
algorithms

Article

Adaptive Gene Level Mutation

Jalal Al-afandi *,†,‡ and Horváth András *,†,‡

����������
�������

Citation: Al-afandi, J.; Horváth, A.

Adaptive Gene Level Mutation.

Algorithms 2021, 14, 16. https://doi.

org/10.3390/a14010016

Received: 27 November 2020

Accepted: 7 January 2021

Published: 9 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Information Technology and Bionics, Peter Pazmany Catholic University, 1083 Budapest, Hungary
* Correspondence: alafandi.mohammad.jalal@itk.ppke.hu (J.A.-a.); horvath.andras@itk.ppke.hu (A.H.);

Tel.: +36-702347357 (J.A.-a.)
† Current address: Práter u. 50/A, 1083 Budapest, Hungary.
‡ These authors contributed equally to this work.

Abstract: Genetic Algorithms are stochastic optimization methods where solution candidates,
complying to a specific problem representation, are evaluated according to a predefined fitness
function. These approaches can provide solutions in various tasks even, where analytic solutions can
not be or are too complex to be computed. In this paper we will show, how certain set of problems are
partially solvable allowing us to grade segments of a solution individually, which results local and
individual tuning of mutation parameters for genes. We will demonstrate the efficiency of our method
on the N-Queens and travelling salesman problems where we can demonstrate that our approach
always results faster convergence and in most cases a lower error than the traditional approach.

Keywords: genetic algorithms; evolution strategies; adaptive mutation; genetic programming;
evolutionary programming

1. Introduction

Genetic algorithm (GA) is a probabilistic and heuristic search approach to investigate
encoded solutions in an iterative manner, which was successfully applied in various prac-
tical applications, ranging from image processing [1], general optimization problems [2],
biological sciences and bioinformatics [3,4], finance, economics and social sciences [5,6],
speech processing [7] to path planning [8].

In case of evolutionary algorithms, a fitness function, determining the quality of each
solution is used instead of a detailed formal description and analytical solution of the
problem. The algorithm starts the search for the optimal solution with an initial genera-
tion encoding a set of randomly created solution candidates. Genetic algorithm in most
common cases consists of three operations (selection, crossover and mutation) which are
used repeatedly to create a new generation until reaching the solution with the designated
threshold or stopping after a fixed number of generations. We produce a new generation
by using the aforementioned fitness function to select a percentage of the best solutions
from the current generation and then recombine them to yield new offspring (solution can-
didates). Before evaluating the new generation, we apply mutation inducing small changes
in the solution candidates to maintain population diversity. Although some papers [9]
have used only mutation algorithm to create newer generations, combination of crossover
and elitism usually increases convergence speed towards the optimal solution [10].

Genetic algorithm as any other optimization algorithm could get stuck in a local opti-
mum; a problem which can be solved by increasing the exploration rate. The Exploration-
Exploitation dilemma is the most common trade-off problem between obtaining new
knowledge and the necessity to use that knowledge to improve performance; a problem
which can be found everywhere in nature [11]. This problem manifests in genetic algorithm
as well where applying solely mutation and randomly creating chromosomes increases
the exploration rate to the utmost resembling random search which is time consuming
and impractical in high-dimensional problems. On the other hand, selecting only the

Algorithms 2021, 14, 16. https://doi.org/10.3390/a14010016 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-3111-5559
https://orcid.org/0000-0001-5855-4186
https://doi.org/10.3390/a14010016
https://doi.org/10.3390/a14010016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14010016
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/14/1/16?type=check_update&version=1


Algorithms 2021, 14, 16 2 of 18

best solution and spreading it in the next population would increase the exploitation rate
making the algorithm unrobust which will only lead to the first local optimum in the
initial population. One would like to exploit moving toward the best solution, but also
explore maintaining a diverse population; and delve in the best current solutions finding
the optimal or sub-optimal solutions, but still avoid local optimum.

The most important factors affecting the accuracy of the final solution and the con-
vergence of the algorithm are the format of the problem representation and the fitness
function, which we need to assess the validity of each solution. These two factors will
determine the space of all solution candidates. These elements are usually determined
by heuristic approaches and are always problem dependent. Other factors, like different
mutation and crossover methods, can be investigated more generally.

One of the most important and ubiquitous operation is mutation which has a large
effect on the convergence of GAs [12]. Throughout the literature, researchers have been
using static or adaptive mutation [13]. In the early implementations, static mutation
probability was applied, where the mutation rate was optimized by heuristic approaches
with trial and error. In these approaches, a single parameter was identified determining the
rate of mutation and was applied in the same manner for each gene in each chromosome.
Later, adaptive versions have appeared where mutation rate can be changed according to
other state variables of the algorithm, like iteration number, quality of the selected solution
candidates or average fitness of all the solutions.

One of the major hinder of most algorithms is parameter tuning where an appro-
priate parameter setting has to be chosen, but it can be a hard task due to parameters’
reliance on the representation of the optimization problem. Parameter tuning relies on
experimenting many fixed parameters reaching the supposedly optimal parameter setting
without taking into account the possible changes throughout the optimization process.
Beside the problem of tedious time-consumption, another problem of parameter tuning
is that the chosen parameters may only work well starting from a specific state of the
search space. Another parameter scheme is dynamic parameter control which changes
parameters adaptively, during execution. When first introduced, it relies on the state of
the optimization process or on time [14]. Parameter control later adopted self-correcting,
self-adaptive, approach adjusting parameters while in progress relying on the feedback
from the algorithm’s recent performance. Self-adaptation can be used as a strong, effec-
tive tool steering parameters with the help of some performance assistance e.g the fitness
of a chromosome and the fitness of a population.

There is a huge focus recently in the machine learning community on gradient descent
which can give you the optimal direction inside your local search space toward the local
minimum or maximum. Using gradient descent with back propagation, which can tell
you the optimal location for a change, solves the optimization problem faster by exploit-
ing the neighbors of the current parameters. Although gradient descent seems like the
perfect approach for any optimization problem, it is not applicable and ill-defined for non-
differentiable objective functions and it is vulnerable against non-convex problems [15].
Evolutionary Algorithms are good alternatives which can overcome the limitation of
gradient descent and sometimes can be even faster than hill-climbing optimization [16].
Evolutionary Algorithms can provide a solution; sometimes sub-optimal but still applicable
in practice, without any deep knowledge of the system due to the random generation
of a new population. Gradient based methods like stochastic gradient descent [17] or
ADAM optimizer [18] have been the key for the recent advancements of deep learning
which surpass any other optimization approach. Researchers started to integrate the two
approaches striving for the optimal solution where evolutionary algorithms have been
used for hyperparameter search [19] and reinforcement learning [20], which demonstrates
the importance of GAs in machine learning as well.

