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Abstract: Existing crowd evacuation guidance systems require the manual design of models and
input parameters, incurring a significant workload and a potential for errors. This paper proposed
an end-to-end intelligent evacuation guidance method based on deep reinforcement learning, and
designed an interactive simulation environment based on the social force model. The agent could
automatically learn a scene model and path planning strategy with only scene images as input, and
directly output dynamic signage information. Aiming to solve the “dimension disaster” phenomenon
of the deep Q network (DQN) algorithm in crowd evacuation, this paper proposed a combined action-
space DQN (CA-DQN) algorithm that grouped Q network output layer nodes according to action
dimensions, which significantly reduced the network complexity and improved system practicality
in complex scenes. In this paper, the evacuation guidance system is defined as a reinforcement
learning agent and implemented by the CA-DQN method, which provides a novel approach for the
evacuation guidance problem. The experiments demonstrate that the proposed method is superior
to the static guidance method, and on par with the manually designed model method.

Keywords: evacuation guidance; crowd simulation; deep Q network; reinforcement learning

1. Introduction

While large-scale shopping malls, office buildings, and other multi-functional build-
ings meet diverse needs, the complexity of buildings has gradually increased. When
disasters such as earthquakes and fires occur, the complex structures of buildings hinder
evacuation and create a new safety threat. It is also difficult for crowds to identify an
optimal escape route, owing to people’s ignorance of the building environment, their
limited vision, and them panicking. Under the influence of herd behavior, survivors are
prone to cause congestion, or even trampling, risking significant additional loss of life [1].
Thus, a method for guiding crowd evacuation using the most effective route is of great
significance for protecting lives and reducing personal and property losses during disasters.

Researchers have developed several crowd evacuation guidance systems based on
dynamic guidance signs [1–4] to assist crowds to evacuate effectively during a disaster.
Such systems can model building scenes, collect real-time information such as the disaster
location and crowd distribution, use path planning algorithms to determine the optimal
escape route, and induce the crowd’s movement through dynamic guide signage, thus
effectively improving crowd escape efficiency in emergencies. However, existing crowd
evacuation guidance systems are inseparable from manual designs based on topological
maps or grid forms and the manual input of model parameters according to the scene’s
characteristics. The manual workload for this process is considerable, and it is easy to
introduce human errors, which may interfere with subsequent calculations for steps such
as path planning.

Therefore, this study proposed an end-to-end crowd evacuation guidance method—
based on deep reinforcement learning algorithms—in response to this problem. An artificial
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intelligence agent was trained, which only takes the building layout as the input, automati-
cally explores and learns the scenario model and path planning method while interacting
with the environment, then discovers the optimal action strategy, and directly outputs dy-
namic signage information. For the actualization of this method, a reinforcement-learning
agent-simulation interactive environment was designed, which is based on a social force
crowd dynamics simulation. To solve the problem of “dimensional disaster” that occurs
when deep Q network (DQN) [5], a typical method in deep reinforcement learning, is
applied to crowd evacuation guidance, this paper proposed a combined action space DQN
method (CA-DQN), which reduced the complexity of the network structure and improved
the algorithm’s practicality in complex architecture scenes.

1.1. Crowd Simulation and Evacuation Guidance

Crowd movement simulation is an essential basis for analyzing and researching crowd
behavior characteristics, self-organization, and other crowd evacuation phenomena [6].
Crowd simulation research can be categorized as macroscopic and microscopic models [7].
Macroscopic models mainly examine the crowd’s overall state of movement, generally
using grid models, such as cellular automata [8]. For example, the data-driven crowd
simulation method calculates the velocity field using the fluid dynamics method and acts
on the continuum model [9], and the lattice-Boltzmann-based method detects the abnormal
movement of crowds [10]. The microscopic models use dynamics methods to simulate the
movement characteristics of each individual. Typical methods include social force models
that introduce subjective human factors [11].

