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Abstract: Extreme learning machine (ELM) is a popular randomization-based learning algorithm that
provides a fast solution for many regression and classification problems. In this article, we present a
method based on ELM for solving the spectral data analysis problem, which essentially is a class of
inverse problems. It requires determining the structural parameters of a physical sample from the
given spectroscopic curves. We proposed that the unknown target inverse function is approximated
by an ELM through adding a linear neuron to correct the localized effect aroused by Gaussian
basis functions. Unlike the conventional methods involving intensive numerical computations,
under the new conceptual framework, the task of performing spectral data analysis becomes a
learning task from data. As spectral data are typical high-dimensional data, the dimensionality
reduction technique of principal component analysis (PCA) is applied to reduce the dimension of
the dataset to ensure convergence. The proposed conceptual framework is illustrated using a set
of simulated Rutherford backscattering spectra. The results have shown the proposed method can
achieve prediction inaccuracies of less than 1%, which outperform the predictions from the multi-
layer perceptron and numerical-based techniques. The presented method could be implemented as
application software for real-time spectral data analysis by integrating it into a spectroscopic data
collection system.

Keywords: extreme learning machine; spectral data analysis; PCA; backscattering spectra

1. Introduction

Spectroscopy is one of the primary exploratory tools that have been used to study the
micro-world, investigating the physical structure of substances at the atomic and molecular
scale, and characterizing the properties of novel materials, as the physical structure and
properties of substances at the micro-world scale cannot be directly measured or observed
by any instruments. Through spectroscopic technology, it is possible to determine the
key properties of matter such as compositions and electronic structures at the nano-level.
There are some different spectroscopic techniques that can be used to reveal different
properties and characteristics of materials. So far, several spectroscopic methods, like
emission, absorption, Raman, and backscattering, etc., have been well developed. In this
article, we mainly discuss the data analysis problem of the Rutherford backscattering
spectroscopy (RBS). RBS is a physical process in which a beam of high energy incident
ions is projected to a thin solid sample to be analyzed. The backscattering spectrum of
the incident particles is recorded, which essentially is a noisy curve of the backscattering
particle yield against the energy of scattered ions or the device channels. By a quantitative
analysis of the RBS spectra, the elementary compositions and their depth profiles of
substances are extracted. Conventionally, the problem of RBS spectral data analysis has
been viewed as a numerical fitting problem, assisting with complementary knowledge in
advanced physics. The solution by a numerical fitting procedure, generally starts with
an initial guess on the sample structural information, and then calculates the theoretical
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spectral curve from the backscattering physics. The sum of mean-squared error between the
theoretical spectra and measured spectroscopic data is minimized in an iteration process
by a least-square algorithm. In the iteration process, the measured spectra and theoretical
spectra are recursively compared, and the structural parameters are adjusted in the running
computational program till a convincing match or a pre-set error value is achieved. The
conventional numerical method has two major issues—(i) The convergence of minimizing
error process is not guaranteed; and (ii) It highly relies on the analyst’s empirical skills and
advanced physics knowledge.

The emergence of new algorithms in machine learning in decades, has inspired
researchers’ passions and interests to attempt novel solutions based on optimization algo-
rithms or intelligent techniques, such as simulated annealing, support vector machines,
and artificial neural networks. Barradas and co-authors [1] proposed to apply the com-
binatorial optimization simulated annealing (SA) algorithm [2–4] to the analysis of RBS
spectra. Their analysis method could be designed in a fully automatic manner, without
human intervention on the parameter adjustments in the analysis process. The proposed
method was tested on a few complicated physical samples, such as iron-cobalt silicide and
SiOF spectra, and the sample structural parameters were correctly determined in terms of
a quantitative way. In addition to the SA algorithm, the neural computing-based method
was also considered to solve specific problems in RBS spectral data analysis. Barradas
et al. [5–7] developed a multilayer perceptron (MLP) model with the spectrum as input
and the sample structural parameters as output for the quantitative analysis of RBS data.
The developed MLP model was strictly trained with thousands of theoretically generated
spectra of the samples that have the known nominal structures. Then the well-trained
MLP acquired a learning capability to interpret the spectrum of a given sample, for which
the physical structure was unknown. Their numerical results showed the developed
MLP model could quantitatively predict the sample structure with reasonable accuracies,
provided a sufficient amount of training data. These investigations appear to be a great
advancement toward developing a relatively easy data-driven analysis approach, without
much expert knowledge involved.