Our method, called Locus mutation, extends the traditional approach of mutation
where the probability of the alteration of a gene is uniformly distributed over each po-
sition of the genome in one sample. Locus mutation applies an additional probabilistic



Algorithms 2021, 14, 16 3 of 18

weight for each gene (i.e., location or dimension), thus, dimensions with higher probabil-
ity will be selected more frequently, where an alteration could lead to a better solution
with higher accuracy. Locus mutation resembles the traditional optimization approaches,
back-propagation or gradient descent; where in case of a solution which is represented as a
vector, our approach would point out the location which is recommended to be changed
and keep satisfying segments intact.

In Section 2 we will introduce Genetic Algorithms, in Section 3 we will describe
our alterations, describe our method and demonstrate results on the N-Queen problem,
in Section 4 we will show how our approach can be used on other problems as well, like the
travelling salesman problem and in the last Section we will conclude our results.

2. Genetic Algorithm

Genetic algorithm is a heuristic approach, exploring the search space and exploiting
local optima. A gene is a singular element, encoding one dimension of the problem and
representing a fragment of a solution. Problem representation is an essential prerequisite
which can heavily determine the result of the algorithm. Another essential prerequisite
condition to any optimization approach is its fitness function F which depends on the
problem itself. Most sophisticated optimization approaches only deal with differentiable
loss functions, fitness functions, which do not always exist. In case of general problems,
the loss function is not differentiable, but we still have estimation about the quality of a
solution which can be used in evolutionary algorithm.

Since algorithm convergence is determined heavily by the selected heuristics, we will
distinguish between two different problems. In case of many practical problems, the fitness
function measures a deviation from the optimal solution where the value of the best
possible solution is known (and usually is zero, like in case of the N-queen problem [21]),
meanwhile in other set of problems (like traveling salesman [22] or knapsack problem [23])
the fitness value of the optimal solution is unknown. Unlike the second set of problems,
the first set of problems have a stopping criteria yielding a conceptual optimum. First we
will demonstrate our solution using the first set of problems, but later we will present that
it can be applied in case of the latter problems types as well.

The population will evolve exploiting the best solutions by selection then apply-
ing crossover operations amongst them. Ordering the chromosomes using the contrived
fitness function then selecting a fixed percentage of the most fitted ones would help
converging the population towards a better solution. Copying a small unchanged pro-
portion of the fittest chromosomes into the next generation is called elitism which can
steer the algorithm towards local optima. The new population consists of the selected elite
chromosomes, combined chromosomes from the selected ones and new random chromo-
somes. Crossover exploits the best candidate solutions by combining them taking into
account problem representation, creating only valid solution candidates. In addition to
the randomly generated solutions, mutation has been used to increase the exploration rate
searching for the optima. Intuitively, an adaptive mutation rate has been adopted where
the mutation will be mitigated over time while converging to the optimal solution.

The traditional approach of genetic algorithm is presented in Algorithm 1 as a pseudo-
code in forms of simple functions. Searching for the optimal solution Optimum, we
initialize the population Pop with random values. There is a trade-off problem between
the size of the population PopSize and the number of populations IterNum which can
be investigated with parameter tuning. Starting with an enormous PopSize and small
IterNum could increase the exploration rate but yield a small exploitation rate. On the
other hand, having small PopSize and large IterNum would limit the exploration of the
search space. Our work focused on the mutation rate MutRate which drives the mutation
operation M(). A fitness function F() is used to select S() the elite which is a small
percentage of the fittest chromosomes. Crossover C() is used after the selection process
exploiting the elite. Lastly, we mutate M() the current Pop with MuteRate probability.



Algorithms 2021, 14, 16 4 of 18

With a repetitive manner as many as the IterNum and in chronological order, we apply the
previously mentioned steps.

Algorithm 1: Genetic algorithm main steps
1 Parameters: PopSize, MutRate, IterNum Result: Optimum
2 Pop = population initialization
3 for i← 0 to IterNum do
4 Values = F(Pop)
5 Pop = S(Pop, Values)
6 Pop = C(Pop)
7 Pop = M(Pop, MutRate)
8 end

Adaptive mutation can be divided into three categories: population level, individual
level, and component level adaptation [24]. Population level adaptation changes the
mutation probability globally using feedback information from the previous population
which means all the chromosomes have the same probabilistic chance for modification.
At the individual level, each chromosome has its own adaptive operator which have
been induced from the statistics of the previous generations. While the component level
adaptation tries to combine the two previous methods by grouping the chromosomes and
setting a different adaptive operator for each group.

However, it is important to note that none of the previously mentioned approaches
utilize the statistic information inside the chromosome, which can be induced from the
genes. To overcome this deficiency, we come up with the novel idea of locus mutation,
where every gene has its own different adaptive operator and problematic genes have
higher chance for change. Identifying the problematic genes is an important factor of
our algorithm, and in our approach problematic means those genes which are mostly
responsible for the high values in the error function (e.g., number of queens hitting each
others in Case of the N-Queen problems).

3. Locus Adaptive Genetic Algorithm

All possible solutions in the initial population (Pop) are sampled randomly from the
search space. The algorithm is iterated IterNum times where at each step, the population
is continuously changing and better samples are selected and recombined; this helps
increasing the average fitness value of the population over time. Thus, the time dependency
of the population can be noted by Popt which denotes the population at iteration t. At each
iteration within the population, each sample is usually referenced to as a chromosome.
A chromosome is one possible solution; a solution candidate; and this can be referenced
to as Poptk where k = 1 . . . N chromosomes. A chromosome is a vector representing a
solution, which can be further divided into individual elements (Like a position of a single
queen on a chessboard) this is noted by a third index Poptkl where l = 1 . . . M genes. In the
traditional approach, selection of a position for mutation is a random process and its major
goal is the exploration of the high-dimensional search space without taking the current
state of the chromosome into account. Optimal selection of the gene which will be modified
requires a comprehensive knowledge of three different variables; the statistics of the inter
and intra populations, the chromosomes as a function of time and the statistic of the genes’
competences. Scrutinizing the relation between this three variables and the fitness function
will lead us to the optimal modification of every gene. Although seemingly the optimal
solution can be attained from Equation (1), it is not practical and both memory and time
consuming because you need to keep track of all generations, chromosomes and genes
throughout the algorithm.

PM(Poptij) = F(Popl=1...M,k=1...N,q=1...t
qkl , i, j) (1)



Algorithms 2021, 14, 16 5 of 18

PM calculates the probability of mutation for a given gene j and F is a function calculating
the mutation rate of gene j taking into account all previous generations (q), chromosomes (k)
and genes (l). A lot of attempts have been made to calculate an adaptive mutation operator
using one of the aforementioned variables, but the authors are not aware of any method
that has used the genes statistic to form a gene level mutation. Any mutation method can
be rewritten as in Equation (1) using constant parameters as we will see in the following
paragraphs. Traditional Genetic algorithm uses static operators as defined in Equation (2)
which means that all chromosomes and genes throughout all generations would have the
same mutation probability although some candidate solutions are closer to the optimal
solution than others.