Researchers hope to improve the evacuation efficiency in simulation research, and
model crowd movements that are closer to reality. Therefore, the problem of path planning
in crowd evacuation has attracted attention from researchers. Consequently, researchers
have used the bee colony algorithm of swarm intelligence to improve path searching [12].
Some researchers combined multiple sensor information, and introduced a path selection
method for perceiving disaster locations [13]. The path planning methods in simulation
environments integrate environmental information, and then, calculate an escape path that
maximizes global evacuation efficiency. In actual scenes, the survivors can only grasp the
information around them with their limited vision and experience. Even if the building
monitoring system can master an optimized escape route, the system requires a particular
means of informing the survivors.

To indicate the escape route, emergency escape signs are generally installed in large
buildings. These emergency signs can be divided into static and dynamic guidance
signs [14]. In experiments based on real scenes [15] and simulation experiments based
on social force models [16], static guidance signs played an important positive role in
evacuation efficiency. Unlike static guidance signs that indicate a preset evacuation route,
dynamic guidance signs can display additional guidance according to real-time conditions,
such as the distribution of people in a disaster scene. Studies show that, when a particular
exit is unavailable, dynamic guidance signs can effectively induce people to evacuate from
other exits [17]; moreover, when danger occurs, dynamic signs can guide people to avoid
unsafe routes [18].

Combining the above-mentioned crowd simulation environment, path planning algo-
rithm, and dynamic guidance signs, researchers have developed several crowd evacuation
guidance systems. These systems are based on the building environment model, realize
closed-loop feedback from perceiving scene information and evacuation route planning to
crowd movement guidance, and have practical value [1]. The dynamic guidance method,
which is based on network flow path planning on the topological graph model [2], and
the dynamic evacuation system, which uses simulated cameras to collect crowd density
information and apply a real-time shortest path algorithm [3], are examples. Some studies
have included real buildings and established a parallel emergency evacuation system
framework, achieving great practical significance [4].
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This type of system’s necessary processes include several steps such as inputting
a scene layout, manually constructing a topology map or grid model, inputting model
parameters according to factors such as path capacity, applying path planning algorithms,
and setting dynamic guidance signs. The steps of constructing models and inputting
parameters introduce high manual participation and a significant workload, possibly
causing errors due to human agency and magnifying them in the subsequent steps to
negatively affect the system’s evacuation efficiency.

1.2. Deep Reinforcement Learning

Reinforcement learning [19] is a crucial component in the field of artificial intelligence.
This method learns mapping from the environment state to action by interacting with the
environment and through trial and error, and then, finds the optimal behavioral strategy
to maximize the accumulated reward. Combined with deep neural networks, the deep
reinforcement learning agent can directly use images as input, and internalize feature
extraction and value function estimation in the network structure, which significantly
expands the agent’s perception and decision-making capabilities. The iconic achievements
of deep reinforcement learning include the DQN method, which surpassed the abilities of
human players in Atari video games [5]; AlphaGo [20], which defeated top human players
in Go; and AlphaStar [21], which attained master-level ranking in StarCraft 2 online battles.

The reinforcement learning model [19] is based on the Markov decision process (MDP),
which is described as a four-tuple (S, A, Pa, Ra). S is the set of all states, the state space, and
A is the action space. The state transition function Pa(s, s′) = Pr(st+1 = s′|st = s, at = a)
represents the probability of an agent performing action a in state s and the environment
entering state s′. The reward function Ra(s, s′) represents the agent’s instant reward, when
it executes action a in state s and the environment enters state s′. The agent observes the
environment state st at each discrete time step t, and selects action at = π(st) to act on the
environment according to strategy π : S → A. The environment feeds back reward rt to
the agent and transfers to the next state, st+1. The interaction process between the agent
and environment is shown in Figure 1.

ts
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ta

Environment

Agent

State

Reward

Action

Figure 1. Schematic of reinforcement learning model.

