
algorithms

Article

A Discrete-Continuous Algorithm for Free Flight Planning

Ralf Borndörfer † , Fabian Danecker *,† and Martin Weiser †

����������
�������

Citation: Borndiörfer, R.; Danecker,

F.; Weiser, M. A Discrete-Continuous

Algorithm for Free Flight Planning.

Algorithms 2021, 14, 4. https://dx.

doi.org/10.3390/a14010004

Received: 30 November 2020

Accepted: 20 December 2020

Published: 25 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany; borndoerfer@zib.de (R.B.); weiser@zib.de (M.W.)
* Correspondence: danecker@zib.de
† These authors contributed equally to this work.

Abstract: We propose a hybrid discrete-continuous algorithm for flight planning in free flight
airspaces. In a first step, our discrete-continuous optimization for enhanced resolution (DisCOptER)
method computes a globally optimal approximate flight path on a discretization of the problem
using the A∗ method. This route initializes a Newton method that converges rapidly to the smooth
optimum in a second step. The correctness, accuracy, and complexity of the method are governed by
the choice of the crossover point that determines the coarseness of the discretization. We analyze the
optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a
purely discrete approach.

Keywords: shortest path; flight planning; free flight; discrete-continuous algorithm; optimal control;
discrete optimization

MSC: 90C35; 49M37; 65K10; 65L10; 90C27

1. Introduction

Flight planning is concerned with the computation of time and fuel efficient flight
paths with respect to the weather, see [1] for a comprehensive survey. In particular, wind
conditions make a big difference: flying with a headwind of 60 kts increases flight time
and fuel consumption of an Airbus A321 by as much as 20% over a tailwind of 60 kts [2].
To exploit this potential, and to mitigate airspace congestion, free flight aircraft routing has
been suggested since 1995 [3], and projects to complement, enhance, and finally replace
the airway network that is currently used to organize all air traffic are now under way
all over the world. Europe is introducing so-called free route airspaces (FRAs), in which
one can fly on arbitrary straight lines between defined entry and exit points, and between
more and more intermediate points, moving ever closer towards free flight. According
to EUROCONTROL, FRA projects are now in place in three quarters of all European
airspaces, and, once fully implemented, will save total fuel burn, CO2, and H2O emissions
by 1.6–2.3%, which amounts to 3000 tonnes of fuel/day, 10,000 tonnes of CO2/day, e 3
million in fuel costs/day, and 500,000 nautical miles/day [4].

The flight planning problem can be seen as a special type of time-dependent shortest
path problem. A large number of algorithms has been developed in this general context,
including contraction hierarchies, hub labeling, and arc flags for route planing in road
networks, see [5,6] for surveys, RAPTOR, transfer patterns, and connection scan for journey
planning in public transport networks [6], the isochrones method and dynamic program-
ming for ship weather routing [7], and sampling-based algorithms like rapidly exploring
random graphs and trees (RRTs), probabilistic road maps (PRMs), artificial potential fields,
as well as graph-based algorithms such as A∗, D∗, theta∗, etc. for robot path planning [8].
The variety of these methods reflects the different characteristics of the respective problems.

The best flight planning methods are currently super-fast A∗/Dijkstra algorithms
that employ efficient problem specific speed-up techniques such as cost projection [9],
super-optimal wind [10], and active constraint propagation [11]. They can find globally

Algorithms 2021, 14, 4. https://dx.doi.org/10.3390/a14010004 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-7223-9174
https://orcid.org/0000-0002-8953-808X
https://orcid.org/0000-0002-1071-0044
https://dx.doi.org/10.3390/a14010004
https://dx.doi.org/10.3390/a14010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/a14010004
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/14/1/4?type=check_update&version=2

Algorithms 2021, 14, 4 2 of 17

optimal solutions of basic problem variants on the world wide airway network with its
100,000 nodes and 600,000–700,000 edges within milliseconds. A∗ methods can in principle
be extended to deal with FRAs or free flight by excessive graph augmentation, but only up
to a certain point, when the graphs become too large and dense.

On the other hand, numerical methods of optimal control are able to compute optimal
free flight trajectories to high precision with great efficiency, either with indirect methods
based on Pontryagin’s maximum principle [12–15], or by direct methods using a collo-
cation discretization to reformulate the problem as a nonlinear program (NLP) [16,17].
These methods compute a smooth trajectory independently of any a priori network dis-
cretization, i.e., the desired free flight path. The computational complexity of solving the
optimality systems by Newton’s method is asymptotically much smaller than for graph
discretizations. If measured in terms of accuracy, higher order discretizations of the under-
lying ordinary differential equations exhibit even larger asymptotic gains. The drawback
is that continuous optimal control methods converge only locally, and towards any local
optimum, without providing any guarantee of global optimality. Approaches to compute
globally optimal solutions to optimal control problems include global optimal control [18],
mixed-integer optimal control [19], and various heuristics [20]. Applications to flight
planning exist, but consider only very small networks [21] or vertical profiles [22].

We propose in this paper the novel hybrid algorithm discrete-continuous optimization
for enhanced resolution (DisCOptER) that combines the strengths of discrete and contin-
uous approaches to flight planning, and provide a numerical study of its efficiency and
accuracy. The discrete component of our method provides global optimality, the continuous
component high accuracy and asymptotic efficiency. The idea of the method is to do a
discrete search for a global optimum on a coarse, approximate, artificial network, and to
use the resulting approximate solution to initialize a Newton method for the solution of
a continuous optimal control problem. The correctness and effectiveness of this strategy
depends on the choice of the crossover point between the discrete and the continuous
part of the algorithm. The network for the discrete part must be coarse enough to be
searched efficiently, and fine enough to guarantee sufficient proximity to the continuous
optimum, such that a subsequent Newton iteration will converge to the latter. Clearly,
the convergence radius of the continuous method strongly depends on the gradients of the
wind field and affects, together with the approximation error associated with the graph, the
computational complexity of both methods. We shall show that this idea is ideally suited
for free flight settings.

Our aim in this paper is to demonstrate the potential of combining discrete and
continuous optimization methods for the solution of problems that involve space or time
discretizations. The goal is to achieve global optimality and rapid convergence at the same
time. The model that we consider is simple, and the special characteristics of flight planning
have left their imprint. The basic idea, however, should, with suitable modifications, be
applicable to various problems of similar nature. In this vein, our paper intends to give a
first indication of the usefulness of such approaches.

The paper is structured as follows. Sections 2.1–2.3 describe the free flight problem
that we consider. The DisCOptER algorithm is introduced in Section 2.4 including error
and complexity estimates. Finally, Section 3 provides a computational study and analyzes
the choice of the switch over point.

2. Materials and Methods
2.1. Free Flight Planning

We consider in this paper an idealized version of the flight planning problem in 2D
Euclidean space subject to a stationary wind field. We want to compute a flight path
x : [0, T] → R2, τ 7→ x(τ) that connects an origin and a destination xO, xD ∈ R2; the
path parameter τ measures the flight time. The path is influenced by a smooth field of
stationary wind w : R2 → R2 of bounded magnitude ‖w‖ ≤ w̄. Flying at an airspeed
v : [0, T]→ R2, τ 7→ v(τ) of constant magnitude ‖v‖ = v̄ > w̄, the aircraft arrives at time

Algorithms 2021, 14, 4 3 of 17

T ∈ R≥0, which we seek to minimize. Our setting is chosen for ease of exposition, but
our method carries over to more complex 3D and/or time dependent versions, or other
objectives, in particular, minimization of fuel consumption.