However, it should mention that in Barradas’ method of using the neural network
model, each RBS spectrum with up to several hundred data points was used as a single
input, without a necessary dimensionality reduction. Such a method inevitably requires
a huge amount of training data and a very long training time, which influences the con-
vergence. This is a gap to be filled in our study by using a data dimensionality reduction
technique.

We should emphasize that neural network models are not limited to solving data
analysis problems in the domain of natural science. More commonly, neural networks
and other methods of machine learning have been extensively applied to a wide range of
disciplines, such as system identification and control [8], pattern recognition and classi-
fication [9], medical diagnosis [10–12], finance, and many others. The successes of using
machine learning methods have been proven in these works, with significant improve-
ment of classification and prediction accuracies. As a variation of single-hidden layer
feed-forward neural network (SLFN), extreme learning machine (ELM) is a special SLFN
network where input weights and biases of the hidden layer are randomly generated, and
the output weights are analytically determined from input data [13]. Due to its fast learning
capability and excellent generation performance, a large number of applications of ELM
have been carried out in the past fifteen years [14–18]. There are several works [19–21]
that apply ELMs to make classifications on food or wine associated with spectroscopic
data or relevant feature selections. Zheng et al. [19,20] presented a study based on the
combination of spectroscopy and ELM algorithm for food classification. Four benchmark
spectroscopic datasets [22] involving food samples including coffee, olive oil, meat, and
fruit, with corresponding measured near-mid infrared spectroscopy were used in their
investigations. They also compared the experimental results from the ELM algorithm
with those from other methods like back-propagation artificial neural networks (BP-ANN),
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k-nearest neighbor (KNN), and support vector machines (SVM). Their study shows the
classification accuracies of ELM can be achievable up to 100%, 97.78%, 97.35%, and 95.05%
for coffee, meat, olive oil, and fruit, respectively, which improved about 6% compared to
other methods in addition to faster classification speed.

More recently, ELMs have appeared in a deep structure for investigating specific
pattern recognition or object classification problems [23–25]. Different from the three-
layer architecture of a single ELM, the multi-layered deep ELM can be constructed by
stacking a series of standard ELM models with or without constraints. Khan et al. [23]
designed and implemented a neural classifier based on deep ELMs for fabric weave
pattern and yarn colour recognition and classification. They have reported that the deep
ELM classifier significantly improved the classification error rates and achieved better
recognition accuracy up to 97.5% [23] for complex weave patterns, whereas the recognition
accuracies from other methods are between 80% and 84% for the same problem.

In this study, a universal method that incorporates neural networks and the dimen-
sionality reduction technique has been proposed to explore a new approach for spectral
data analysis. Our objectives include firstly transforming the complicated numerical com-
putation problem into a multivariate regression problem associated with a learning process
through datasets, secondly reducing data dimensionality in the input space for easier
training and ensuring convergency, and thirdly utilizing extreme learning machines to
establish a mapping mechanism using the reduced data components as input to produce
an accurate prediction of the structural parameter information. This work contributes to
a newly proposed method transforming conventional numerical analysis based problem
into a statistical learning problem through data. The proposed method is a general-use
approach for any spectra-oriented applications. It has been demonstrated by a set of RBS
data with producing accurate predictions of the physical sample structures. This method
significantly reduces the reliance on an initial guess and user intervention in the process of
analyzing spectral data, which greatly alleviates the burden of analysts. It may be applica-
ble for spectral analysis applications involving high volumes of data, even for automating
the analyzing process in collecting real-time experimental spectra if a suitable interface
between the spectrometer and application software is implemented properly.

The organization of this article is as follows: In Section 2, the problem of spectral data
analysis is defined, and the proposed method is described. Section 3 discusses computer
experiments and results. The conclusions of our studies and future work are presented in
Section 4.