Based on the MDP model of reinforcement learning, the state-action value function is
defined, which can also be called the action-value function:

Qπ(st, at) = Eπ [rt + γrt+1 + γ2rt+2 + . . . ] (1)

It represents the expected cumulative reward obtained after performing action at in
state st according to strategy π, where γ is the reward decay coefficient. With the optimal
strategy π∗, the optimal action-value function Q∗ satisfies the Bellman equation:

Q∗(st, at) = Eπ∗ [rt + γ max
a

Q∗(st+1, a)] (2)
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The DQN method, which was developed by the Google DeepMind team [5], uses
a deep neural network to approximate the action-value function. It is divided into the
current Q network with parameter θ and the target Q network with parameter θ−, with the
current Q network parameters being copied to the target Q network at regular intervals.
DQN uses a greedy strategy, always choosing an action with the maximum Q value in the
current state, and adds a certain probability to select random actions as the exploration
process during training. DQN also uses an experience pool to store and manage samples.

For a sample et = (st, at, rt, st+1) in a time step, there is an estimate of Qπ(st, at) from
Formula (2):

rt + γ max
a

Q(st+1, a; θ−) (3)

which is called the temporal difference (TD) target. Then, the TD error of this sample is
defined as the difference between the TD target and the current value of Q function:

δt = rt + γ max
a

Q(st+1, a; θ−)−Q(st, at; θ) (4)

For a batch of data B = {e1, . . . , et} sampled from the experience pool, the network loss
function is defined as the squared error loss L(θ) = EB(δ

2
t ); then, the error backpropagation

algorithm is applied to update the network parameters. In the process of minimizing the
loss function, the Q function gradually converges to the optimal value, and finally an
optimized strategy π is obtained.

DQN has made breakthroughs in tasks such as mastering Atari video games that use
images as input. Based on DQN, researchers have proposed improvement methods such
as the double DQN (DDQN) method, which uses the current Q network to select the target
action [22], and priority experience replay method [23], which uses the TD error to set the
priority of the sample in the experience pool.

However, the action space output by DQN is discrete, and an output layer node is
used to evaluate each possible action combination. Therefore, when the action dimension
increases, the network complexity will increase exponentially. In the crowd evacuation
guidance problem, the agent uses the display state of dynamic guidance signs as the output
action, and the discrete action of each sign forms an independent action dimension. When
there are numerous dynamic guidance signs in complex architectural scenes, the output
layer of the DQN will become excessively large for the algorithm to actualize.

2. Methods
2.1. Reinforcement Learning Model for Crowd Evacuation Guidance

In the crowd evacuation guidance problem, the evacuation guidance system is re-
garded as an agent, and the environment, with which the agent interacts, includes the actual
building scene and people moving within the building. An image is used to represent
the architectural scene. Various sensors, such as cameras, collect the crowd’s movement
state and draw this data into the scene image. As shown in Figure 2, The scene image
now contains the information that is required in the current environment, which is defined
as the environment state st ∈ S of the MDP. The evacuation guidance system displays
signals through dynamic guidance signs to guide and direct crowd movement. Therefore,
the agent action at ∈ A corresponds to the guide sign signal, at is a discrete vector, each
dimension corresponds to a guide sign, and the component is a sign display state (left
or right). Owing to the complexity of the environment and crowd movement, the state
transition function Pa(s, s′) is unknown; hence, the agent must learn and adapt during
the interaction process. The design of the reward function determines the optimization
direction and learning purpose of the agent. In the crowd evacuation problem, the reward
function should be designed according to the number of people who successfully evacuated
or the time required for evacuation. This paper defines rt = −1, which indicates that a fixed
penalty is given at each time step. The agent’s learning goal is to minimize the cumulative
penalty, that is, the shortest evacuation time for the entire crowd.
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Figure 2. Reinforcement learning model for evacuation guidance.

The training process for reinforcement learning agents requires continuous interaction
with the environment, as well as learning through exploration and trial and error. The
required interaction scale is large, generally over tens of thousands of cycles and millions
of time steps. Moreover, the agent’s lack of knowledge in the initial training period may
cause more potential dangers. Therefore, the reinforcement learning agent used for the
intelligent evacuation guidance system must be trained in a simulation environment, and
deployed in the actual building after the training is completed.

