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Abstract: This work is concerned with the tuning of the parameters of Model Predictive Control (MPC)
algorithms when used for industrial tasks, i.e., compensation of disturbances that affect the process
(process uncontrolled inputs and measurement noises). The discussed simulation optimisation
tuning procedure is quite computationally simple since the consecutive parameters are optimised
separately, and it requires only a very limited number of simulations. It makes it possible to perform
a multicriteria control assessment as a few control quality measures may be taken into account. The
effectiveness of the tuning method is demonstrated for a multivariable distillation column. Two cases
are considered: a perfect model case and a more practical case in which the model is characterised
by some error. It is shown that the discussed tuning approach makes it possible to obtain very
good control quality, much better than in the most common case in which all tuning parameters
are constant.

Keywords: model predictive control; tuning of parameters; distillation column

1. Introduction

There are a few advanced control methods, including model reference adaptive con-
trol [1], fault-tolerant control [2], stochastic control [3], fuzzy control [4] and Model Predic-
tive Control (MPC) [5,6]. In particular, MPC algorithms make it possible to obtain excellent
control quality in the case of Multiple-Input Multiple-Output (MIMO) processes with
constraints. As a result, MPC methods have been used to numerous industrial processes [7],
e.g., chemical reactors [8], distillation columns [9], waste water treatment plants [10], solar
power stations [11], cement kilns [12], pasteurization plants [13] and pulp digesters [14].
In addition to that, MPC algorithms are more and more popular in other areas; example
applications are: fuel cells [15], active vibration attenuation [16], combustion engines [17],
robots [18], synchronous motors [19], mechanical systems [20], freeway traffic congestion
control [21] and autonomous driving [22].

Tuning of MPC is an important issue since a good choice of parameters is likely to sig-
nificantly increase control quality. The prediction and control horizons may be determined
taking into account the process dynamics, the possible sampling period of the controller
and the computational performance of the hardware platform used [23,24]. Additionally, it
is possible to use the automatic tuning methodology [25] in which a step response model
is experimentally obtained from the process, and the horizons are chosen using some
hands-on tuning rules. A thorough review on how to find proper MPC horizons was
given in [26]. On the other hand, the choice of numerous coefficients of the minimised
MPC cost function is always an issue. This task is particularly important in the case of
MIMO processes with strong interactions between the consecutive inputs and outputs.
A few tuning methods have been discussed in the literature. In some simple cases, it is
possible to explicitly calculate the tuning coefficients [27,28]. A tuning method based on the
Robust Performance Number (RPN) was described in [29]. It is also possible to dynamically
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calculate set-points for MPC to accommodate user-defined output importance [30]. Multi-
objective performance optimisation using the goal attainment approach was considered
in [31]. A thorough comparison of a few heuristic optimisation algorithms was reported
in [32] (the Particle Swarm Optimisation (PSO) method, the firefly algorithm, the grey
wolf optimiser and the Jaya algorithm were used). An application of the genetic algorithm
was described in [12], whereas the PSO algorithm used to find the parameters of MPC
with model uncertainty was considered in [33]. In general, the optimisation-based tuning
methods are very computationally demanding as there are numerous decision variables,
which means that a large number of simulations must be performed. As a practical solution,
a relatively computationally simple simulation optimisation tuning method presented
in [34] may be used. It needs only a very limited number of simulations. The considered
tuning method was discussed in [35] for the MPC employed for vehicle obstacle avoidance.

The tuning method discussed in [34] typically uses step set-point changes. In this work,
a more industrially practical scenario is considered, i.e., compensation of disturbances that
affect the process. The disturbances considered include process uncontrolled inputs and
measurement noises. For a MIMO distillation column, the tuning procedure is detailed.
Two cases are considered: a perfect model case and a more practical case in which the
model is characterised by some error. It is shown that the discussed tuning approach makes
it possible to use very good control quality, much better than in the most common case
in which all tuning parameters are constant. The multicriteria control assessment is used
since the control quality is assessed taking into account three factors: the sum of squared
errors, the Huber standard deviation and the entropy [36,37].

The article is structured in the following way. First, in Section 2, the MPC task and its
tuning parameters are recalled. Next, in Section 3, the tuning procedure is detailed, and the
indicators used for control quality assessment are defined. Section 4 reports an application
of the considered method for a MIMO distillation process with industrial disturbances.
Finally, Section 5 summarises the article.