2. Materials and Methods
2.1. Spectral Data Analysis and Multivariate Regression Problems

As discussed in the last section, RBS is a backscattering physical process. The re-
lationship between cause and effect of a physical process can be described in terms of
mathematical problems—the forward problem and the inverse problem. The forward
problem starts with causes and gets the outcome by calculating the effects. On the contrary,
the inverse problem is to give information on the outcome of a physical phenomenon
or process, but it requires inferring the causes quantitatively. Parameters of a physical
process are required to be defined in order to describe the “causes” in a quantitative man-
ner. Forward problems in practice often can be solved satisfactorily by physics principles
and computationally mathematical models if the relevant process and mechanism are
well understood. However inverse problems usually are extremely difficult, since they
generally are ill-posed and the solutions are non-unique [26,27]. There may exist a large
solution space with many possible solutions that match the observed outcome. In certain
circumstances, even a unique solution could be found to be accurate for a set of data, but it
could be unstable to the perturbation of noise in the other observed dataset.

The problem of spectral data analysis can be defined as an inverse problem, because it
gives a set of spectral data or measured spectroscopic curves and requires acquiring the
cause—the values of the physical parameters governing the corresponding physical process
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by a computational method. Solving the inverse problems that are arisen in spectroscopy
has significant importance because it is an effective means to secure the accurate values
of the physical parameters related to the process. The diagram in Figure 1 illustrates the
backscattering physical process and the formal definition of the inverse problem in the RBS
data analysis.
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Figure 1. Rutherford backscattering spectroscopy (RBS) backscattering process and the definition of
the inverse problem.

It is obvious that the problem of calculating an RBS spectrum itself is a forward
problem that computes the backscattering yield curve against energies or channels based
on Rutherford’s theory for a given sample structure. The backscattering yield can be
written as a multiple integral form as below [28],

Ri(E) =
x+δx∫
x

dx′Q
∫

dΩ
dσi(E(x′), θ)

dΩ
ni(x′)

ntotal(x′)
× δE

cos α

1
ε(E(x′))

× ∏
j=layers

ε j(EI)

ε j(EO)
(1)

y(E) = ∑
i

∞∫
0

Ri(E′)G(E′, σ)dE′ + ξ (2)

where E is incident ion energy, Q, θ, and others are the related physical quantities; and ξ is
the system noise.

In a compact form, the backscattering spectrum can be abstracted as a parametric
function h(E,p)

y(E) = h(E, p) + ξ (3)

where p represents the structural information parameter that describes the property of a
physical sample to be analyzed. More specifically, for most RBS analysis problems, the
structural parameter p can be flattened and written as a vector

p = (c1, c2, . . . , cm, t1, t2, . . . , tk)
T (4)
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where ci and tj (i = 1, 2, . . . , m; j = 1, 2, . . . , k) are atomic concentrations and thickness
parameters of the sample, with total m compositions and k layers, and T refers to the
transpose operation.

The actual task of RBS data analysis is that given a backscattering spectrum y(E), it
requires securing the sample structural parameter p (i.e., compositional depth profile). This
can be formulated as an inversion of Equation (3), which can be expressed into

p = h−1(y(E)) (5)

where h−1(y) is an inversion function and the noise is combined in the spectrum y(E). On
the contrary to the forward problem, there does not exist the analytical expression on the
inversion function h−1(y). Despite the ill-posed property of the inverse problems, in terms
of statistical learning perspective, we can transform the inverse problem as a multivariate
regression problem as it has a lot of observation data from spectroscopy measurements for
a statistical learning process. This can be re-depicted as the following form,

(c1, c2, . . . cm, t1, t2, . . . tk)
T
i = f model

i (y(E1), y(E2), . . . . . . y(En)) (6)

i = 1, 2, . . . , N

where f model(.) represents a multivariate nonlinear regression model with n explanatory
variables which are the discretized spectral intensity values at energy positions El (l = 1, 2,
. . . , n) with N observations. Thus a tough inverse problem is converted as a regression
problem. As the neural network technique has been successfully applied to resolve many
regression and classification problems, we proposed using a special class neural network
named extreme learning machine (ELM) to approximate the nonlinear regression function
where the spectrum is treated as input via n nodes and the structural parameter p vector is
the output, and the built network constitutes a mathematical realization of the multivariate
nonlinear regression model f i

model(y(E1), y(E2), . . . , y(En)), i = 1, 2, . . . , n. Through an
efficient training and validation from the existing spectroscopic data with known structures,
the unknown structural parameter for a new sample can be determined by a generalization
process.