PM(Poptij) = C (2)

C is a constant value for every iteration, chromosome and gene. Static mutation is good
until it gets stuck in a local minimum. After we reach a local minimum, we can walk back
down the hill and try another angle craving for the optimal solution or try to jump from the
local minima by increasing/decreasing the mutation rate or applying crossover. Parameter
tuning is a manual, time consuming and unpleasant road which can be superseded with
parameter control [13]. Parameter control means to start from an initial value then tune it
adaptively during execution as in the following approaches. With the presupposition of
converging to the optimal solution over time, an adaptive mutation subjected to time as in
Equation (3) has been proposed.

PM(Poptij) = F(t) (3)

F is a function of time which depends on t but does not depend on the chromosome
i or the gene j. Once the population is determined the probability of mutation is the
same for every chromosome and gene (PM(Poptij) = PM(Poptkl)∀i, j, k, l) in that iteration.
Dynamic mutation takes the number of the current iteration as an input and gives us the
mutation rate as an output. The function used to calculate the mutation rate can be a
linear function which relies on the fact that it is beneficial to have a high mutation rate at
the beginning and lower mutation rate during convergence [25], a gaussian function [26]
where the mutation rate is going to increase smoothly until reaching an apex then decrease
steadily converging to zero, Lévy distribution [27] or any arbitrary function. It is not the
best approach having the same probability for each chromosome which could be very close
to the optimal solution or far away from it.

Another approach with the same problem is population adaptive operator [28,29]
as in Equation (4) where each generation has a different mutation operator which is
deduced from the generation statistics. In [30], more than one mutation operators are
used with an equal initial probability (1/the number of operators), but after each iteration
the probabilities will increase/decrease according to the fitness values of each operator
designated offspring. In general these approaches can be defined as:

PM(Poptij) = F(Popl=1...M,k=1...N
tkl ) (4)

F will determine how the mutation depends on all the fitness values in the current
population for every i and j (chromosome and gene). Again once the population is
determined, the probability of mutation is the same for every chromosome and gene
(PM(Poptij) = PM(Poptkl)∀i, j, k, l). To solve this problem an individual adaptive muta-
tion [31,32] was proposed as in Equation (5) where each chromosome has its own different
mutation operator that can be concluded from the statistic about the search space of each
chromosome through the populations which is, the statistic, implicitly maintained by the
algorithm. Mutation rate can change not only in different iterations, but also at the same
generation where better candidates will have lower mutation rate, meanwhile worse candi-
dates will have higher mutation rates. Each chromosome will have a different mutation rate
which is proportional with comparison to the other chromosomes in the current population.



Algorithms 2021, 14, 16 6 of 18

PM(Poptij) = F(Popl=1...M,k=1...N
tkl , i) (5)

F is a function depending on the fitness function of the selected chromosome i, and the
fitness of all the chromosomes k in the population. Even though chromosomes which are
closer to the optimal solution has a smaller probability for mutation, their mutation most
probably is going to diverge them from the optima. Thus, most of the genes are in a good
position and any random modification is going to be mostly harmful. Hence uniformly
distributed mutation over the genes is not the best option; assume we have an almost
perfect solution (nine genes are perfect and one is bad), we have a 9/10 chance with
uniform mutation to make this instance worse.

To tackle this problem, we have designated a different probability operator for each
gene in a chromosome which can only be possible in partially solvable problems. To think
about it, the mutation happens in gene level where we choose one or two genes randomly
and then we change their values. Thus, a gene which is in a good position should be less
prone to mutation. The simplest model for gene level mutation is locus mutation as in
Equation (6) where all generations and chromosomes have the same mutation rate but each
gene has a different mutation rate which corresponds with the other genes.

PM(Poptij) = F(Popl=1...M
til , j) (6)

F is a function depending on the fitness function of the selected gene l. Once the
mutation rate is set, the probability of mutation is the same for every chromosome at all
time (PM(Poptil) = PM(Poptkl)∀t, i, k). To grasp the concept before diving into details,
we can simply state that measuring the fitness of each gene in a partially solvable problem
will deduce a unique customized distribution for each chromosome yielding a gene level
mutation. As an advantage of our approach, we can combine locus mutation with any
of the other proposed methods. Returning to the first and most generalized Equation (1),
we can use locus mutation with an adaptive individual level where each chromosome and
each gene has an individual mutation rate which may give us a better result but certainly
will make the whole process slower and resource consuming. We have only focused on the
simplest version of our novel idea which is locus mutation.

Algorithm 2 depicts GA with locus mutation. All parameters remain the same as in
the original Algorithm 1 setting Pow parameter to one, but we do have a newly introduced
gene level mutation (Mg()) which depends on partial fitness (PartialValues). Although in
our experiments we will always set Pow to one only focusing on the effect of locus mutation
without taking into account Pow parameter, a detailed investigation Section 5.4 will be
conducted illustrating the advantage which can be garnered using Pow parameter.

Algorithm 2: Genetic algorithm main steps
1 Parameters: PopSize, MutRate, IterNum, Pow = 1 Result: Optimum
2 Pop = population initialization
3 for i← 0 to IterNum do
4 Values, PartialValues = F(Pop)
5 Pop = S(Pop, Values)
6 Pop = C(Pop)
7 Pop = Mg(Pop, MutRate, PartialValues, Pow)

8 end

In a partially solvable problem, partial fitness can be calculated leading to mutation
with probabilistic gene selection. In a problem representation, one could identify parts
which are good, and parts which are bad. A good gene should be changed less frequently,
a worse element should be changed more often exploring further regions away from
local optima. To illustrate the importance of PartialValues in calculating the probabilistic
mutation factor of each gene, we will discuss the partial solution of 8 queens problem as
it has been depicted in Figure 1. In 8 queens problem, the chromosome has eight genes



Algorithms 2021, 14, 16 7 of 18

which refer to the number of the row, while the index of each gene refers to the column.
A chromosome with zero queens hitting each other is optimal. Intuitively, the fitness
function calculates the number of hits. In the example depicted in 1, the loss is four
(Calculating hitting pairs only once.) where queens 1, 2, 3, 4, 7, 8 are hitting 8, 3 and 4,
2 and 7, 2, 3, 1 respectively. On the other hand, partial fitness will give a different loss for
each gene representing the number of queens hitting the current queen. In our example,
partial values are [1 2 2 1 0 0 1 1] where for example queen number three is hitting two
other queens (2 and 7) which means it is a bad queen and a high mutation rate should be
assigned to it and likewise for queen number two. Whereas, queens five and six are not
hitting any other queens, meaning that low mutation rates should be assigned to them.

Figure 1. Potential chromosome for 8-Queens Problem where queen 1 is hitting queen 8, and two
queens (2,3) are hitting each other and also hitting two other queens (4,7) yielding a loss of 4 where
the four hitting pairs are ([1, 8], [2, 3], [2, 4], [3, 7]).