2. MPC Problem Formulation

In this work, we deal with MIMO processes that have as many as nu manipulated
variables (inputs) and ny controlled variables (outputs). Hence, the following vectors are

used: u = [u1 . . . unu ]
T and y =

[
y1 . . . yny

]T
. At each discrete sampling instant, k = 0, 1, . . .,

the MPC algorithm calculates on-line the vector of decision variables, which is defined by
the increments of the future manipulated variables [6]:

4u(k) =

 4u(k|k)
...

4u(k + Nu − 1|k)

 (1)

where Nu is the control horizon. The MPC decision variables (1) are found as a result of a
computational procedure in which the predicted control quality is optimised. An example
of the minimised MPC cost function is:

J(k) =
N

∑
p=1

ny

∑
n=1

ψp,n

(
ysp

n (k + p|k)− ŷn(k + p|k)
)2

+
Nu−1

∑
p=0

nu

∑
n=1

λp,n(4un(k + p|k))2 (2)
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The first part of the cost function measures the control errors predicted over the predic-
tion horizon N. The set-points and predicted values for the future sampling instant k + p
known at the sampling instant k are denoted by ysp

n (k + p|k) and ŷn(k + p|k), respectively,
for all process outputs, i.e., n = 1, . . . , ny. The role of the second part of the cost function
is to minimise unwanted big changes of the manipulated variables. In some applications
for the cost function (2), the predicted squared values of the future manipulated variables
may be also taken into account. The tuning coefficients are: ψp,n ≥ 0 for p = 1, . . . , N,
n = 1, . . . , ny and λp,n > 0 for p = 0, . . . , Nu − 1, n = 1, . . . , nu. Typically, the penalties
λp,n are chosen in such a way that the manipulated variables do not change rapidly. As
far as the coefficients ψp,n are concerned, the choice is more difficult. This is because these
coefficients prioritise the predicted control errors of the consecutive controlled variables.
Additionally, predicted control errors for different sampling instants over the prediction
horizon may be taken into account in a different way. In practice, however, for simplicity,
all coefficients ψp,n are set to a constant value. Unfortunately, as is shown in Section 4, this
may deteriorate the resulting control quality. The cost function (2) may be conveniently
rewritten in a compact form:

J(k) =
N

∑
p=1
‖ysp(k + p|k)− ŷ(k + p|k)‖2

Ψp
+

Nu−1

∑
p=0
‖4u(k + p|k)‖2

Λp
(3)

where the set-point vector for the sampling instant k + p is denoted by ysp(k + p|k), the pre-
dicted vector of the output variables for the sampling instant k + p is denoted by ŷ(k + p|k)
and both vectors are of length ny. The semidefinite-positive matrix Ψp = diag(ψp,1, . . . , ψp,ny)
is of dimensionality ny × ny, and the definite-positive matrix Λp = diag(λp,1, . . . , λp,nu) is
of dimensionality nu× nu. In practice, we usually consider some constraints put on process
variables. The typical rudimentary MPC optimisation problem is:

min
4u(k)

{
J(k) =

N

∑
p=1
‖ysp(k + p|k)− ŷ(k + p|k)‖2

Ψp
+

Nu−1

∑
p=0
‖4u(k + p|k)‖2

Λp

}
subject to: (4)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

4umin ≤ 4u(k + p|k) ≤ 4umax, p = 0, . . . , Nu − 1

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N

where the vectors umin and umax define the minimal and maximal values of the manipulated
variables, respectively, the vectors 4umin and 4umax define the minimal and maximal
changes of the manipulated variables, respectively, and the vectors ymin and ymax define
the minimal and maximal predicted values of the controlled variables, respectively. In spite
of the fact that as many as nuNu decision variables (1) are computed at every sampling
instant k, only the first nu of them are actually applied to the process; in the consecutive
sampling instants, the whole calculation procedure is repeated.