2.2. Solution by an Enhanced ELM

In statistical learning theory, an unknown nonlinear regression function can be ap-
proximated by a set of basis function expansions. This can be analytically expressed
into [29,30]

y(x, λ) =
M

∑
i=1

λiβi(x) (7)

where βi(x) is known as basis functions, and λi are expansion coefficients. Broomhead
and Lowe [31] extended this concept by restricting the basis functions to the radial basis
functions and applied it to resolve the multi-dimensional interpolation problems, in which
each basis function was treated as an activation function in the node of the single hidden
layer network, and therefore the Equation (7) is equivalent to a radial basis function (RBF)
network with M neurons in the hidden layer. Due to its excellent analytical properties,
the RBF network can approximate any continuous function to an arbitrary accuracy if a
sufficiently large number of hidden nodes is provided [32]. The idea was further extended
by allowing input weights and parameters of hidden layer nodes can be randomly assigned,
which is called extreme learning machine (ELM), proposed by Huang et al. [13]. By
denoting the output weight vector as w and the activation function as ϕ(x), the output
function of the ELM can be expressed as

y(x) =
L

∑
i=1

wi ϕi(x) =
L

∑
i=1

wi ϕ(x, ai, bi) (8)
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where a and b are the input weight vector and hidden layer node activation function
parameters, with L hidden layer nodes. In practical applications, the Gaussian function
is often chosen as the activation function. The Gaussian function is a typical localized
function that decays quickly from the locations nearby its centers. As our previous studies
indicated [33,34], by adding a linear neuron, it would efficiently reduce the localized
effect and therefore improve the modeling accuracy. With the additional linear term, the
enhanced version ELM output function can be written as [33]

y(x) =
L

∑
i=1

wi ϕi(x) =
L

∑
i=1

wi ϕ(x, ai, bi) + κx + µ (9)

Considering N pair training sample data {x,t}N
i=1, substituting them into Equation (9),

we obtain the linear equation system

L

∑
i=1

wi ϕ(xj, ai, bi) + κxj + µ = tj j = 1, 2, . . . , n (10)

The sets of equations can be re-written as a matrix form,

wTΦ = t (11)

where

Φ =


ϕ(x1, a1, b1) ϕ(x1, a2, b2) ϕ(x1, aL, bL) x1 1

. . . . . . . . . . . .

. . . . . . . . . . . .
ϕ(xN , a1, b1) ϕ(xN , a2, b2) ϕ(xN , aL, bL) xN 1

 (12)

w = [w1, w2, . . . , wL, κ, µ]T

t = [t1, t2, . . . tN ]
T

The optimal solution of Equation (11) on the output weight is [13]

w = (ΦTΦ−1)ΦTt =Φ+t (13)

where Φ+ is called Moore–Penrose generalized inverse matrix [35]. With the Gaussian
function as the activation function, the matrix elements of Equation (12) have the following
form

ϕ(x, ai, bi) = e−bi ||x−ai ||2 (14)

Figure 2 shows the architecture of the ELM for the solution scheme of the current prob-
lem. The ELM network obtains the output weight matrices by computing a pseudoinverse
in the Equation (13). Unlike an MLP, ELM does not need to compute stochastic gradient
descents iteratively.
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2.3. Principal Component Analysis and Dimensionality Reduction

Spectral data are typically high-dimensional data containing many noises and back-
ground signal. Each spectrum is a curve that could have up to a few thousand data points.
However, they also may contain a lot of redundancy and irrelevant information in such a
way that only a small part of data actually represents the useful information—the “signal”
or “feature”, whereas others are simply related to noise and background. Dimensionality
reduction is essential in neural computing since the high-dimensional data as input often
result in overfitting and incorrect outcomes.

We use a quantitatively rigorous method—principal component analysis (PCA) [36]
—to achieve the dimensional reduction on our spectroscopic dataset. PCA projects high-
dimensional data into a lower-dimensional space in such a way that a sum-squared error
is optimized. This can be performed by a linear orthogonal transformation, in which the
original data vectors are transformed into a new coordinate system in such a way that the
largest variance by a projection of the dataset comes to lie at the first new coordinate axis
knowns as the first component, the second-largest variance is on the second coordinate axis
which is perpendicular to the first component, and so on. Mathematically, the projections
of the data vector x can be represented by [36,37]

oj = xTqj j = 1, 2, . . . , m (15)

where qj = argmax
a

(var(Xa)), under the constraints that ||qj|| = 1, X ∈ RN×m is the

data matrix consisting of n cases observed with m variables, and oj are called the principal
components. The qj can be realized by solving the eigenvalue equation of the covariance
matrix cov(Xqi, Xqj) = 0. By discarding those terms that have small variances, we retain
the largest l principal components

oj = xTqj j = 1, 2, . . . , l (16)

