology entities in histopathology images. In addition, future effort should be directed
towards the exploration of explainability techniques that can combine the coarse-grained
properties of the Grad-CAM approach with the strong discrimination abilities of the mor-
phological patterns depicted in histopathology images.
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