Instead of using uniform distribution as in the traditional algorithm, we are using a
probabilistic function conveying the information about the fitness of each gene. The mutat-
ing rate of each gene does not only depend on its partial value, but it is also proportional
with other genes’ partial value, also every gene has a minimal mutation rate, this ensures
that even a gene with zero hitting queens, will have a non-zero mutation probability.

4. Heuristically Partially Solvable Problems with Unknown Optimum

As we saw earlier, locus mutation works well with a partially solvable problem
outperforming the traditional approach using gene level information. Although Locus
mutation is only applicable for partially solvable problems e.g., N-Queens problem [33],
heuristic partial solution can be sufficient which can only be inferred with a comprehensive
understanding of the problem. One of the most elusive problem is traveling salesmen
problem (finding the shortest route to visit a set of cities), where the optimal solution
is undefined making the optimization process interminable, and a heuristic threshold
has to be used. In the N-Queens problem, calculating the partial solution was a straight
forward process which is the number of queens hitting the current gene taking all the other
genes into consideration. Having us doing so in the traveling salesman problem (TSP) [34]
requires a modification signifying the distance between the current gene (city) and the next
gene with contrast to its distance with the other genes. Since traditionally the fitness of the
entire chromosome relies solely on the distance between each gene and its next neighbor
without taking into account any other genes, we came up with a new idea which we will
call normalized comparative loss to calculate the partial fitness of each gene taking into
consideration all other genes.

An example has been depicted in Figure 2 showing a simple example of TSP problem
with 10 cities. Each city has two indices, the first index indicates the order of the city in



Algorithms 2021, 14, 16 8 of 18

the candidate chromosome [6 3 4 9 5 1 10 7 8 2] and the second one refers to the actual
label of the city e.g., the first gene in our chromosome has the label (1, 6). To explain the
partial fitness value of a gene, we have used the same candidate chromosome but focused
on the penultimate gene, gene (9, 8), as in Figure 3. This gene refers to the city number 8
which is located at the gene before the last gene in the candidate solution. The red line
depicts the relevant connection between our gene and gene number two; the last gene in
the current chromosome and the next neighboring gene. The gene which is the farthest
away from our gene of interest has been linked to our gene with green line, while the blue
line portrays the closest gene. Using the three previously mentioned distances;the pertinent
distance between the current gene and next gene, the distance between the current gene
and the gene which is farthest away from the current gene and the distance between the
current gene and the gene which is closest to the current gene; we can calculate a heuristic
partial fitness as in Equation (7) where i is the concerned gene while MinDistance and
MaxDistance give us respectively the minimum and the maximum distance between gene
i and the other genes.

PFi =
Distance(i, i + 1)−MinDistance(i)
MaxDistance(i)−MinDistance(i)

(7)

Figure 2. Traveling salesman Problem with 10 cities, chromosomes. The vertices depict the cities
where the first index refers to the position of the city inside the chromosome while the other index
refers to the city label. An edge can be formed between each two sequential cities to show the path
which the traveling salesman should take.

Figure 3. This figure depicts the pertinent distances of a specific gene (gene (9,8)) for a Traveling
salesman Problem with 10 cities chromosome. The red vertex depicts the pertinent path between our
gene and next gene. The green and blue vertices link the gene of interest with the farthest and closest
gene in respect.



Algorithms 2021, 14, 16 9 of 18

Before moving to the results section demonstrating the effectiveness of locus mutation,
we will substantiate the advantage of using locus mutation by applying Wilcoxon test
which is a non-parametric statistical test used to determine if two sets of distributions are
different from each other in a statistically significant manner. We investigated a TSP instance
with 48 cities, 1000 chromosomes, 20 generations. We used the same initial population
for baseline and locus mutation then stored the evolved two populations after the 20th
generation. Figure 4 demonstrates the distribution of the fitness of the chromosomes for
the initial population, the 20th baseline population and the 20th locus population. Figure 4
illustrates visually the benefit of locus mutation where we can see that the distribution of
the fitness of the 20th generation using locus mutation is closer to zero with smaller mean
value. We applied Wilcoxon matched pairs test to the fitness of the evolved baseline and
locus population obtaining a very small p value, 4.25× 10−12. We can conclude from the
minute p value that the two distributions have different medians and reject the idea that
the difference is due to chance.

Figure 4. The figure shows the distribution of the fitness of the chromosomes in a generation in three
different cases, initial generation, 20th generation using baseline mutation and the 20th generation
using locus mutation. Locus mutation is not just attaining better chromosomes, smaller fitness,
but also moving the entire distribution closer to zero.

5. Results
5.1. N-Queens Problem

To validate our hypotheses, detailed comparison with the traditional mutation have
been investigated proving a superior performance with a different set of parameters as in
Figure 5. The results have been averaged out for 50 different experiments. The best solution
has been selected out of 5 unique mutation rate values [0.01, 0.1, 0.6, 0.3, 0.9] which are
distributed over the entire parameter space search. All experiments have been conducted
using the traditionally applied crossover method as well. For the sake of reproducibility,
you can find our codes online (https://github.com/Al-Afandi/Adaptive-Gene-Level-
Mutation) alongside the chosen investigated parameters.

Figure 5 and Table 1 demonstrate a quantitative and qualitative superiority of our
approach always leading to a better solution with a reasonable margin. Our approach
could almost always solve the N-Queens problem with a population of 32 while the
traditional approach could never reach the optimal solution. With a population of 128,
our approach is two to three times better than the traditional approach in terms of the final
loss. Even with a huge population of 256 queens, our approach is 1.6 times better in terms
of the fitness function.

https://github.com/Al-Afandi/Adaptive-Gene-Level-Mutation
https://github.com/Al-Afandi/Adaptive-Gene-Level-Mutation


Algorithms 2021, 14, 16 10 of 18

Figure 5. It depicts a comparison between Locus mutation and traditional mutation with different
sets of parameters. The figures depict N-queens problem with 32, 64, 128 and 256 queens where the
results have been averaged out with two different generation size [200, 400], [400, 600], [600, 800] and
[800, 1000] respectively. We only selected the best solution out of these five different values of mutation
rate [0.01, 0.1, 0.6, 0.3, 0.9]. The center of the curve is the expected value while the range visualize the
standard deviation. All the experiments have been repeated 50 times and then averaged out. We can
notice that the number of hitting queens is escalating when we increase the number of queens.

Table 1. N-Queens optimal solution, minimum number of hitting queens, after 20 generations.
Two different population size PopSize, 200 and 400, have been investigated with 50 different repeti-
tions. All the runs have been averaged out.

IterNum MutRate
Number of Hits

Baseline Locus

32 0.01 1.78 0.01

32 0.1 2.06 0.27

32 0.3 1.7 0

32 0.6 1.52 0

32 0.9 1.64 0

64 0.01 6.6 1.