2.2. Continuous Approach: Optimal Control

In free flight, the flight path is not restricted to a predefined airway network of
waypoints and segments. Instead, any Lipschitz-continuous path x : [0, T] → R2, with
‖xt − w‖ = v̄ almost everywhere, connecting origin xO and destination xD, is a valid
trajectory. Among those, we shall find one of minimal flight duration T. This classic of
optimal control is known as Zermelo’s navigation problem [23].

In order to formulate the problem over a fixed interval [0, 1] independent of the
actual flight duration, we scale time by T−1 as usual in free end time problems and arrive
at the following optimal control problem for the flight duration T ∈ R, the flight path
x ∈ H1([0, 1])2, and the airspeed v ∈ L2([0, 1])2:

min
T,x,v

T s.t. c(T, x, v) =

x(0)− xO
x(1)− xD

ẋ(τ)− T (v(τ) + w(x(τ)))
v(τ)Tv(τ)− v̄2

 = 0 . (1)

Here, the constraint c : Z → Λ maps from the primal domain Z := R× H1([0, 1])2 ×
L2([0, 1])2 to the image space Λ := R2 ×R2 × L2([0, 1])2 × L2([0, 1]).

2.2.1. Optimality Conditions

Let us briefly recall the necessary and sufficient optimality conditions for the optimal
control problem (1). With z = (T, x, v) ∈ Z and λ ∈ Λ, the Lagrangian is defined as

L(z, λ) = T − 〈λ, c(z)〉Λ,Λ. (2)

If z is a (local) minimizer, the necessary first order or Karush–Kuhn–Tucker (KKT) condition

L′(z, λ) = 0 (3)

and the necessary second order condition

〈Lzzζ, ζ〉Z∗ ,Z ≥ 0 ∀ζ ∈ ker c′(z)

hold [24], since c′(z) is surjective due to ‖w‖L∞([0,1]) < v̄. Moreover, if the KKT conditions (3)
are satisfied at z for some λ and the sufficient second order condition (SSC)

〈Lzzζ, ζ〉Z∗ ,Z ≥ α‖z‖2
Z ∀ζ ∈ ker c′(z) (4)

holds for some α > 0, then z is a locally unique solution of (1) and stable under perturba-
tions of the problem, e.g., due to sufficiently fine discretization. Let us point out that for
wind fields with non-vanishing second derivative, in general there is no closed form solu-
tion of the necessary conditions (3), such that solutions must be approximated numerically.

Approaches to computing solutions of (1) generally fall into two classes: indirect
methods relying on Pontryagin’s maximum principle [15,25] and direct methods based on
discretization of the minimization problem (1) [26,27]. Indirect methods lead to a boundary
value problem for state x and adjoint state λ together with a pointwise optimality con-
dition for the control v, which can be solved by shooting type methods, collocation, or
spectral discretization approaches [28,29]. The discretization of direct methods, usually by
collocation or spectral methods, translates the optimal control problem in a finite dimen-
sional nonlinear program to be solved by corresponding optimization problems [16,17,30].
While indirect methods using multiple shooting lead to smaller problem sizes than di-
rect methods based on collocation in particular for high accuracy requirements, the latter

Algorithms 2021, 14, 4 4 of 17

are widely seen as being easier to implement and use, in particular in the presence of
state constraints.

In both approaches, Newton-type methods for solving either discretized boundary
value problems or nonlinear programming problems converge in general only locally
towards a close-by minimizer. Thus, sufficiently good initial iterates need to be provided.
The domain of convergence can be extended using line search methods or trust region
methods, but without guarantee of global optimality. Special care has to be taken in the case
of non-convex problems, since the Newton direction need not be a descent direction if far
away from a minimizer satisfying the sufficient second order conditions. Convexification,
truncation of iterative solvers [31–33], or solvers for non-convex quadratic programs can
be used to address this.

2.2.2. Collocation Discretization

Exemplarily, we consider a discretize-then-optimize approach based on direct collo-
cation with the midpoint rule. Let 0 = τ0 < · · · < τn = 1 be a time grid, Xh = {x ∈
H1([0, 1]) | x|[τi ,τi+1]

∈ P1, i = 0, . . . , n − 1} and Vh = {v ∈ L2([0, 1]) |v|]τi ,τi+1[
∈ P0, i =

0, . . . , n− 1} the piecewise linear and piecewise constant ansatz spaces for positions and
velocities, respectively. We discretize (1) by looking for solutions xh ∈ X2

h and vh ∈ V2
h

and require the state equation ẋ(τ)− T(v(τ) + w(x(τ))) = 0 to be satisfied only at the
interval midpoints τi+1/2 := (τi + τi+1)/2 for i = 0, . . . , n−1. Representing xh by its nodal
values xi = xh(τi) and vh by its midpoint values vi = vh(τi+1/2), we obtain the large
nonlinear program

min
T,xh ,vh

T s.t. ch(T, xh, vh) =

x0 − xO
xn − xD

x1 − x0 − (τ1 − τ0)T (v0 + w((x0 + x1)/2))
...

xn − xn−1 − (τn − τn−1)T (vn−1 + w((xn−1 + xn)/2))
vT

0 v0 − v̄2

...
vT

n−1vn−1 − v̄2

= 0. (5)

2.2.3. Discretization Error

The discretization error introduced by the midpoint rule is well-known to be of second
order. For given w ∈ C1([0, 1])2 and T > 0 there is some constant C(T, ‖wx‖L∞(R2))
independent of v such that

‖xh − x‖L∞([0,1]) ≤ Cδτ2, (6)

where δτ = maxi=0,...,n−1 τi+1 − τi is the mesh width, see, e.g., [34]. This translates into
a corresponding error in the objective, i.e., the flight time T. Different goal-oriented
error concepts have been investigated [35,36] for equality constrained optimal control
problems. The excess in actual flight time when the computed path is implemented
depends quadratically on the path deviation ‖xh − x‖L∞([0,1]), and is therefore of order
O(δτ4). In any case, the error depends directly on the mesh width δτ, which we therefore
use as a coarse but simple qualitative measure of accuracy.

2.2.4. Newton-KKT Solver

Analogous to the continuous Lagrangian (2), we may formulate its discretized counterpart

Lh(zh, λh) = T − λT
h ch(zh)

and the corresponding necessary first order optimality condition

L′h(zh, λh) = 0 . (7)

Algorithms 2021, 14, 4 5 of 17

Writing χ = [zh, λh]
T , this can be solved using Newton’s method by computing

L′′h (χk)δχk = −L′h(χk), χk+1 = χk + δχk. (8)

For smooth wind fields, there is some ω < ∞ related to an affine invariant Lipschitz
constant of L′′h , such that

‖χk+1 − χ∗‖ ≤ ω‖χk − χ∗‖2 (9)

holds [37]. Thus, Newton’s method converges quadratically if started sufficiently close to a
locally unique solution point χ∗, i.e., if ‖χ0 − χ∗‖ < ω−1. This convergence radius is in
general mesh-independent [37,38], and does not depend on the final accuracy in terms of
mesh width δτ, but only on problem parameters such as derivatives of the wind w.