Thus, the number of the dimension of data vector x is reduced from m to l, with losing
some information with minor importance. As an illustrative example, it is interesting to
examine a well-known benchmark dataset in the regression problem—the Boston Housing
dataset [38], which contains thirteen feature variables and one target variable, with 506 ob-
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servations. By using PCA, thirteen explanatory variables can be reduced to 3 variables
while it retains 99.01% of all variability.

3. Experiment

The proposed method and theoretical framework for solving the inverse problem in
the spectral data analysis can be verified by numerical experiments. We have constructed
a set of training and test data by utilizing a rigorous RBS spectrum simulation software
package—SIMNRA 7.02 [39]. SIMNRA is a de facto standard simulation software for
generating RBS spectra. It not only treats the basic scattering phenomena but also takes
into account the subtle features in spectra that are arisen from complex interactions such
as energy straggling effect, plural and multiple scattering, resonance, and surface rough-
ness [39,40]. As an illustrative example, we consider a typical physical sample consisting
of a film SnxS0.87−xO0.13 on the silicon substrate, where the structural parameters in this
case include the thickness of the sample and concentration of Sn and S. The ion species
in the simulated RBS spectra are alpha particles with the incident energy 2 MeV at a
backscattering angle 165◦. This is a typical experimental setting in RBS analysis. For the
training purpose, the thickness and concentrations are randomly generated within the
range between 400 × 1015 atoms/cm2 and 4000 × 1015 atoms/cm2, and between 0.32 and
0.55, respectively. The full data set used for the computer experiments is composed of
a series of spectral curves (input vector), and the corresponding structural parameters
(output vector). To make the synthetic spectra close to the realistic ones, Gaussian noises
were added to the simulated smooth spectra. Figure 3a,b illustrate two typical simulation
spectral curves and their corresponding structural parameters. Within the specific ranges
of the sample thickness and concentrations, a total of 482 spectra are generated by running
SIMNRA7.02. 75% of the full data is for training, and the remaining data is used for testing.
It must mention that the pre-processing of spectroscopic data must be carried out since they
vary in the different order of magnitudes. The pre-processing is made by applying a simple
transformation zi = log10(zi + 10), which normalizes the spectral yield between 1 and 5.
The spectral data are further compressed by the PAC method as described in Section 2.3,
which produces a significant dimensional reduction. In this application, a spectral curve
with 400 points, undergoing the dimensionality reduction by PCA, retains seven principal
components (PCs) which sufficiently accounts for 99% variances in the dataset. Thus these
principal components are selected as the new input variables for the constructed ELM
network.
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Figure 3. Two representative RBS spectra in the training dataset and their corresponding structural
parameters of the physical samples (a) t = 3641.19 × 1015 atoms/cm2, c1 = 0.5105, c2 = 0.3595 (b)
t = 1361.46 × 1015 atoms/cm2, c1 = 0.4417, c2 = 0.4283.