The evacuation guidance system agent explores and learns through various inter-
actions with the simulation environment, and finally obtains an approximate optimized
strategy π(s). There is no need to manually design the building route topology graph
or grid model during the learning process. The agent can autonomously discover and
optimize the guidance strategy, and the design of additional intermediate algorithms, such
as path planning, is not required. In practical applications, the building’s map is inputted
into the simulation system, and the reinforcement learning agent is pre-trained through
simulation to obtain the optimal strategy in this scene. After being deployed to the actual
building, the sensors collect crowd movement information at each moment using additional
computer vision algorithms, and draw an image combined with the building’s map as the
agent’s observation state input. The agent calculates the action vector according to the
previously optimized strategy, and the dynamic guidance signs display the corresponding
signal to realize practical guidance for the crowd’s evacuation.

2.2. Combined Action Space DQN

In the network structure, DQN uses a multi-layer convolutional neural network to pro-
cess the image input, and then, connects a multi-layer fully connected neural network with
each neuron in the output layer, corresponding to a possible combination of discrete actions.
For the components of the action, the total action space is the Cartesian product of each
dimension’s action space. When the action space has n dimensions and each dimension
has m discrete actions, the DQN network needs mn output layer nodes to correspond to
value Q(s, a) of different actions. Therefore, as the number of action dimensions increases,
the DQN network structure’s complexity increases exponentially, making the algorithm
unrealizable. Meanwhile, an excessive number of output layers will also reduce sample
utilization and the difficulty in updating network parameters. This phenomenon is called
the “dimensional disaster” of DQN.

When applying crowd evacuation guidance, the agent action is defined as the guide
signs’ display states. Even if each guide sign has only two states, left and right, for n guide
flags, the total action space capacity will reach as much as 2n. To solve this problem, the
CA-DQN was proposed. Since the guide signs’ information corresponding to the action
at−1 in the previous time step has been included in the scene image st, and the signs do not
change frequently, at ≈ at−1. Therefore, it can be approximately considered that under the
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condition of observation st, the strategy of an action dimension is independent of other
action dimensions, and an independent neural network structure can be used. As shown
in Figure 3, for independent action dimensions, each dimension corresponds to a group of
nodes in the output layer of the Q function network, and each group contains all discrete
actions in this dimension. This change can be seen as setting the value function Qd(s, a(d); θ)
for each action dimension d, and sharing a set of network parameters. At this time, the
number of nodes in the network’s output layer is the sum of the number of discrete actions
in each dimension, and the growth rate of the number of output layer nodes decreases
from exponential growth to linear growth. For example, the number of output layer nodes
required for n guiding signs is 2n.

3×3

4

32

64
64

Input
128

64

32

Convolution Dense Output

… …

20
Action

10

State ts

ta

4×4
8×8

Figure 3. Network structure of combined action-space deep Q network (CA-DQN).

In CA-DQN, the agent’s action

at = (a(1)t , a(2)t , . . . , a(D)
t ) (5)

is a D-dimensional combined action vector. For each dimension d, the agent uses a greedy
strategy to select the actions.

a(d)t = arg max
a

Qd(st, a; θ) (6)

Referring to Formula (4), for a sample et = (st, at, rt, st+1), this paper define the TD
error in each dimension:

δ
(d)
t = rt + γ max

a
Qd(st+1, a; θ−)−Qd(st, a(d)t ; θ) (7)

Combined with the DDQN algorithm that was proposed in [22] to select actions at time
t + 1 with the current Q network to avoid overestimation, the TD error is further defined
as follows:

δ
(d)
t = rt + γQd(st+1, arg max

a
Qd(st+1, a; θ); θ−)−Qd(st, a(d)t ; θ) (8)

Then, for a set of samples B = {e1, . . . , et} from the experience pool, the loss function of
the neural network is defined as the arithmetic mean of the squared error loss.

L(θ) = EB

[
1
D ∑

d

(
δ
(d)
t

)2
]

(9)
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According to the loss Formula (9), the neural network is trained with the error back-
propagation algorithm. Subsequently, for each sample, an output layer node is selected
for each dimension of the action, which participates in the calculation of the TD error and
backpropagation of network error, such that there are a total of D output layer nodes that
can be updated. Compared with each sample in DQN that can only update one output
layer node, CA-DQN improved the utilization efficiency of the samples.