2.2.5. Time Complexity

The run time of the Newton-KKT solver is determined by the number of steps and
the cost of each step. The computational effort of a Newton step is dominated by the cost
of solving the linear equation (8). Due to the ODE structure, L′′h (χ) is an arrow-shaped
matrix with band width independent of δτ. Assuming quasi-uniform meshes, i.e., there is
a generic constant C > 0 such that τi+1 − τi ≥ Cδτ, this structure allows for an efficient
solution in O(δτ−1) time using direct band solvers.

Starting sufficiently close to the solution, say ω‖χ0 − χ∗‖ < 1, allows to bound the
truncation error by linear convergence as

‖χk − χ∗‖ ≤ (ω‖χ0 − χ∗‖)k‖χ0 − χ∗‖,

which is of course rather pessimistic. A tolerance of ‖χk − χ∗‖ ≤ O(δτ2) to match the dis-
cretization error is therefore reached after at most O(log δτ/ log(ω‖χ0 − χ∗‖)) iterations.
Thus, the overall complexity in terms of mesh width δτ is

RC = O
(

δτ−1 log δτ

log(ω‖χ0 − χ∗‖)

)
. (10)

Remark 1. If an inexact Newton method based on a geometrically refined sequence of meshes with
mesh width δτk = βkl for some l � δτ and β < 1 is used, the number of iterations is determined
by the linear convergence of the collocation discretization, while the truncation error is quickly
diminished by the quadratic convergence of Newton’s method [37]. Since the effort per Newton step
grows geometrically to its final value, the complexity reduces to

RC = O(δτ−1) (11)

provided the initial error is sufficiently small, i.e., ω‖χ0 − χ∗‖ ≤ β2.

2.3. Discrete Approach: Shortest Paths in Airway Networks

If flight paths are restricted to a predefined airway network of waypoints and seg-
ments, flight planning becomes a special kind of shortest path problem on a digraph.
Let V ⊂ R2 be a finite set of waypoints including xO and xD, and A ⊂ V ×V a set of arcs
such that G = (V, A) is a strongly connected directed graph. A discrete flight path is a
finite sequence (xi)0≤i≤n of waypoints with (xi, xi+1) ∈ A for i = 0, . . . , n−1, connecting
x0 = xO with xn = xD. We denote the set of all flight paths by P. The total flight duration
T(p) for a path p = (x0, . . . , xn) ∈ P is given in terms of the flight duration T(ei) for an arc
ei = (xi, xi+1) by

T(p) =
n−1

∑
i=0

T(ei).

Algorithms 2021, 14, 4 6 of 17

The travel time on the arc ei can be computed from the local ground speed

s = v + w = ‖s‖ xi+1 − xi
‖xi+1 − xi‖

=: ‖s‖ēi,

at x = (1− τ)xi + τxi+1 and the constant airspeed ‖v‖ = v̄ by solving the quadratic equation

(‖s‖ēi − w)T(‖s‖ēi − w) = v̄2.

This yields

‖s‖ = ēT
i w +

√
(ēT

i w)2 + v̄2 − ‖w‖2

and thus

T(ei) = ‖ei‖
∫ 1

τ=0
‖s‖−1 δτ. (12)

The discrete optimization problem to be solved is now

min
p∈P

T(p).

2.3.1. Graph Construction

Discrete approaches to (flight) path planning fall into two classes. The first class are
sampling-based algorithms. They construct the search graph by some kind of sampling
during the execution of the shortest path algorithm, which is usually an A∗-method.
This class includes rapidly exploring random trees (RRT) and graph (RRG) algorithms, that
are often used in robot path planning [8]. There are versions that guarantee convergence
to a global optimum with probability one [39], however, although undoubtedly often
extremely efficient in practice, these methods do not provide a priori error bounds or
complexity estimates.

The second class are graph-based algorithms, that take the search graph as an input.
Impressive super-fast performance in practice, and also theoretically for special classes of
graphs, has been achieved by making use of preprocessing as well as sophisticated data
structures. However, “proving better running time bounds than those of Dijkstra’s algo-
rithm is unlikely for general graphs” [6]. In many applications, including traditional flight
plannning on airway networks, the search graph is canonical. In applications involving
space and time discretization, like in free flight, graph construction is a degree of freedom.
Using an appropriate discretization, a priori bounds on the runtime and the accuracy of
the solutions can be derived. This is the approach that we take.

We cover free flight zones with “locally densely” connected digraphs, i.e., digraphs
with a certain density of vertices and arcs.

Definition 1. A digraph G = (V, A) is said to be (h, l)-dense in a convex set Ω ⊂ R2 for some
h, l > 0, if it satisfies the following conditions:

1. containment: V ⊂ Ω

2. vertex density: ∀x ∈ Ω : ∃v ∈ V : ‖x− v‖ ≤ h

3. arc density: ∀x, y ∈ V, ‖x− y‖ ≤ 2h + l : (x, y) ∈ A.

We call h the vertex density and 2h + l the connectivity radius of an (h, l)-dense graph.

With this definition, |V| ∈ O(h−2) and |E| ∈ O((2h + l)2h−4) hold. Furthermore, it is
easy to see that this graph structure implies that G is strongly connected and therefore P is
nonempty, i.e., a path from xO to xD exists.

Algorithms 2021, 14, 4 7 of 17

2.3.2. Discretization Error

Similar to the collocation error (6), the error due to graph discretization depends on
the vertex density h and the connectivity radius 2h + l. We restrict our exposition in this
paper to a plausible argument for the error order in terms of h and l and refer the reader
to [40] for rigorous error bounds of the same orders.

Spatial deviation due to vertex spacing is bounded by ε1 = O(h), while the linear
interpolation error depending on the curvature of the continuous optimal path is bounded
by ε2 = O((2h + l)2), as illustrated in Figure 1a. Together, the deviation measured as
pointwise normal distance is bounded by O(l2 + h). As mentioned in Section 2.2 above,
this translates quadratically into a flight time error of order O(l4 + h2).

Assuming that the path actually contains arcs of length around l + 2h, this order of
error is not only an upper bound, but also the expected error. The existence of arcs of
length 2h + l in the optimal discrete path is likely, as the following argument based on
Figure 1b shows. With quasi-uniform vertex spacing, the number of adjacent vertices
within a distance 2h + l̂ ≤ 2h + l is of order O((2h + l̂)2/h2), such that the average
angle between arcs of length up to 2h + l̂, and thus the expected angular deviation α
between the discrete path and the optimal continuous path is of order O((2 + l̂/h)−2).
The geometric length difference between the discrete path and the continuous path is of
order O(1− cos α) = O(α2) = O((2 + l̂/h)−4). The expected length and therefore travel
time error induced by angular deviation is smallest if l̂ is largest, i.e., arcs of maximum
length 2h + l are to be preferred.