64 0.1 7.16 2.33

64 0.3 6.64 0.71

64 0.6 6.38 0.35

64 0.9 6.52 0.24

128 0.01 19.82 7.98

128 0.1 20.28 11.48

128 0.3 19.57 7.17

128 0.6 19.24 6.19

128 0.9 19.89 5.91

256 0.01 51.04 33.33

256 0.1 51.8 38.8

256 0.3 50.37 32.07

256 0.6 50.18 30.75

256 0.9 51.17 31.06



Algorithms 2021, 14, 16 11 of 18

To demonstrate the effectiveness of our new approach with comparison to other
recent attempts working on improving mutation operator, we have compared our mutation
method with traditional and individual level adaptive mutation [35] using the same set of
parameters which is 64 Queens, PopSize = 400, IterNum = 20 and Pow = 1 as depicted in
Figure 6. For individual adaptive level mutation, we have investigated 30 different ranges
of MutRate while using a static mutation rate , 0.5 the middle of all ranges, for the other
two methods. The ranges have been centered around 0.5 and varied from a very small
range [0.485, 0.515] to a very large one [0.05, 0.95]. Although the results of the two other
methods, traditional and adaptive approaches, have been obtained from selecting the best
solution averaging out ten different experiments while only calculating the average results
of our method, our approach have a superior performance and a faster convergence.

Figure 6. The fitness value of 64-Queens problem as a function of the number of generations
comparing locus mutation with traditional and adaptive mutation. For adaptive mutation, We have
averaged out 30 different ranges and used the center of each range for traditional and locus mutation.
All the experiments have been repeated 10 times with the same set of parameters. Although we
have used the mean solution for locus mutation, we have selected the best solution for adaptive and
traditional mutation.

We have shown one comparison between locus mutation and another mutation
method; Figure 6, but the advantage of our method is that it is compatible with any
other generally applied mutation e.g., population level mutation and individual level
mutation; to the extent where you can obtain statistic information from generations,
populations, chromosomes and even genes (Locus mutation) as in Equation (1).

5.2. Traveling Salesman Problems

Apart from the results on the N-Queen problem, we have also investigated another
commonly examined problem, the TSP problem. Detailed comparison with the traditional
mutation have been investigated manifesting a superior performance with a big set of
different parameters as in Figure 7 and Table 2. The best solution have been selected
out of 5 unique mutation rate values [0.01, 0.1, 0.6, 0.3 and 0.9] expanding through the
parameter space. All the experiments have been repeated 100 times and then averaged
out. With every repeat, TSP problem (cities location, weights and initial population) will
be created automatically by randomly placing N cities on a small grid.

Figure 7 and Table 2 demonstrate a quantitative and qualitative superiority of our
approach always leading to a smaller distance. Having bigger and bigger population in-
creases the gap between the two approaches e.g., the gap was maximum 1 at the beginning
with 32 cities to reach 5 at the end with 254 cities.



Algorithms 2021, 14, 16 12 of 18

Figure 7. Comparison between Locus mutation and traditional mutation with different sets of
parameters. The figures depict TSP problem with 32, 64, 124 and 254 cites. We averaged out the
runs with two different generation size [400,600], [400,600], [600,1000] and only 1000 for 254 cities
constellation. We only selected the best solution out of these five different values of mutation rate
[0.01, 0.1, 0.6, 0.3 and 0.9]. The center of each curve is the expected value while the range visualizes
the standard deviation. All the experiments have been repeated 100 times and then averaged out

Table 2. TSP optimal solution after 100 generation. Two different population size, 200 and 400,
have been investigated with a 100 different repetition. All the runs have been averaged out.
IterNum is the number of cities (population number), while MutRate is the mutation factor.

IterNum MutRate
Minimum Distance

Baseline Locus

32 0.01 8.486 8.287

32 0.1 8.574 8.341

32 0.3 8.62 8.30

32 0.6 8.997 7.93

32 0.9 8.915 8.36

64 0.01 22.281 21.470

64 0.1 20.293 21.265

64 0.3 21.038 20.859

64 0.6 21.627 21.002

64 0.9 22.579 20.714

124 0.01 48.797 45.380

124 0.1 46.679 46.256

124 0.3 47.830 46.338

124 0.6 47.381 46.320

124 0.9 49.481 45.774

254 0.01 110.328 102.464

254 0.1 108.453 107.808

254 0.3 109.147 107.704

254 0.6 110.102 106.701

254 0.9 110.946 105.642



Algorithms 2021, 14, 16 13 of 18

5.3. Using Locus Mutation with Other Heuristic Algorithms

Mutation can be a substantial operation for other heuristic algorithms as well e.g.,
simulated annealing [36], variable neighborhood search [37], tabu search [38] and Hill
climbing [39]. Locus mutation works well with genetic algorithm solving TSP problem
giving better results than the baseline, as we illustrated in earlier paragraphs. In the
previous results, TSP instances were created by randomly sampling the interval [0, 1]
where these samples composed the cities coordinates. To further instantiate our results,
we did investigate TSP problem with genuine data provided from TSPLIB dataset. We only
investigated the instances which have less than 101 cities, 16 instances. We investigated
the efficiency of locus mutation in two other heuristic algorithms (simulated annealing
(SA) and variable neighborhood search (VNS)). Table 3 demonstrates the conspicuous
advantage of using locus mutation. The experiments for the three algorithms were repeated
10 times and with two different setups (one run with simple parameters and another one
with complex parameters). In most cases, using locus mutation gives a better results,
and the best solutions were obtained from VNS algorithm with locus mutation. Although,
in most instances, we didn’t reach the optimal solution, We were only focusing on the
benefit of using locus mutation with other algorithms, apart from GA, without thoroughly
investigating other enhanced versions of the same algorithms.

Table 3. Comparison between baseline (Base) and locus (Loc) mutation for three different algorithm ,genetic algorithm (GA),
simulated annealing (SA) and Variable neighborhood search (VNS). We applied these algorithms on 16 different instances from TSPLIB
dataset. In most cases, locus mutation is enhancing the performance of the algorithms.