In this work, the Dynamic Matrix Control (DMC) algorithm [38] is considered. A char-
acteristic feature of the DMC algorithm is the fact that for prediction, i.e., to calculate the
scalars ŷn(k + p|k) or the vectors ŷ(k + p|k), a discrete-time step-response model of the
controlled process is used. The model may be obtained in a very simple way from the real
process; no complicated identification algorithms need be used, which is a huge advantage.
Since the step-response model is linear in terms of the manipulated variables, minimisation
of the MPC optimisation task (4) is, in fact, a quadratic optimisation problem. Details
related to the implementation of the DMC algorithm for MIMO processes may be found
in [6].
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3. MPC Tuning Procedure

When all parameters ψp,n for p = 1, . . . , N, n = 1, . . . , ny are optimised at the same
time, the optimisation problem has as many as nyN decision variables [12,32,33]. For typical
lengths of the prediction horizon and a few controlled variables, the resulting optimisation
problem is quite difficult. In order to simplify the computational task, the discussed tuning
method is based on the following two rules:

• The tuning coefficients for only one manipulated variable are calculated at the same
time, i.e., ψ1,n, . . . , ψN,n, for the consecutive process outputs n = 1, . . . , ny.

• If all the coefficients ψ1,n, . . . , ψN,n were optimised directly at the same time by a nu-
merical optimisation procedure, we still would have as many as N decision variables.
As an alternative, that sequence of coefficients is parameterised using Gauss-like
functions [34]. At first, a very general approximation of the Gauss function is used in
which for one point, the function has a value of Kn; for all other points, it has a default
value equal to one:

ψp,n =

{
Kn if p = mn

1 if p 6= mn
(5)

The function (5) is characterised by two parameters: mn and Kn. The first one defines
the chosen sampling instant within the prediction horizon for which the function has
the value of Kn. When the parameters mn and Kn are selected, the trajectory of the
weights is calculated precisely from the Gauss function:

ψp,n = Kn exp

(
−
(

p−mn

an

)2
)

(6)

where an defines the spread.

All things considered, irrespective of the number of process outputs and the prediction
horizon, in the discussed approach, there are always only three decision variables: mn, Kn
and an. What is important is that they are not calculated at the same time, but always, only
one parameter is found. Calculations are repeated for all process outputs, n = 1, . . . , ny. Un-
like fully-fledged optimisation-based tuning methods, in our simulation-based approach,
we simply assess how the consecutive parameters influence the value of the performance
indices, and we choose the parameters for which the best results are possible. No numerical
optimisation is used, but we simply evaluate the values of control the performance indices
for a chosen set of tuning parameters. Of course, our procedure is suboptimal, i.e., one may
expect that full numerical optimisation of all tuning parameters at the same time may give
better results, but our procedure is deliberately rather uncomplicated and is recommended
to be used in industrial applications in which all tuning parameters are usually constant.

The tuning procedure is comprised of the following steps:

1. The trajectory of the N coefficients ψ1,n, . . . , ψN,n is found for the controlled variable n.
All other coefficients are tuned or have their default value.

(a) The best trajectory (5) is found, i.e., its parameters mn and Kn are determined.

i. The constant value of the parameter Kn is assumed. Its value has to be
larger than one, and it should result in a noticeable change in control
quality in comparison with the control quality achieved for the scenario
in which all coefficients ψp,n = 1.

ii. The performance indices are calculated from simulations of the MPC
algorithm for a few values of the parameter mn. It is recommended to
start the tests from mn = N/2 and analyse the results obtained in some
neighbourhood of this value first.



Algorithms 2021, 14, 10 5 of 15

iii. The value of the parameter mn is chosen for which the performance
indices are the best.

iv. For the chosen value of mn, the performance indices are calculated from
the simulations of the MPC algorithm for a few values of the parameter
Kn. This step should start with the values of the parameter that are
lower than those assumed in the first step. Next, it is increased. It is
recommended not to choose too large values of Kn as this may result in
dangerously large values of the manipulated variables.

v. The value of the parameter Kn is chosen for which the performance
indices are the best.

(b) The best trajectory (6) is found, i.e., its parameter an is determined.

i. The selected parameters mn and Kn are used.
ii. The performance indices are calculated from the simulations of the MPC

algorithm for a few values of the parameter an. It is recommended to
perform simulations starting from relatively low values of the parameter,
e.g., an = 1, and slowly increase it until it is clear that any further
increment results in no improvement of control quality.

iii. The value of the parameter an is chosen for which the performance
indices are the best.

2. Tuning is repeated for the consecutive manipulated variables, for n = 1, . . . , ny, i.e.,
the algorithm goes to Step 1.