The numerical experiments are conducted under the MATLAB platform. The number
of hidden layer node L is an adjustable parameter in the experiments. Some trials with
different values of L have been tested. Figure 4a,b shows that the specified metrics—the
mean squared errors (MSE) vary with L. It has been noted that MSEs, starting a large initial
value, decrease quickly with the increase of the hidden layer node number and it tends to
be stable to a non-zero minimal value when L takes values greater than 40, indicating a
good convergence. The optimal number of L also could be available via an optimization
method such as particle swarm optimization (PSO) where the MSE can be defined as the
cost function.
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Figure 4. (a). The mean squared errors (MSE) of the thickness variation with L (the number of
hidden layer nodes). (b). The MSE of the concentrations of c1, c2 variation with L (the number of
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To further check the accuracy and the performance of the trained ELM network, it
would be meaningful to examine the linear regression analysis of the output predictions on
the test dataset. As shown in Figures 5 and 6, the predictions of output results for selected
cases by ELM accurately match the expected target values. Figure 5 illustrates that the
ELM machine produces the accurate prediction values of the thickness variable, whereas
Figure 6 shows the predictions of concentration variables with high accuracies.
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After training and testing, the constructed ELM network can be used to analyze the
spectral data with the unknown structural parameters of the samples by a generalization
procedure. We select a few spectral curves to be analyzed and compare the predictions by
the proposed ELM method with the results from calculations of a three-layer MLP network.
The predicted outputs of both methods are summarized in Tables 1 and 2. The ELM
machine produces the correct analysis results for all cases with small errors. The maximum
errors in the four sets of spectra for the thickness and concentrations are respectively 0.94%,
0.79%, and 0.97%. Compared to the ELM results with the exact nominal values of the
structural parameter, it shows an excellent agreement. The maximum errors from the MLP
method for the same test cases are 1.53%, 2.06%, and 2.54%, respectively. This comparison
shows that the errors of MLP results are larger than ELM errors. For most numerical-based
techniques, the analysis errors are typically around 5% [28]. It can be seen that ELM should
be a better option for the applications in spectral data analysis. Unlike a deep neural
network (for example, deep belief networks, and deep Boltzmann machines), the original
ELM was established by a shallow architecture; however, it is still a very practical and valid
method for resolving the problems of regression, classification, and recognition because
of its architecture simplicity, high accuracy, and easy training [13]. The webpage of the
reference [41] lists some benchmark examples and results that compare the performances
of using ELM and deep neural networks (DNN) for the applications with datasets—MNIST
OCR, 3D Shape Classification [42], and Traffic sign recognition [43]. It can be clearly seen
that the training accuracies by ELM were better or equal to those by DNN, whereas the
training time was shortened dramatically (less than in a few magnitude order).

Table 1. ELM predicted results and exact values.

Sample No Exact Values ELM Predictions

t × 1015 at/cm2 c1 c2 t × 1015 at/cm2 c1 c2

1 697.82 0.5400 0.3300 704.37 0.5389 0.3311
2 1295.88 0.5100 0.3600 1302.48 0.5111 0.3589
3 2397.33 0.4800 0.3900 2413.15 0.4762 0.3938
4 3072.98 0.4500 0.4200 3065.29 0.4484 0.4216
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Table 2. Multilayer perceptron (MLP) predicted results and exact values.

Sample No Exact Values ELM Predictions

t × 1015 at/cm2 c1 c2 t × 1015 at/cm2 c1 c2

1 697.82 0.5400 0.3300 708.55 0.5366 0.3334
2 1295.88 0.5100 0.3600 1290.33 0.5134 0.3566
3 2397.33 0.4800 0.3900 2422.32 0.4701 0.3998
4 3072.98 0.4500 0.4200 3088.52 0.4454 0.4246

4. Conclusions

A conceptual framework incorporating ELM and dimensionality reduction techniques
for solving the inverse problem in spectral data analysis has been proposed in this article.
The theoretical method is demonstrated by numerical experiments with simulated spectral
data. The experimental results show that ELM networks can produce accurate output
predictions for the input spectral curves, where the prior structural information of the
physical sample is unknown. Spectral data analysis is a challenging job due to its property
of non-uniqueness arisen from the solutions of the inverse problem. It heavily relies on
much domain knowledge and technical expertise of the analysts. This work makes an
original exploration of the possibilities of using a learning algorithm from available data to
replace numerical intensive computing. The preliminary studies have demonstrated its
accuracy and feasibility.

Our future work includes two aspects. First, the experimentally measured or simulated
data from different types of spectroscopic techniques are required to be handled by a
normalized method to accommodate various features from different type spectra so that a
standard format of input data is established. Particularly, for complex emission spectra
such as PIXE or gamma-ray analysis where the spectral peak width may be within a
narrow energy region, more principal components are required to achieve an expected
accuracy. Second, the proposed method can be implemented as application software that
can be installed on a computer connecting to the real-time spectral data collecting system
in the spectroscopy laboratory. Thus, an automated collection and intelligent analysis
system can be integrated effectively. As the ELM method features a fast and near real-
time learning process, it is possible to perform the real-time analysis for collecting batch
spectral data with high accuracies. We believe that the data analysis method based on a
learning algorithm rather than numerical intensive computations has a great potential to
stimulate a conceptual breakthrough toward a pure data-driven spectroscopy analysis.
This may promote industries to develop the new generation of automatic and general-use
spectroscopy software based on machine learning algorithms.
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