Instance VNS Loc VNS Base SA Loc SA Base GA Loc GA Base Optimal

att48 38,074.95 38,349.60 66,162.13 78,766.73 125,478.95 127,962.10 10,628

berlin52 8633.02 8718.89 15,005.75 16,852.92 24,670.25 25,154.85 7542

burma14 24.99 25.56 27.11 26.83 40.70 44.78 30.89

eil51 477.05 487.21 827.75 951.21 1375.58 1410.37 426

eil76 605.78 626.56 1387.55 1570.88 2167.07 2209.15 538

kroA100 25,923.15 26,478.45 90,299.24 103,019.28 148,699.96 150,347.27 21,282

kroB100 25,248.30 25,437.91 88,441.77 102,262.19 145,522.35 148,050.07 22,141

kroC100 24,983.77 25,042.63 88,651.16 102,050.32 146,813.87 147,521.41 20,749

kroD100 26,225.47 26,276.29 87,275.06 100,001.28 142,412.64 142,597.61 21,294

kroE100 24,608.56 24,779.56 90,021.99 104,828.39 148,325.58 150,791.90 22,068

pr76 129,505.66 132,538.60 315,049.50 354,149.35 491,017.72 500,005.56 108,159

rat99 1386.94 1388.55 4412.32 5126.53 7280.52 7344.15 1211

rd100 9580.81 9697.09 30,877.39 34,885.76 49,093.79 49,482.80 7910

st70 750.11 769.31 1902.85 2161.98 3091.04 3149.35 675

ulysses16 52.01 55.33 59.52 61.09 100.05 101.36 73.98

ulysses22 55.18 55.66 73.00 75.17 129.77 133.62 75.3

5.4. Exploiting the Tuning of the Power Parameter

The importance of each loss (partial fitness) can be changed by using a power function
which can raise the partial fitness vector to a power (Pow). Using a power function with
Pow = 0, you get the uniform mutation back making our approach an extension of the
original method.

For further illustration, we will go back to the previous example as in Figure 1.
Partial fitness, which is the main bulk calculating the mutation rate of each gene,



Algorithms 2021, 14, 16 14 of 18

equals [1 2 2 1 0 0 1 1]. Using the Pow parameter, we would have the following updated
partial fitness values:

[1 2 2 1 0 0 1 1]0 = [1 1 1 1 1 1 1 1]

[1 1 1 1 1 1 1 1] ≈ [0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12]

[1 2 2 1 0 0 1 1]1 = [1 2 2 1 0 0 1 1]

[1 2 2 1 0 0 1 1] ≈ [0.12 0.25 0.25 0.12 0.00 0.00 0.12 0.12]

[1 2 2 1 0 0 1 1]2 = [1 4 4 1 0 0 1 1]

[1 4 4 1 0 0 1 1] ≈ [0.08 0.33 0.33 0.08 0.00 0.00 0.08 0.08]

[1 2 2 1 0 0 1 1]3 = [1 8 8 1 0 0 1 1]

[1 8 8 1 0 0 1 1] ≈ [0.05 0.40 0.40 0.05 0.00 0.00 0.05 0.05]

[1 2 2 1 0 0 1 1]∞ = [0 1 1 0 0 0 0 0]

[0 1 1 0 0 0 0 0] ≈ [0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00]

We can notice that when Pow = 0 we will get back to the uniform distribution where
all genes have the same probability for a mutation. When Pow = 1, queens 2 and 3 have
a bigger chance for a mutation. Increasing the value of Pow drastically decreases the
comparatively good genes’ probability for a mutation. When Pow = ∞, All probabilities
are going to be zero except the genes with the worst partial fitness. As we mentioned earlier,
partial fitness will always have a non-zero mutation operator; thus in practice, we will add
a low mutation operator for every gene e.g., 0.001.

The effectiveness of Pow parameter is illustrated in Figure 8 depicting the fitness
value(The number of hits) of the best optimal candidate solution (Yaxis) with regards to
Parameter Pow (Xaxis). The figure start with uniform distribution;the traditional approach;
then depicts the optimal solution using the default value Pow = 1 and end up with `∞
norm which will deterministically select the worst genes for mutation. The best result
with the same set of parameters, which have been chosen arbitrary, can be obtained with
Pow = 2.

Figure 8. The fitness value of the best optimal solution for 64-Queens problem and TSP problem respectively as a function
of Powers Pow where we averaged out ten runs. It starts with uniform distribution then uses a logarithmic scale of Pow,
and end up with L-infinite norm. We have achieved similar results with two separate problems.



Algorithms 2021, 14, 16 15 of 18

Regarding N-Qeens problem, the experiments have been done with 64 Queens,
PopSize = 200, IterNum = 20, MutRate = 0.3, MinGeneMutRate = 0.1, and a logarithmic
scale of Pow values where MinGeneMutRate is the lower bound of gene mutation operator.
We have also obtained a similar results investigating Pow parameter on the TSP problem
using normalized comparative loss, as in Figure 8, where we have arbitrarily chosen a set of
parameters; 128 cities, 400 population size and 30 generations. All experiments have been
repeated ten times, and the fitness functions at the last generation have been aggregated.
Pow = 2 can give us the best result for the two problems. Locus mutation works very
well relying on the selfishness of each gene where each gene wants to mutate craving for
perfection i.e., in the TSP problem, each gene is eager to be connected with the closest city.
The idea of Selfish gene is manifested in nature [40] leading to prosperity. Although this
seemingly would lead to local optimum, sometimes the interest of individuals meets the
interest of the population, and the interest of genes meets the interest of individuals where
all genes are striving for excellence. We can even escalate the selfishness of the genes by
increasing the power parameter Pow.

5.5. Running Time Comparison

Using this heuristic method, calculating the partial fitness and fulfilling the only
prerequisite for locus mutation, requires some additional computations. MinDistance,
MaxDistance, Distance and even the denominator in Equation (7) are only vectors or
matrices which can be pre-calculated once, but applying locus mutation will require N ∗ K
operations (the number of genes multiplied by the size of the population). This big number
of operations is needed because locus mutation gives each gene a distinct mutation rate,
which correspond with the normalized, comparative and partial loss, taking other partial
fitnesses into account. We have only investigated TSP extra time consumption due to the
fact that for the N-Queens problem ,beside the N ∗ K operations, no extra calculations are
needed. According to our extensive experiments with a vast set of parameters, As in Table 4,
Our approach can be in maximum two times slower than the traditional approach, but it
will saturate with a better solution as we can see in Figure 9 where our solution converged
to the optimal solution but the traditional approach did saturate before approaching the
optimum which we calculate using brute force method searching through each and every
possible combination. To demonstrate the performance advantage of our approach having
a same wall time, as in Figure 10, we ran the traditional approach for two times more
generations, 600 generations for the traditional approach and 300 generations for locus
mutation, proving that on the long run our approach will saturate to a better solution
consuming the same time.

Figure 9. This Figure depicts TSP Problem with 10 cities manifesting the speed and the ability of our
approach to nearly reach the optimal solution in comparison with the traditional approach. All the
experiments have been conducted with 200 population size, 200 generations and 0.5 mutation rate.
The optimal solution has been obtained using brute force algorithm. The experiments were repeated
100 times.



Algorithms 2021, 14, 16 16 of 18

Figure 10. This Figure depicts TSP Problem with 10 cities manifesting the ability of our approach to
surpass the traditional approach consuming the same time. We did run the the traditional approach
for two times more generations e.g., when axis x equals 25 generations for locus mutation (as in the
figure), it equals 25 * 2 generations for traditional mutation. All the experiments have been conducted
with 200 population size and 0.5 mutation rate. We run the traditional approach for 600 generations,
while we run locus mutation only for 300 generations. The optimal solution has been obtained using
brute force algorithm and the experiments were repeated 100 times.