This analysis also implies that the total flight time error is of orderO(l4 + h2 + (h/l)4)
and that h = o(l2) ensures convergence for l → 0.

hh ε1

ε2

l + 2h

(a) Distance error

l

h

h

α

(b) Angular error
Figure 1. Geometrical error bounds. Blue line: continuous optimal solution. Black line: discrete optimal solution. Gray dots:
graph nodes.

2.3.3. A∗ Shortest Path Algorithm

The state-of-the-art for finding shortest paths in airway networks is the A∗ algo-
rithm [10], which extends Dijkstra’s algorithm by a (heuristic) lower bound for the distance
of some vertex xi to the destination xD in order to prioritize the search. Depending on the
tightness of the heuristic bound, A∗ can discard a substantial part of the graph and reduce
the run time considerably. As a particularly fast and simple heuristic we employ the travel
time along a straight line between xi and xD, assuming maximum tail wind, i.e.,

d(xi, xD) =
‖xi − xD‖

v̄ + w̄
.

Tighter and more complex heuristics exploiting local bounds on the wind have been
proposed for flight planning, also for time-dependent wind fields [10].

The travel time for each arc is again calculated via numerical integration of (12) using
the same method as for the collocation with a fixed discretization. In order to draw up a

Algorithms 2021, 14, 4 8 of 17

fair comparison, we process arcs on the fly and thus eliminate any major preprocessing.
This also makes the approach extendible to the time dependent case.

2.3.4. Time Complexity

Using a Fibonacci heap for the priority queue, A∗ can be implemented to run in time

RD ∈ O(|A|+ |V| log |V|), (13)

where |A| and |V| are the numbers of arcs and vertices, respectively. As outlined above,
we may assume l � h. If we—conservatively—assume l2 ≥ h2 log h−1, the total complex-
ity becomes

RD = O(l2h−4).

2.3.5. Graph Structure

Given the above considerations, we now address the question of which graph structure
in terms of h and l is the most efficient, i.e., which structure achieves a minimal error for
a given computational budget b or, equivalently, a desired accuracy with minimal effort.
Models for computational work and accuracy are

W(h, l) = l2h−4 and ε(h, l) = l4 + h2 + h4l−4.

We are hence interested in solving the optimization problem

min ε(h, l) s.t. W(h, l) = b.

The constraint W(h, l) = b yields l2 = h4b, which, when inserted into the objective,
leads to the unconstrained problem

min
h

b2h8 + h2 + b−2h−4 ⇔ min
H

BH4 + H + B−1H−2.

The necessary optimality condition 4BH3 + 1− 2B−1H−3 = 0 is a quadratic equation
in H3 with solution

h6 =
−1 +

√
33

8b2 ⇔ b =

√
−1 +

√
33

8h6 .

Inserting this into the constraint yields l2 = h
√
−1+

√
33

8 . We conclude that graphs of
optimal efficiency should follow the law

h = O(l2), (14)

such that the computational complexity of the discrete optimization can be expressed as

RD ∈ O(h−3)⇔ RD ∈ O(l−6) (15)

with an associated error of O(l4) in flight time and of O(l2) in path approximation.

2.4. DisCOptER Algorithm

Due to their superior angular resolution, arcs of length l will occur in the optimal
discrete path, while the length of flight path segments in the collocation solution is around
δτTv̄. Hence, we expect the accuracy of continuous and discrete optimization approaches
to be comparable if l = δτTv̄. Obviously, for increasing accuracy l → 0, the collocation
effort of order O(δτ−1 log δτ/ log(ω‖χ0 − χ∗‖)) grows much slower than the A∗ effort of
complexity O(l−6). On the other hand, the collocation approach converges only locally.

We therefore propose a hybrid algorithm that combines the strengths of discrete
optimization and optimal control, see Algorithm 1. First, a discrete shortest path of low

Algorithms 2021, 14, 4 9 of 17

accuracy is calculated using the A∗ algorithm as described in Section 2.3. This is used as
initial iterate for solving the KKT system (5) to the desired final accuracy using the ordinary
Newton method. Employing linesearch or trust region globalization would enlarge the
convergence domain of Newton’s method and allow for coarser graphs to be used, but at
the cost of less robust and efficient convergence. In favour of robustness and simplicity, we
restrict the attention to the ordinary Newton method.

Algorithm 1: DisCOptER algorithm

Input : xO, xD ∈ R2, w ∈ C2(R2)2, v̄ > 0, TOL > 0
Output :approximate solution (T, x, v) ∈ R× C0([0, 1])2 × L2([0, 1])2 of (1) with

error of order TOL2, TOL, TOL, respectively
1 Choose δτ = O(

√
TOL)

2 Define (h, l)-dense graph G with l > δτ‖xD − xO‖, but sufficiently small, and
h = O(l2)

3 Calculate shortest path on G using A∗ algorithm (see Section 2.3)
4 Interpolate path onto collocation discretization (see Section 2.4.1)
5 Calculate a continuous solution by solving the nonlinear problem (5), via direct

collocation and Newton’s method (see Section 2.2)

Algorithms that combine methods from discrete and continuous optimization have
been proposed before. A reverse deterministic combination going from continuous to
discrete has been proposed in [41] based on dynamic programming principles. Other
combinations involve a stochastic discrete stage, like rapidly-exploring random trees (RRT,
RRT*) (see, e.g., [42]) or Probabilistic Roadmaps (PRMs) [43] in combination with a second
NLP stage. Another approach was taken in [44], where the authors use a combination of A∗

and RRT* to find an optimal trajectory. These algorithms reveal remarkable performance
when it comes to obstacle avoidance. Since our goal is, however, to develop an algorithm
with a priori error estimates and bounded runtime, we do not make use of any stochastic
approaches in the DisCOptER algorithm.

2.4.1. Initialization

Let (x0, . . . , xn) ∈ P be a shortest path from xO to xD in the graph G. Let ti denote the
time at which waypoint xi is passed, and define the relative passage time τi = ti/T(p) ∈
[0, 1]. We define a mapping Ξ : P→ C0,1([0, 1])2 of discrete flight paths (x0, . . . , xn) ∈ P to
continuous paths x ∈ C0,1([0, 1])2 by piecewise linear interpolation:

x(τ) = xi +
T(p)τ − ti

ti+1 − ti
(xi+1 − xi) if ti ≤ T(p)τ ≤ ti+1. (16)

The initial collocation iterate is then obtained by evaluating x(τi) on the collocation
grid 0=τ0, . . . , τn=1 and defining the airspeeds

vi =
x(τi+1)− x(τi)

T(p)(τi+1 − τi)
− w((x(τi+1) + x(τi))/2)

at the interval midpoints τi+1/2.