2.3. Priority Experience Playback of CA-DQN

DQN randomly samples from the experience pool, regardless of the sample differ-
ences, and has low sample utilization efficiency. Using the preferred experience playback
method [23], with the sample TD error defined by Formula (4), the sampling priority is

pt = (|δt|+ ε)α (10)

where ε and α are constants. A sample with a more significant absolute value of the TD error
implies that it contains more useful information and should be given a higher sampling
priority, which can improve sample utilization and training efficiency.

The TD error of a sample in CA-DQN is defined by Formula (8), which is a vector

δt = (δ
(1)
t , . . . , δ

(d)
t ) (11)

When the preferred experience playback method is applied, the sample priority can
be defined as the maximum absolute TD error of each dimension (called the CA-DQN-max
method).

pt =

(
max

d

∣∣∣δ(d)t

∣∣∣+ ε

)α

(12)

The maximum value can highlight samples with a greater value for training in a particular
action dimension. However, the dimension with the max TD error may cover up other
dimensions, thereby decreasing the training stability and efficiency.

The better way is to define sample priority as the mean absolute value of the TD error
of each dimension (called the CA-DQN-mean method).

pt =

(
1
D ∑

d

∣∣∣δ(d)t

∣∣∣+ ε

)α

(13)

The mean value collects information on the sample importance from all dimensions,
and calculates a more accurate priority under the influence of random interference. Con-
sequently, it helps maintain the training process’s stability and obtain a more effective
training result.

3. Results
3.1. Experiment Design and Implementation

In this study, a crowd dynamics simulation system based on the social force model [3],
is used as the agent’s interactive environment. A typical multi-room, dual-exit indoor
scene is constructed, in which the guidance signs are marked as green arrows, and the
exits are marked as green rectangles. The simulation system takes the display states of
the evacuation guidance signs as input. In the simulation, the individuals first determine
a subjective driving force direction based on the nearby guidance signs and the distance
to each exit. When the simulated individuals do not see the evacuation guidance signs,
they choose the closest exit and escape according to the statically shortest route. When the
individuals notice the evacuation guidance sign, they escape in the direction indicated by
the sign, unless they are close to an exit, in which case they may ignore the sign. When
congestion occurs, the individual’s speed is limited, and the subjective driving force that
tends to get rid of congestion is added. Then, the dynamic simulation calculates the speed
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and displacement of the individual movement, simulating the collision between people
and people, and people and walls. Individuals within the exit area are deemed to have
successfully escaped. At the end of a simulation step, the crowd’s positions and the signs’
states are painted in a scene image as output, which is passed to the reinforcement learning
agent as input to its neural network. The simulation system is based on C++ and the Qt
library.

As shown in Figure 4, the simulation scene’s size is 29.2 m× 19.7 m, and the size of the
floor map is 499× 337 pixels. The scene contains two exits and six rooms, where the upper
and lower channels connect the rooms and exits. Each channel is set to have five dynamic
guidance signs, and the signs can indicate one of two directions. The number of people is
200, and their initial positions are randomly distributed in a circular range; the range of the
distribution center and radius is x ∈ (100, 140), y ∈ (60, 280), and r ∈ (100, 200), and the
maximum individual movement speed is 5 m/s. Each time step of the simulation system
dynamics calculation is 40 ms, and the upper limit of the simulation time is 100 s.

Figure 4. Simulation environment.

The CA-DQN method is implemented based on Python, the TensorFlow platform, and
OpenAI/baseline library. In each time step of the reinforcement learning agent, the sim-
ulation system first performs a five-step calculation, simulating the crowd’s movement
within 200 ms. The last four images obtained are down-sampled into 1/2-size grayscale
images, and combined into a four-channel image of 249× 168 pixels, which is input to the
agent’s Q network as state st. The Q network structure is shown in Figure 3, comprising a
three-layer convolutional neural network and three-layer fully connected neural network.
The 20 neurons in the output layer are divided into ten groups. From each group, the larger
output value is selected as the display signal for the dynamic guide sign. By combining
them, a ten-dimensional discrete output vector is formed as agent action at. at acts on
the simulation system to change the direction displayed by the ten guide signs, thereby
directing the crowd’s movement. At this time, the interaction between the agent and
simulation environment completes a cycle. The agent’s reward for each step is fixed at −1,
implying that it obtains a reward of −5 per second.