Table 4. Time comparison between locus and baseline mutation where PN is the number of cites, PS
is population size, GN is the number of generations and MR is mutation rate. TSP timing gives us
the time consumption for each algorithm using the specified parameters. Ratio gives us the speed
rate, speed advantage, of the original approach.

PN PS GN MR
TSP Timing

Ratio
Baseline Locus

32 200 25 0.01 0.6297 0.9822 1.5598

32 200 25 0.5 0.8174 1.243 1.5207

32 200 25 0.9 2.3387 3.3526 1.4335

32 200 50 0.01 1.2445 1.9482 1.5655

32 200 50 0.5 1.6238 2.4778 1.526

32 200 50 0.9 4.6735 6.72 1.4379

32 400 25 0.01 1.4315 2.1328 1.4899

32 400 25 0.5 1.8039 2.6621 1.4757

32 400 25 0.9 4.838 6.8533 1.4166

32 400 50 0.01 2.9027 4.3041 1.4828

32 400 50 0.5 3.6441 5.3463 1.4671

32 400 50 0.9 9.7452 13.8431 1.4205

64 200 25 0.01 1.0071 1.7144 1.7023

64 200 25 0.5 1.1947 1.9664 1.6459

64 200 25 0.9 2.7421 4.0509 1.4773

64 200 50 0.01 2.0139 3.3967 1.6866

64 200 50 0.5 2.385 3.9082 1.6387

64 200 50 0.9 5.4714 8.1485 1.4893

64 400 25 0.01 2.2131 3.5941 1.624

64 400 25 0.5 2.5717 4.1369 1.6086

64 400 25 0.9 5.7171 8.3777 1.4654

64 400 50 0.01 4.379 7.1742 1.6383

64 400 50 0.5 5.1617 8.1775 1.5843

64 400 50 0.9 11.3358 16.5914 1.4636



Algorithms 2021, 14, 16 17 of 18

6. Conclusions

We have illustrated that using a gene-dependent local mutation operator where every
gene has a different mutation rate induced from a heuristic and partial fitness function
will speed up the convergence of the algorithm and yield more accurate final solution.
We have investigated two common problems, traveling salesman problem (TSP) and
N-Queens problem. In case of the N-Queens problem, Locus mutation has resulted better
solutions in all cases, regardless of the investigated parameters. Even with a big population
number of 254, locus mutation yields a 1.5 times lower error than its traditional counterpart.
Similar results were obtained using locus mutation for the TSP problem where our approach
has always surpassed the baseline solution.

Author Contributions: Conceptualization, J.A.-a. and H.A.; methodology, J.A.-a. and H.A.; software,
J.A.-a. and H.A.; validation, J.A.-a. and H.A.; formal analysis, J.A.-a. and H.A.; investigation, J.A.-a.
and H.A.; resources, J.A.-a. and H.A.; data curation, J.A.-a.; writing—original draft preparation,
J.A.-a.; writing—review and editing, J.A.-a. and H.A.; visualization, J.A.-a.; supervision, H.A.; project
administration, H.A.; funding acquisition, H.A.; All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: https://github.com/Al-Afandi/Adaptive-Gene-Level-Mutation.

Acknowledgments: This research has been partially supported by the Hungarian Government by
the following grant: 2018-1.2.1-NKP-00008: Exploring the Mathematical Foundations of Artificial
Intelligence and the support of the grant EFOP-3.6.2-16-2017-00013 is also gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Talbi, H.; Batouche, M.; Draa, A. A quantum-inspired evolutionary algorithm for multiobjective image segmentation. Int. J. Math.

Phys. Eng. Sci. 2007, 1, 109–114.
2. Jin, Y.; Branke, J. Evolutionary optimization in uncertain environments-a survey. IEEE Trans. Evol. Comput. 2005, 9, 303–317.
3. Wang, S.; Wang, Y.; Du, W.; Sun, F.; Wang, X.; Zhou, C.; Liang, Y. A multi-approaches-guided genetic algorithm with application

to operon prediction. Artif. Intell. Med. 2007, 41, 151–159.
4. Krawiec, K.; Pawlak, M. Genetic programming with alternative search drivers for detection of retinal blood vessels. In Proceedings

of the European Conference on the Applications of Evolutionary Computation, Copenhagen, Denmark, 8–10 April 2015; Springer:
Cham, Switzerland, 2015; pp. 554–566.

5. Buurman, J.; Zhang, S.; Babovic, V. Reducing risk through real options in systems design: The case of architecting a maritime
domain protection system. Risk Anal. Int. J. 2009, 29, 366–379.

6. Zhang, S.X.; Babovic, V. An evolutionary real options framework for the design and management of projects and systems with
complex real options and exercising conditions. Decis. Support Syst. 2011, 51, 119–129.

7. Milone, D.H.; Merelo, J.J.; Rufiner, H. Evolutionary algorithm for speech segmentation. In Proceedings of the 2002 Congress on
Evolutionary Computation, CEC’02 (Cat. No. 02TH8600), Honolulu, HI, USA, 12–17 May 2002; IEEE: Piscataway, NJ, USA, 2002;
Volume 2, pp. 1115–1120.

8. Vadakkepat, P.; Tan, K.C.; Ming-Liang, W. Evolutionary artificial potential fields and their application in real time robot path
planning. In Proceedings of the 2000 congress on evolutionary computation, CEC00 (Cat. No. 00TH8512), La Jolla, CA, USA,
16–19 July 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 1, pp. 256–263.

9. Pan, X.; Zhang, J.; Szeto, K.Y. Application of Mutation Only Genetic Algorithm for the Extraction of Investment Strategy in
Financial Time Series. In Proceedings of the 2005 International Conference on Neural Networks and Brain, Beijing, China,
13–15 October 2005; Volume 3, 1682–1686.

10. Corus, D.; Oliveto, P.S. Standard Steady State Genetic Algorithms Can Hillclimb Faster than Mutation-only Evolutionary
Algorithms. arXiv 2017, arXiv:1708.01571.

11. Berger-Tal, O.; Nathan, J.; Meron, E.; Saltz, D. The exploration-exploitation dilemma: A multidisciplinary framework. PLoS ONE
2014, 9, e95693.

12. Abdoun, O.; Abouchabaka, J.; Tajani, C. Analyzing the Performance of Mutation Operators to Solve the Travelling Salesman
Problem. arXiv 2012, arXiv:1203.3099.

https://github.com/Al-Afandi/Adaptive-Gene-Level-Mutation


Algorithms 2021, 14, 16 18 of 18

13. Eiben, A.; Michalewicz, Z.; Schoenauer, M.; Smith, J. Parameter Control in Evolutionary Algorithms. In Parameter Setting in
Evolutionary Algorithms; Lobo, F.G., Lima, C.F., Michalewicz, Z., Eds.; Studies in Computational Intelligence Book Series; Springer:
Berlin/Heidelberg, Germany, 2007; Volume 54, pp. 19–46. Available online: http://www.springerlink.com/content/978-3-540-
69431-1/ (accessed on 9 January 2021). doi:10.1007/978-3-540-69432-8.