Having completed the above procedure, the values of the coefficients ψ1,n, . . . , ψN,n are
calculated from Equation (6) for the found parameters an, Kn and mn, for all n = 1, . . . , ny.
The flowchart of the tuning procedure is depicted in Figure 1.

Let us define the control error for the sampling instant k and process output n:

en(k) = ysp
n (k)− yn(k) (7)

Although different performance criteria may be used to assess control accuracy, in this
work, we use the multicriteria approach based on the following three indicators [36,39]:

• the Sum of Squared Errors (SSEn) of the control error en,
• the Huber standard deviation σn of the control error en,
• the rational entropy Hn of the control error en.

The above indicators are calculated for all n = 1, . . . , ny controlled variables.
In addition to the Gauss function (6), the application of other functions such as bell-

shaped, triangular and trapezoidal ones was studied in [34]. The tuning procedure is
similar, i.e., we do not optimise all parameters at the same time, but the influence of the
consecutive parameters is analysed, while the best ones are chosen. It turns out that the
proposed Gauss function results in the best control quality. This conclusion is based on the
authors’ experiences with various MPC control algorithms, applied to a few Single-Input
Single-Output (SISO) and MIMO processes.
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Figure 1. The flowchart of the tuning procedure.
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4. Simulation Results

The discussed tuning method is verified in the control system of a simulated binary
distillation column, which separates a two component mixture of water and methanol.
The linear approximation of the process (scaled) is described by the following transfer
function model introduced by Wood and Berry [40]:

[
Y1(s)
Y2(s)

]
=


12.8e−s

16.7s + 1
−18.9e−3s

21s + 1
6.6e−7s

10.9s + 1
−19.4e−2s

14.4s + 1

[ U1(s)
U2(s)

]
+


3.8e−8s

14.9s + 1
4.9e−3s

13.2s + 1

F(s) (8)

The controlled variables, Y1 and Y2, are: the top product (distillate) composition and
the bottom product composition, respectively. The manipulated variables, U1 and U2, are:
the reflux flow rate and the vapour flow, respectively. The uncontrolled process input (the
disturbance), F, is the flow rate of the input stream. All variables are deviations from a
typical operating point, and all variables are dimensionless.

The sampling time of MPC is 1 min. To obtain a discrete process representation
that is used to determine the step-response model necessary for prediction in the DMC
algorithm [6], we use the forward Euler method and the zero-order holder. As a result, the
following transfer function representation of the model (8) is obtained:

[
Y1(z)
Y2(z)

]
=


0.7440z−2

1− 0.9419z−1
−0.8789z−4

1− 0.9535z−1

0.5786z−8

1− 0.9123z−1
−1.3015z−3

1− 0.9329z−1


[

U1(z)
U2(z)

]
+


0.2467z−9

1− 0.9351z−1

0.3575z−4

1− 0.9270z−1

F(z) (9)

A resulting step-response model is obtained and next used for prediction in the DMC
algorithm [6].

The horizons used in the DMC algorithm are: the prediction horizon N = 30, the
control horizon Nu = 5 and the horizon of process dynamics D = 100 (the horizon
of process dynamics is the number of step-response coefficients taken into account by
the model used in the DMC algorithm) [39]. All values of the weights that penalise the
excessive increments of the manipulated variables, i.e., λp,n, are equal to one. In this work,
the objective of the controller is to effectively compensate the influence of three types of
disturbances: changes of the flow rate of the input stream F, as well as the measurement
noise of the first and the second process outputs, denoted as δ1 and δ2, respectively. As
many as 600,000 min (samples) are considered, i.e., approximately 417 days. It must be
emphasised that in this work, the disturbances are not generated artificially, but real
industrial disturbances recorded in a distillation process are used [39]. All 600,000 samples
of the disturbances are shown in Figure 2.
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0
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Figure 2. All 600,000 samples of the disturbances.
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All coefficients λp,n = 1 for p = 0, . . . , Nu− 1, n = 1, . . . , nu [39]. The problem to solve
is to carefully select the tuning parameters ψp,n for p = 1, . . . , N, n = 1, . . . , ny. For this
purpose, the tuning procedure presented in Section 3 is used.