The agent’s training goal is to reduce the overall evacuation time. For example,
the exits’ congestion and the imbalanced exit utilization lead to longer evacuation time and
lower rewards, giving the agent negative feedback. The agent will learn how to avoid this
situation and find the optimal strategy through trial and error.

Among the training parameters, the batch size is 64, the learning rate is 10−5, the total
time step is 107, the experience pool’s sample size is 105, and the current Q network
parameters are copied to the target Q network every 2× 104 steps. The experimental
hardware platform is an AMD Threadripper 2990WX CPU, NVIDIA RTX 2080Ti GPU, and
128 GB memory.



Algorithms 2021, 14, 26 9 of 13

3.2. Experimental Results and Analysis

As the original DQN method would require 210 = 1024 output layer nodes for
the experiments conducted herein, compared with the 20 nodes for CA-DQN, the DQN
network is too large to implement under existing conditions. Therefore, in this study, the
chosen method is based on static guidance signs, an evacuation guidance algorithm based
on topology map modeling, and dynamic Dijkstra shortest path method [3] for comparison.
The static guidance signs indicate the nearest exit, regardless of the real-time distribution of
the crowd. Because the individuals in this simulation environment escape to the nearest exit
if they cannot find a guide sign, the static guide sign’s role in this simulation environment
is similar to having no guide sign. The dynamic Dijkstra shortest path method requires
experts to manually build a topology map model based on its channel structure. They have
to set up multiple virtual camera nodes, count the crowd density on different paths, adjust
the real-time weights of each edge, and use the Dijkstra algorithm for path planning to
achieve effective crowd evacuation.

The agent only needs to be previously trained once for a scene, and the training
process takes about three days. The training curve in Figure 5 shows that the agent reaches
the optimal strategy after approximately 30,000 training periods, and when the number
of interactions between the agent and simulation environment is approximately 6.4× 106

time steps. When the agent executes the optimized strategy obtained from training, for a
200 ms step, the execution of strategy takes 2.4 ms, and the crowd simulation takes 14.3 ms.
The processing speed can meet the real-time requirement of actual deployment.

Figure 5. Training curve of the agent.

The CA-DQN-mean method is more stable in the later stage of training; moreover,
the training effect of the CA-DQN-mean method is better than that of the CA-DQN-max
method. This result indicates that under the influence of random interference, the CA-DQN-
mean method can calculate the sample importance more accurately with the information
of all the dimensions. Consequently, it is more appropriate to define the sample priority as
the average of absolute TD errors in each dimension.

As shown in Table 1, a 100-cycle evacuation simulation was performed for different
evacuation methods using new random crowd distribution parameters. The bold numbers
indicate the best period reward and the shortest evacuation time. The average period
reward of the agent’s optimal strategy was −158.25, implying that the average evacuation
time was 31.65 s, which was better than the 41.35 s obtained using static guidance signs
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and 32.18 s obtained using the dynamic Dijkstra shortest path method. This demonstrates
that the intelligent evacuation guidance agent based on CA-DQN can effectively guide an
evacuation.

Table 1. Comparison of evacuation times using different methods.

Method Period Reward Evacuation Time (s)

Static sign −206.77 41.35
Dynamic shortest path −160.92 32.18

CA-DQN-mean −158.25 31.65
CA-DQN-max −160.40 32.08

Figure 6 shows a typical evacuation process. Figure 6a is the crowd’s initial distribu-
tion, which is primarily in the four rooms on the left. Without dynamic guidance, the static
evacuation strategy with the shortest distance to the exit will cause congestion at the exit
on the left, and the right exit will not be used effectively. In Figure 6b, the agent perceives
the crowd’s distribution in the scene image with CNN and leads some of the crowd in
the upper left room to the left exit and the rest of the crowd to the right exit. Notice that
the side signs for the lower channel lead to an unexpected direction. This phenomenon
is because when survivors are very close to the exit in the simulation environment, they
will ignore the signs and go directly to the exit. Such signs have little influence on the
evacuation efficiency, and it is hard to obtain feedback for training. For the same reason,
the left side signs in Figure 6c are mostly ignored.