14. Case, B.; Lehre, P.K. Self-adaptation in non-Elitist Evolutionary Algorithms on Discrete Problems with Unknown Structure.
arXiv 2020, arXiv:2004.00327.

15. Baldi, P. Gradient descent learning algorithm overview: A general dynamical systems perspective. IEEE Trans. Neural Netw. 1995,
6, 182–195.

16. Ma, Y.A.; Chen, Y.; Jin, C.; Flammarion, N.; Jordan, M.I. Sampling Can Be Faster Than Optimization. arXiv 2018, arXiv:1811.08413.
17. Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the COMPSTAT’2010, Paris, France,

22–27 August 2010; Springer: Cham, Switzerland, 2010; pp. 177–186.
18. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
19. Young, S.R.; Rose, D.C.; Karnowski, T.P.; Lim, S.H.; Patton, R.M. Optimizing deep learning hyper-parameters through an

evolutionary algorithm. In Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments,
Austin, TX, USA, 15–20 November 2015; ACM: New York, NY, USA, 2015; p. 4.

20. Such, F.P.; Madhavan, V.; Conti, E.; Lehman, J.; Stanley, K.O.; Clune, J. Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning. arXiv 2017, arXiv:1712.06567.

21. Bezzel, M. Proposal of 8-queens problem. Berl. Schachzeitung 1848, 3, 1848.
22. Gupta, S.; Panwar, P. Solving Travelling Salesman Problem Using Genetic Algorithm. Int. J. Adv. Res. Comput. Sci. Softw. Eng.

2013, 3, 376–380.
23. Chu, P.C.; Beasley, J.E. A genetic algorithm for the multidimensional knapsack problem. J. Heuristics 1998, 4, 63–86.
24. Korejo, I.; Yang, S. A Comparative Study of Adaptive Mutation Operators for Genetic Algorithms. In Proceedings of the 8th

Metaheuristic International Conference, Hamburg, Germany, 13–16 July 2009.
25. Jeong, I.K.; Lee, J.J. Adaptive Simulated Annealing Genetic Algorithm for System Identification. Eng. Appl. Artif. Intell. 1996, 9,

doi:10.1016/0952-1976(96)00049-8.
26. Hinterding, R. Gaussian Mutation and Self-Adaptation for Numeric Genetic Algorithms. In Proceedings of the 1995 IEEE

International Conference on Evolutionary Computation, Perth, WA, Australia, 29 November–1 December 1995; Volume 1, p. 384,
doi:10.1109/ICEC.1995.489178.

27. Lee, C.Y.; Yao, X. Evolutionary Programming Using Mutations Based on the LÉvy Probability Distribution. Evol. Comput.
IEEE Trans. 2004, 8, 1–13, doi:10.1109/TEVC.2003.816583.

28. Hong, T.P.; Wang, H.S.; Chen, W.C. Simultaneously Applying Multiple Mutation Operators in Genetic Algorithms. J. Heuristics
2000, 6, 439–455, doi:10.1023/A:1009642825198.

29. Fan, Q.; Yan, X. Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation
strategies. IEEE Trans. Cybern. 2015, 46, 219–232.

30. Li, C.; Yang, S.; Korejo, I. An adaptive mutation operator for particle swarm optimization. Available online: https://bura.brunel.
ac.uk/handle/2438/5884 (accessed on 9 January 2021).

31. Yang, S., Adaptive Mutation Using Statistics Mechanism for Genetic Algorithms. In Proceedings of the International Confer-
ence on Innovative Techniques and Applications of Artificial Intelligence, Cambridge, UK, 13–15 December 2004; pp. 19–32,
doi:10.1007/978-0-85729-412-8_2.

32. Yang, S.; Etaner-Uyar, A. Adaptive mutation with fitness and allele distribution correlation for genetic algorithms.
In Proceedings of the 2006 ACM Symposium on Applied Computing, Dijon, France, 23–27 April 2006; Volume 2, pp. 940–944,
doi:10.1145/1141277.1141499.

33. Sarkar, U.; Nag, S. An Adaptive Genetic Algorithm for Solving N-Queens Problem. arXiv 2018, arXiv:1802.02006.
34. Hussain, A.; Muhammad, Y.S.; Nauman Sajid, M.; Hussain, I.; Shoukry, A.; Gani, S. Genetic Algorithm for Traveling Salesman

Problem with Modified Cycle Crossover Operator. Comput. Intell. Neurosci. 2017, 2017, 7430125, doi:10.1155/2017/7430125.
35. Patil, S.; Bhende, M. Comparison and analysis of different mutation strategies to improve the performance of genetic algorithm.

Int. J. Comput. Sci. Inf. Technol. 2014, 5, 4669–4673.
36. Zhan, S.H.; Lin, J.; Zhang, Z.J.; Zhong, Y.W. List-based simulated annealing algorithm for traveling salesman problem.

Comput. Intell. Neurosci. 2016, 2016, 1712630.
37. Hore, S.; Chatterjee, A.; Dewanji, A. Improving variable neighborhood search to solve the traveling salesman problem.

Appl. Soft Comput. 2018, 68, 83–91.
38. Xu, D.; Weise, T.; Wu, Y.; Lässig, J.; Chiong, R. An investigation of hybrid tabu search for the traveling salesman problem.

In Proceedings of the Bio-Inspired Computing-Theories and Applications, Hefei , China, 25–28 September 2015; Springer: Cham,
Switzerland, 2015; pp. 523–537.

39. O’Neil, M.A.; Burtscher, M. Rethinking the parallelization of random-restart hill climbing: A case study in optimizing a 2-opt
TSP solver for GPU execution. In Proceedings of the 8th Workshop on General Purpose Processing Using GPUs, San Francisco,
CA, USA, 7–8 February 2015; pp. 99–108.

40. Dawkins, R. The Selfish Gene; Oxford University Press: Oxford, UK, 1989.

http://www.springerlink.com/content/978-3-540-69431-1/
http://www.springerlink.com/content/978-3-540-69431-1/
https://doi.org/10.1007/978-3-540-69432-8
https://bura.brunel.ac.uk/handle/2438/5884
https://bura.brunel.ac.uk/handle/2438/5884

	Introduction
	Genetic Algorithm
	Locus Adaptive Genetic Algorithm
	Heuristically Partially Solvable Problems with Unknown Optimum
	Results
	N-Queens Problem
	Traveling Salesman Problems
	Using Locus Mutation with Other Heuristic Algorithms
	Exploiting the Tuning of the Power Parameter
	Running Time Comparison

	Conclusions
	References