2.4.2. Complexity

The runtime of this hybrid algorithm is comprised of the runtime of the A∗ algo-
rithm (13) and the runtime (10) of the KKT-Newton solver for the collocation system.
Provided that the initial iterate based on the discrete solution p is sufficiently close to
the continuous optimum, i.e., ω‖χ0 − χ∗‖ < 1, Newton’s method converges locally as

Algorithms 2021, 14, 4 10 of 17

described by (10). For the path approximation error, we expect ‖χ0 − χ∗‖ ≈ Cl2, which
leads to an overall complexity of

RH = RD + RC ∈ O
(

l−6 + δτ−1 log δτ

log(ωCl2)

)
, (17)

or RH = O(l−6 + δτ−1) subject to ωCl2 < 1 if an inexact Newton method is used. Both com-
plexity bounds essentially suggest to choose a graph as sparse as possible (l → ∞), only
restricted from above by the accuracy necessary for the Newton-KKT solver to converge
locally, i.e., ωCl2 < 1, which is independent of the final accuracy δτ.

3. Results

We validate in this section the effectiveness and the efficiency of our algorithm on a
test set of four problems of increasing difficulty. Our aim is to demonstrate that our hybrid
approach is asymptotically superior to a purely graph based alternative. We discuss the
convergence properties of the method in relation to the choice of the crossover point and its
dependence on the minimum required graph density. Based on these results, we evaluated
the DisCOptER algorithm for varying graph densities, using the theoretically optimal
graph structure of h = l2, cf. (14). We will see that—as expected—the best performance was
achieved on very sparse graphs. The chapter concludes with a computational comparison
of the hybrid algorithm with a purely discrete approach.

3.1. Test Problems

We tested our algorithm on a set of simple, but representative examples that were well
suited to demonstrate our method, and not far from real world situations or arguably even
more difficult. The instances lived in a square [0, 1]2 or [0, 1]× [−1, 1], and the origin and
the destination were xO = [0, 0]T and xD = [1, 0]T , respectively. All values were chosen
dimensionless. The wind fields were constructed in a such a way that the straight line from
the origin to the destination was particularly unfavorable. The wind speed was limited to
w̄ = 1

2 v̄, which was rather strong, but not unrealistic. Even though not formally required,
the graph nodes were positioned on a uniform Cartesian grid, such that the diagonal
distance of two adjacent nodes was 2h. For the sake of simplicity the graph structure will
be described based on the node spacing in x-direction hx =

√
2h. This directly defined

l =
√

h by (14).
In the first test problem (a), the wind field was a laminar flow of opposing parallel

currents, namely,

w(x) =
[

w̄ min(max(2 x2
H−1,−1), 1)

0

]
,

with H = 0.5, see Figure 2; a similar problem is discussed in [45]. Due to its simplicity, this
problem had only one distinct minimum, a property that we make use of in the next section.

0.0 0.5 1.0
0.0

0.2

0.5

0.0 0.5 1.0
0.0

0.2

0.5

0.0 0.5 1.0
0.0

0.2

0.5

Figure 2. Test problem (a) with H = 0.5, xO = (0, 0), xD = (1, 0), w̄ = 1
2 v̄. Blue dots: network-graph with h = l2 and

1/hx = 1 and 6, respectively, red: discrete optimal trajectory, green: continuous optimal trajectory.

Algorithms 2021, 14, 4 11 of 17

In problems (b)–(d), the wind w was the sum of an increasing number of vortices wi,
each of which was described by

wi(x) =
[
−sw̃(r) sin(α)
sw̃(r) cos(α)

]
,

where s is the spin of the vortex (s=+1: counter-clockwise, s=−1: clockwise), r = ‖x− z‖2
is the distance from the vortex center zi, α is the angle with respect to the center and the
x-axis with tan(α) = (x−zi)2

(x−zi)1
and the absolute vortex wind speed w̃ is a function of r and

the vortex radius R:

w̃(r) =

[
w̄ exp

(
r2

r2−R2

)
if r ≤ R

0 otherwise

]
. (18)

Problem (b) involved one large vortex with R = 1/2 at z = [0.5,−0.1]T , see Figure 3.
This caused Newton’s method to converge to a suboptimal trajectory (above the vortex) if
initialized with the straight trajectory. That was the case if the DisCOptER algorithm was
used with a minimally sparse graph with hx = 1 (see Figure 3, middle). We observed that
the discrete shortest path passed below the vortex for any hx > 1. From there the globally
optimal solution shown in the Figure 3 (left 3) was found for hx = 1/6.

0.0 0.5 1.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.0 0.5 1.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.0 0.5 1.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

Figure 3. Test problem (b) with counterclockwise spinning vortex centered at z = [0.5,−0.1]T , R = 0.5. xO = [0, 0]T ,
xD = [1, 0]T , w̄ = 1

2 v̄. Blue dots: network graph with h = l2 and 1/hx = 1 and 6, respectively, red: discrete optimal
trajectory, green: continuous optimal trajectory.

Problem (c) involved 15 vortices with R = 1/8. One was centered at z = [0.5,−R/2]T ,
the others were regularly aligned as seen in Figure 4. Vortices with positive spin (clock-
wise) were colored green, vortices with negative spin (anti-clockwise) were colored red.
Due to the turbulence of this wind field, a plain application of Newton’s method was not
guaranteed to converge. As an example, (Figure 4, left 2) shows again the result with the
trivial initialization. Further there are several local minima, Figure 4 (left 3 and 4) show
two of them. A relatively high graph density (hx ≤ 1/17) was required to find the globally
optimal trajectory (Figure 4, left 5).

Problem (d) involved 50 regularly aligned vortices of radius R = 1/16 (Figure 5).
This was clearly an exaggeration, and no commercial plane would ever try to traverse a
wind field like this. We used the instance to show that the proposed algorithm outper-
formed existing methods even under the most adverse conditions. In fact, the high level of
non-convexity exacerbated the situation regarding the convergence of Newton’s method.
Note that the magnitude of derivatives of (18) was coupled directly to the vortex radius.
With R = 1/16 the vortices here were half as large as in the previous example. In turn, the
first and second order derivatives were 2 and 4 times larger, respectively. Consequently,
a quite dense graph with hx ≤ 1/60 was required to make Newton’s method converge

Algorithms 2021, 14, 4 12 of 17

reliably. Note that this wind field was point-symmetric with respect to [0.5, 0]T , which
allowed for two equivalent global optima (see Figure 5, left 2 and 3). It was a priori not
obvious which one would be found. This depended on the discrete optimum.

0.0 0.5 1.0
-0.4

-0.2

0.0

0.2

0.4

0.0 0.5 1.0
-0.4

-0.2

0.0

0.2

0.4

0.0 0.5 1.0
-0.4

-0.2

0.0

0.2

0.4

0.0 0.5 1.0
-0.4

-0.2

0.0

0.2

0.4

0.0 0.5 1.0
-0.4

-0.2

0.0

0.2

0.4

Figure 4. Test problem (c) with 15 vortices, R = 1/8. One is centered at z = [0.5,−R/2], the others are regularly positioned
as seen above. xO = [0, 0]T , xD = [1, 0]T , w̄ = 1

2 v̄. Blue dots: graph with h = l2 and 1/hx = 1, 5, 6, and 16, respectively, red:
discrete optimal trajectory, green: continuous optimal trajectory. Note that the straight trajectory is particularly unfavorable.