Figure 6. Six moments in a typical evacuation process.
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In Figure 6d,e, the congestion at the left exit has been relieved. The right exit is
expected to have more people being evacuated; consequently, the agent will lead the
remaining people in the lower-left area to the left exit. Notice the first and third signs in the
upper channel of Figure 6e seem to be unexpected. This phenomenon is because jamming
will slow down the crowd in the simulation environment. The agent learned this feature
and tries to delay part of the crowd to avoid exit congestion. Finally, in Figure 6f, the
crowd is evacuated from both sides of the exit simultaneously, indicating that the crowd
evacuation guide agent has maximized the crowd evacuation efficiency. The signs of empty
areas in Figure 6f will not affect the evacuation efficiency, and the agent cannot learn from
feedback; therefore, the signs in these areas are uncertain.

The number of people initialized in the simulation scene was changed, and 100 cycles
of evacuation simulation were run. A comparison of the evacuation effects of different
methods is shown in Figure 7. When the number of people was small, each channel could
remain unobstructed, and the static guidance method was effective. When the number of
people increased, the static guidance method was affected more, while CA-DQN and the
dynamic shortest path method avoided crowd congestion. When the number of people
increased to more than 80, the three dynamic methods’ evacuation effect was better than
the static method. The CA-DQN-mean method, which used the average value of TD errors
in each dimension to define the sample priority according to Formula (13), performed
better than the dynamic shortest path method. The effect of the CA-DQN-max method,
which was defined by Formula (12), was equivalent to that of the dynamic Dijkstra shortest
path method.

Figure 7. Period reward with varying number of humans.

The experimental results show that, compared with static signs that cannot perceive
crowd distribution information, the proposed CA-DQN reinforcement-learning-based
crowd evacuation guidance method can dynamically adjust the display signals of the
guidance signs, and effectively improve the efficiency of crowd evacuation. Compared
with the dynamic Dijkstra shortest path method that is based on topological map modeling,
the proposed method demonstrated higher evacuation guidance efficiency, while avoiding
the workload and potential manual errors of artificial topology map construction.

4. Conclusions

This study analyzed crowd evacuation guidance using dynamic guidance signs. This
paper proposed a crowd evacuation method based on combined action space deep rein-
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forcement learning to overcome the disadvantages of existing methods. Previous methods
required the manual design of topological graph models or grid models and independent
path planning algorithms, resulting in a large manual workload and easily introducing
human errors. Through end-to-end deep learning, the agent explores and learns building
structure and path planning methods on its own during the training process, and automat-
ically corrects cognitive errors through environmental feedback, thereby identifying the
optimal evacuation guidance strategy.

To overcome the “dimension disaster” problem caused by the number of output
guidance signs when the typical DQN method in deep reinforcement learning is applied
to crowd evacuation problems, this paper proposed the CA-DQN method. It reduces the
network structure complexity of the output action dimension from exponential growth to
linear growth, and improves the usability of reinforcement learning methods in complex
scenarios and large-scale crowd evacuation problems. According to the different definitions
of sample priority, the CA-DQN method is divided into CA-DQN-max and CA-DQN-mean
methods.

The experiments on crowd simulation based on the social force model showed that the
proposed method effectively improved the crowd evacuation efficiency, and reduced the
evacuation time compared with static guidance signs. Moreover, the results of the proposed
method are comparable to those of the dynamic shortest path method based on manual
modeling. Between the CA-DQN-max and CA-DQN-mean methods, CA-DQN-mean
showed advantages in training stability and result strategy’s efficiency, which indicates
that it is more appropriate to define the sample priority as the average of absolute TD
errors in each dimension.

Future work will further improve the training efficiency of reinforcement learning
agents in complex scenarios, including more rooms, multi-layer building scenes, and
obstacles. Moreover, restrictions will be imposed on the frequency of output signal changes,
making it easier to understand in real scenarios.
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