0.0 0.5 1.0-0.4

-0.2

0.0

0.2

0.4

0.0 0.5 1.0-0.4

-0.2

0.0

0.2

0.4

0.0 0.5 1.0-0.4

-0.2

0.0

0.2

0.4

Figure 5. Test problem (d) with 50 vortices (10 columns of 5 vortices each), R = 1/16, regularly positioned. xO = [0, 0]T ,
xD = [1, 0]T , w̄ = 0.5v̄. Blue dots: graph with h = l2 and 1/hx = 33 and 34, respectively, red: discrete optimal trajectory,
green: continuous optimal trajectory. Note that, again, the straight trajectory is particularly unfavorable. This problem is
point-symmetric w.r.t. [0.5, 0]T . The two shown solutions are equivalent.

3.2. Computational Complexity

Before discussing the DisCOptER algorithm we validated that the optimal con-
trol methods were asymptotically more efficient than a purely graph-based approach.
This could be investigated only for the first test problem. Due to the simplicity of this wind
field, Newton’s method converged from a trivial initialization, i.e., the straight line from
xO to xD. On the other hand, discrete flight paths were calculated with varying accuracy,
that is, with varying l, which is, according to Section 2.3.2, a measure for the accuracy of
the calculated path. For the sake of consistency, we indicate the accuracy of the continuous
solution by lC := δτL, where L is the path length. Figure 6 clearly confirms the estimated

Algorithms 2021, 14, 4 13 of 17

time complexities of O(l−6) for the discrete approach (see Equation (13)) and O(δτ−1) for
the continuous approach (see Equation (10)).

0 20 40 60 80 100
Accuracy, 1/l

0

2

4

6

R
un

tim
e

/ s

Figure 6. Test case (a). Orange: Discrete-only approach, polynomial trend line of order 6. Purple:
Newton-Karush–Kuhn–Tucker (KKT) initialized with straight line, l=̂lC = δτL, linear trend line.

3.3. Minimum Graph Requirements

Figure 7 shows the runtime of the DisCOptER algorithm for various graph parameters
(h, l). Some key observations could be made for all four test problems. Towards the top
right of each figure the graph density increased, which came with an increased runtime
dictated by the graph searching part of the algorithm. The black dashed line represents
the theoretically optimal graph structure h = l2, cf. (14); it is shown for orientation as the
results in the following sections were computed with this setting.

From left to right the wind fields became increasingly more non-convex. As these
plots reveal, this came with generally higher runtimes, but more importantly with a region
of low graph densities where the algorithm converged either to a local minimum or not at
all (gray areas). As discussed before, this was not an issue in case (a) since this problem
was convex and Newton’s method converged even from a trivial initialization. Even in
case (b) we found that a graph with hx < 1 was good enough such that we found the
optimal flight path (only one additional column of nodes between start and destination
was required). This outcome is not visible here due to the limited resolution of the plot.
The convergence problem became all the more apparent with instances (c) and (d). In both
cases a good number of local minima existed, each of which had a rather small radius of
convergence such that Newton’s method failed if not initialized with sufficient accuracy.
Especially in case (d) we saw a patchwork of runs that converged presumably by chance
in an unpredictable way. Some of this might be compensated by globalization techniques
and an explicit treatment of non-convexity, which, however, would affect the efficiency of
Newton’s method. In order to provide reliable results, we need to use a graph density of at
least l < 0.15 and 0.11 for case (c) and (d), respectively.

Interestingly, the node distance h appeared to have a much stronger effect on the
convergence than the connectedness width l. This might be explained to some extent in
terms of the distance and angular error (cf. Section 2.3.2). Low l decreased the angular
resolution and thus induced an increased angular error. The discrete flight path then
tended to zig-zag along the optimum. This could easily be smoothed by Newton’s method.
However, if the discrete flight path was parallely offset from the optimum (distance
error due to large node distance h), it might quickly leave the convergence radius of
Newton’s method.

Algorithms 2021, 14, 4 14 of 17

102 103 104

0.2 0.4
Connectedness l

50

100

No
de

 d
en

sit
y

1/
h

102 103 104

0.2 0.4
Connectedness l

50

100

No
de

 d
en

sit
y

1/
h

101 102 103

0.2 0.4
Connectedness l

50

100

No
de

 d
en

sit
y

1/
h

101 102 103

0.2 0.4
Connectedness l

50

100

No
de

 d
en

sit
y

1/
h

d)c)b)a)

Figure 7. Runtime of the DisCOptER algorithm in seconds. Top right corner: dense graph. Bottom left corner: sparse graph.
Gray areas: not converged or converged to local minimum. Black dashed line: h = l2. Subfigures refer to the corresponding
test problems.

3.4. Optimal Crossover Point

In Section 2.3.2 we derived h = l2 as the optimal graph structure, cf. (14). Using this
setting and sampling over various graph densities for the test problems led to the results
presented in Figure 8. Obviously, an increased graph density came with a computationally
more expensive graph searching task (pink, top, cf. (15)). In turn the NLP part of the
algorithm (green, bottom) becomes cheaper following (10), since the initial guess gets
closer to the optimum. From test problem a) it can be seen that the best performance
was achieved—independently of the overall accuracy δτ—with a relatively low graph
density of 1/l ≈ 5, where the graph search was still negligibly cheap but the graph was
already dense enough for Newton’s method to converge with only one iteration. The exact
numbers depended strongly on implementation details. We do not claim to have an optimal
realization of either part of the algorithm. The trend towards low graph densities, however,
was confirmed by the following examples.

As it turned out, the lower bound on the required graph density imposed by the
non-convexity of the wind field was the more important criterion. Looking at examples (c)
and (d), where we excluded the area that we identified as not trustworthy in the previous
section, we concluded that we want the graph to be as sparse as possible and only as dense
as necessary.

9 10 11 12
Connectedness 1/l

0

200

400

R
un

tim
e

/ s

6 8 10 12
Connectedness 1/l

0

50

100

R
un

tim
e

/ s

5 10
Connectedness 1/l

0

10

20

R
un

tim
e

/ s

5 10
Connectedness 1/l

0

5

10

15

R
un

tim
e

/ s d)c)b)a)

Figure 8. Runtimes of the DisCOptER algorithm in seconds, split into the discrete part (pink, top) and the continuous part
(green, bottom), sampled with h = l2. Constant accuracy δτ = 1/300. Subfigures refer to the corresponding test problems.

3.5. Computational Complexity

We finally showed that globally optimal shortest paths could be calculated more
efficiently using the proposed DisCOptER algorithm than with a purely graph based
approach, see Figure 9. In the previous section we showed that the algorithm performed
best if the graph was chosen rather sparse while respecting the problem-specific minimum
density. Consequently, the calculation of the discrete solution was relatively cheap and we
could benefit from the computational efficiency of Newton’s algorithm. We can also confirm
that the time complexity of the DisCOptER Algorithm is O(δτ−1), see Equation (17), and
that the time complexity of the purely graph-based approach is O(l−6), see (13).

Algorithms 2021, 14, 4 15 of 17

0 50 100 150 200
Accuracy, 1/l

0

100

200

R
un

tim
e

/ s

0 20 40
Accuracy, 1/l

0

5

10

R
un

tim
e

/ s

0 10 20 30
Accuracy, 1/l

0.0

0.5

1.0

R
un

tim
e

/ s
0 10 20 30

Accuracy, 1/l

0.0

0.5

1.0

R
un

tim
e

/ s

d)c)b)a)

Figure 9. Minimum runtime in seconds taken experiments similar to Figure 8. Blue: DisCOptER algorithm with lc := δτL, linear
trend line. Orange: Purely discrete, polynomial trend line of order 6. Subfigures refer to the corresponding test problems.

4. Conclusions

In this paper we presented the novel DisCOptER algorithm to calculate flight paths
in free flight airspaces utilizing a combination of discrete and continuous optimization.
We demonstrated that the achieved efficiency is asymptotically much better than the
conventional purely discrete alternative. Even though the algorithm was described for the
static two-dimensional case it is also strongly promising for more complex cases, to which
it can directly be transferred.

Our study also reveals a need for more theoretical analysis of the problem. In order to
design a one-shot algorithm with theoretical efficiency guarantees, a priori error estimates
allowing the determination of a minimum required crossover graph density is needed.
This will of course depend mainly on the characteristics of the wind field including first
and second order derivatives. On the other hand, a posteriori error estimates and adaptive
coarse-to-fine graph refinement strategies will be necessary for robustness and efficiency in
practice. We investigate some of these questions in [40].

Author Contributions: Conceptualization, R.B. and M.W.; methodology, M.W.; software, F.D.; vali-
dation, F.D.; formal analysis, M.W.; investigation, F.D. and M.W.; resources, R.B., F.D. and M.W.; data
curation, F.D.; writing—original draft preparation, F.D. and M.W.; writing—review and editing, R.B.;
visualization, F.D.; supervision, R.B.; project administration, R.B. and M.W.; funding acquisition, R.B.
and M.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the DFG Research Center of Excellence MATH+ – Berlin
Mathematics Research Center, Project AA3-3.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stojković, S.E.K.S.S.A.G.; Stojković, M. Quantitative Problem Solving Methods in the Airline Industry; Springer: Berlin/Heidelberg,

Germany, 2011; Chapter 6—Operations, pp. 283–383.
2. Airbus Industries. Getting to Grips with Fuel Economy. Issue 4, 2004. Available online: https://ansperformance.eu/library/

airbus-fuel-economy.pdf (accessed on 24 December 2020).
3. Radio Technical Commission for Aeronautics. Final Report of RTCA Task Force 3 Free Flight Implementation; RTCA: Washington, DC,

USA, 1995.
4. Jelinek, F.; Carlier, S.; Smith, J.; Quesne, A. The EUR RVSM Implementation ProjectEnvironmental Benefit AnalysisEEC/ENV/

2002/008. Technical Report; 2003. Available online: https://www.eurocontrol.int/eec/gallery/content/public/document/eec/
report/2002/023_RVSM_Implementation_Project.pdf (accessed on 24 December 2020).

5. Delling, D.; Wagner, D. Time-Dependent Route Planning. In Robust and Online Large-Scale Optimization: Models and Techniques
for Transportation Systems; Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 207–230. [CrossRef]

6. Bast, H.; Delling, D.; Goldberg, A.; Müller-Hannemann, M.; Pajor, T.; Sanders, P.; Wagner, D.; Werneck, R.F. Route Planning in
Transportation Networks. 2015. Available online: https://arxiv.org/pdf/1504.05140.pdf (accessed on 24 December 2020).

7. Zis, T.P.; Psaraftis, H.N.; Ding, L. Ship weather routing: A taxonomy and survey. Ocean Eng. 2020, 213, 107697. [CrossRef]
8. Yang, L.; Qi, J.; Song, D.; Xiao, J.; Han, J.; Xia, Y. Survey of Robot 3D Path Planning Algorithms. J. Control Sci. Eng. 2016, 2016,

1687–5249. [CrossRef]
9. Blanco, M.; Borndörfer, R.; Hoang, N.D.; De las Casas, A.K.P.M.; Schlechte, T.; Schlobach, S. Cost projection methods for the

shortest path problem with crossing costs. In Proceedings of the 17th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS 2017), Vienna, Austria, 7–8 September 2017; Volume 59.

https://ansperformance.eu/library/airbus-fuel-economy.pdf
https://ansperformance.eu/library/airbus-fuel-economy.pdf
https://www.eurocontrol.int/eec/gallery/content/public/document/eec/report/2002/023_RVSM_Implementation_Project.pdf
https://www.eurocontrol.int/eec/gallery/content/public/document/eec/report/2002/023_RVSM_Implementation_Project.pdf
http://dx.doi.org/10.1007/978-3-642-05465-5_8
https://arxiv.org/pdf/1504.05140.pdf
http://dx.doi.org/10.1016/j.oceaneng.2020.107697
http://dx.doi.org/10.1155/2016/7426913

Algorithms 2021, 14, 4 16 of 17

10. Blanco, M.; Borndörfer, R.; Hoang, N.D.; Kaier, A.; Schienle, A.; Schlechte, T.; Schlobach, S. Solving time dependent shortest path
problems on airway networks using super-optimal wind. In Proceedings of the 16th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS 2016), Aarhus, Denmark, 25 August 2016. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

11. Larsen, K.; Knudsen, A.; Chiarandini, M. Constraint handling in flight planning. In Principles and Practice of Constraint Programming;
Lecture Notes in Computer Science; Beck, J., Ed.; Springer, Cham, Switzerland, 2017; Volume 10416, pp. 354–369.

12. Marchidan, A.; Bakolas, E. Numerical Techniques for Minimum-Time Routing on a Sphere with Realistic Winds. Am. Inst.
Aeronaut. Astronaut. 2016, 39, 188–193. [CrossRef]

13. Jardin, M.R.; Bryson, A.E. Methods for computing minimum-time paths in strong winds. J. Guid. Control Dyn. 2012, 35, 165–171.
[CrossRef]

14. McDonald, J.A.; Zhao, Y. Time benefits of free-flight for a commercial aircraft. In Proceedings of the AIAA Guidance Navigation
& Control Conference, Dever, CO, USA, 14–17 August 2000.

15. von Stryk, O.; Bulirsch, R. Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 1992, 37, 357–373. [CrossRef]
16. Betts, J.; Cramer, E. Application of direct transcription to commercial aircraft trajectory optimization. J. Guid. Contr. Dyn. 1995,

18, 151–159. [CrossRef]
17. García-Heras, J.; Soler, M.; Sáez, F.J. A Comparison of Optimal Control Methods for Minimum Fuel Cruise at Constant Altitude

and Course with Fixed Arrival Time. Procedia Eng. 2014, 80, 231–244. [CrossRef]
18. Diedam, H.; Sager, S. Global optimal control with the direct multiple shooting method. Optim. Control Appl. Meth. 2017, 39, 1–22.

[CrossRef]
19. Sager, S.; Reinelt, G.; Bock, H. Direct Methods with Maximal Lower Bound for Mixed-Integer Optimal Control Problems.

Math. Program. 2009, 118, 109–149. [CrossRef]
20. Rao, A. A Survey of Numerical Methods for Optimal Control. Adv. Astronaut. Sci. 2010, 135, 497–528.
21. Bonami, P.; Olivares, A.; Soler, M.; Staffetti, E. Multiphase mixed-integer optimal control approach to aircraft trajectory

optimization. J. Guid. Control Dyn. 2013, 36, 1267–1277. [CrossRef]
22. Moreno, L.; Fügenschuh, A.; Kaier, A.; Schlobach, S. A Nonlinear Model for Vertical Free-Flight Trajectory Planning. In Operations

Research Proceedings; Springer: Cham, Switzerland, 2018; pp. 445–450. [CrossRef]
23. Zermelo, E. Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung. ZAMM Z. Angew. Math. Mech.

1931, 11, 114–124. [CrossRef]
24. Maurer, H.; Zowe, J. First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming

problems. Math. Program. 1979, 16, 98–110. [CrossRef]
25. Pontrjagin, L.; Boltyansky, V.; Gamkrelidze, V.; Mischenko, E. Mathematical Theory of Optimal Processes; Wiley-Interscience:

New York, NY, USA, 1962.
26. Betts, J.T. Survey of Numerical Methods for Trajectory Optimization. J. Guid. Control. Dyn. 1998, 21, 193–207. [CrossRef]
27. Hargraves, C.; Paris, S. Direct trajectory optimization using nonlinear programming and collocation. J. Guid. Control Dyn. 1987,

10, 338–342. [CrossRef]
28. Fahroo, F.; Ross, I.M. Direct Trajectory Optimization by a Chebyshev Pseudospectral Method. J. Guid. Control Dyn. 2002,

25, 160–166. [CrossRef]
29. Ascher, U.; Mattheij, R.; Russell, R. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations; Prentice Hall:

Upper Saddle River, NJ, USA, 1988.
30. Hagelauer, P.; Mora-Camino, F. A soft dynamic programming approach for on-line aircraft 4D-trajectory optimization. Eur. J.

Oper. Res. 1998, 107, 87–95. [CrossRef]
31. Steihaug, T. The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal. 1983, 20, 626–637.

[CrossRef]
32. Toint, P. Towards an efficient sparsity exploiting Newton method for minimization. In Sparse Matrices and Their Use; Duff, I., Ed.;

Academic Press: Cambridge, MA, USA, 1981; pp. 57–88.
33. Weiser, M.; Deuflhard, P.; Erdmann, B. Affine conjugate adaptive Newton methods for nonlinear elastomechanics. Optim. Meth.

Softw. 2007, 22, 413–431. [CrossRef]
34. Deuflhard, P.; Bornemann, F. Scientific Computing with Ordinary Differential Equations, 2nd ed.; Texts in Applied Mathematics;

Springer: New York, NY, USA, 2002; Volume 42.
35. Becker, R.; Kapp, H.; Rannacher, R. Adaptive finite element methods for optimal control of partial differential equations: basic

concepts. SIAM J. Control Optim. 2000, 39, 113–132. [CrossRef]
36. Weiser, M. On goal-oriented adaptivity for elliptic optimal control problems. Optim. Meth. Softw. 2013, 28, 969–992. [CrossRef]
37. Deuflhard, P. Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms; Computational Mathematics;

Springer: New York, NY, USA, 2004; Volume 35.
38. Weiser, M.; Schiela, A.; Deuflhard, P. Asymptotic Mesh Independence of Newton’s Method Revisited. SIAM J. Numer. Anal. 2005,

42, 1830–1845. [CrossRef]
39. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
40. Borndörfer, R.; Danecker, F.; Weiser, M. Error Bounds for Free Flight Planning with Locally Connected Airway Networks; Technical

Report; Zuse Institute Berlin: Berlin, Germany. in preparation.

http://dx.doi.org/10.2514/1.G001389
http://dx.doi.org/10.2514/1.53614
http://dx.doi.org/10.1007/BF02071065
http://dx.doi.org/10.2514/3.56670
http://dx.doi.org/10.1016/j.proeng.2014.09.083
http://dx.doi.org/10.1002/oca.2324
http://dx.doi.org/10.1007/s10107-007-0185-6
http://dx.doi.org/10.2514/1.60492
http://dx.doi.org/10.1007/978-3-319-89920-6_59.
http://dx.doi.org/10.1002/zamm.19310110205
http://dx.doi.org/10.1007/BF01582096
http://dx.doi.org/10.2514/2.4231
http://dx.doi.org/10.2514/3.20223
http://dx.doi.org/10.2514/2.4862
http://dx.doi.org/10.1016/S0377-2217(97)00221-X
http://dx.doi.org/10.1137/0720042
http://dx.doi.org/10.1080/10556780600605129
http://dx.doi.org/10.1137/S0363012999351097
http://dx.doi.org/10.1080/10556788.2011.651469
http://dx.doi.org/10.1137/S0036142903434047
http://dx.doi.org/10.1177/0278364911406761

Algorithms 2021, 14, 4 17 of 17

41. Junge, O.; Osinga, H. A set oriented approach to global optimal control. ESAIM: Contr. Opt. Calc. Var. 2004, 10, 259–270.
[CrossRef]

42. Karatas, T.; Bullo, F. Randomized searches and nonlinear programming in trajectory planning. In Proceedings of the 40th IEEE
Conference on Decision and Control (Cat. No.01CH37228), Orlando, FL, USA, 4–7 December 2001; Volume 5, pp. 5032–5037.
[CrossRef]

43. Bouffard, P.; Waslander, S. A Hybrid Randomized/Nonlinear Programming Technique For Small Aerial Vehicle Trajectory
Planning in 3D. Plan. Percept. Navig. Intell. Veh. (PPNIV) 2009, 63, 2009.

44. Brunner, M.; Brüggemann, B.; Schulz, D. Hierarchical Rough Terrain Motion Planning using an Optimal Sampling-Based Method.
In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013;
[CrossRef]

45. Techy, L. Optimal navigation in planar time-varying flow: Zermelo’s problem revisited. Intell. Serv. Robot. 2011, 4, 271–283.
[CrossRef]

http://dx.doi.org/10.1051/cocv:2004006
http://dx.doi.org/10.1109/CDC.2001.981008
http://dx.doi.org/10.1109/ICRA.2013.6631372
http://dx.doi.org/10.1007/s11370-011-0092-9

	Introduction
	Materials and Methods
	Free Flight Planning
	Continuous Approach: Optimal Control
	Optimality Conditions
	Collocation Discretization
	Discretization Error
	Newton-KKT Solver
	Time Complexity

	Discrete Approach: Shortest Paths in Airway Networks
	Graph Construction
	Discretization Error
	A* Shortest Path Algorithm
	Time Complexity
	Graph Structure

	DisCOptER Algorithm
	Initialization
	Complexity

	Results
	Test Problems
	Computational Complexity
	Minimum Graph Requirements
	Optimal Crossover Point
	Computational Complexity

	Conclusions
	References