Let us first concentrate on tuning the coefficients ψp,1, i.e., for the first process output,
p = 1, . . . , N. Initially, the trajectory of the weights ψp,1 is parameterised by means of
Equation (5), which is characterised by the parameters m1 and K1. In the first step of the
tuning procedure, the influence of the coefficient m1 on the performance criteria SSE1, SSE2,
σ1, σ2, H1 and H2 is analysed, and the results are shown in Figure 3. We take into account
all three criteria for the first process output, i.e., the indices SSE1, σ1 and H1, and we choose
the value m1 = 2 because it gives the best control quality. Next, for the chosen parameter
m1 = 2, in the second step, we assess the influence of the parameter K1, and it is shown
in Figure 4. It is clear that the best results are obtained for K1 = 100. Finally, the trajectory
of the weights ψp,1 is parameterised by means of Equation (6), which is characterised by
the parameter a1 as well as the fixed parameters m1 and K1. Figure 5 depicts the influence
of the parameter a1 on the considered performance indices. The best set of control quality
criteria is obtained for a1 = 2.
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10

6

0 10 20 30
0.7

0.8

0.9

1

1.1

0 10 20 30

35

40
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55

Figure 3. The first step of tuning the coefficients ψp,1: the influence of the coefficient m1 on the
performance criteria SSE1, SSE2, σ1, σ2, H1 and H2 (for all 600,000 samples).
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Figure 4. The second step of tuning the coefficients ψp,1: the influence of the coefficient K1 on the
performance criteria SSE1, SSE2, σ1, σ2, H1 and H2 (for all 600,000 samples).
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Figure 5. The third step of tuning the coefficients ψp,1: the influence of the coefficient a1 on the
performance criteria SSE1, SSE2, σ1, σ2, H1 and H2 (for all 600,000 samples).

Next, having tuned the coefficients ψp,1, let us concentrate on tuning the coefficients
ψp,2, i.e., for the second process output, p = 1, . . . , N. In the first step of the tuning proce-
dure, the influence of the coefficient m2 on the performance criteria is analysed, and the
results are shown in Figure 6. We take into account all three criteria for the first process
output, i.e., the indices SSE2, σ2 and H2. We easily find the best value m2 = 3. Next, for the
chosen parameter m2 = 3, in the second step, we assess the influence of the parameter K2,
and it is shown in Figure 7. It is clear that the best results are obtained for K1 = 100. Finally,
Figure 8 depicts the influence of the parameter a1 on the considered performance indices.
The best results are obtained for a2 = 1.
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Figure 6. The first step of tuning the coefficients ψp,2: the influence of the coefficient m2 on the
performance criteria SSE1, SSE2, σ1, σ2, H1 and H2 (for all 600,000 samples).
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Figure 7. The second step of tuning the coefficients ψp,2: the influence of the coefficient K2 on the
performance criteria SSE1, SSE2, σ1, σ2, H1 and H2 (for all 600,000 samples).
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Figure 8. The third step of tuning the coefficients ψp,2: the influence of the coefficient a2 on the
performance criteria SSE1, SSE2, σ1, σ2, H1 and H2 (for all 600,000 samples).

All things considered, the coefficients ψp,1 are characterised by the set of parameters
m1 = 2, K1 = 100 and a1 = 2, while the coefficients ψp,2 by the parameters m2 = 3,
K2 = 100 and a1 = 1. The actual values of the coefficients used in MPC optimisation are
computed from Equation (6).

To evaluate the efficiency of the chosen parameters ψp,1 and ψp,2, let us consider the
values of all six performance criteria. We not consider only the found coefficients, but
additionally, we take into account the most practically cases in which all coefficients are
constant, i.e., ψp,1 = ψp,2. In the latter case, we consider six values of the coefficients: 0.1,
1, 10, 100, 1000 and 10,000. The values of the obtained performance criteria are given in
Table 1. For almost all considered indices (the only exception is σ2, but the difference is
not significant), the discussed tuning method gives the best results. For constant weights
ψp,1 = ψp,2 greater than 10,000, the results do not change.

Let us now consider histograms of the control errors for constant values of the coef-
ficients ψp,1, ψp,2 = 0.1, 1, 10 and for the tuned ones. They are shown in Figure 9. Two
observations are possible. Firstly, our tuning method gives the most narrow histograms.
Secondly, they do not have long “tails”, which means that our method eliminates large
negative and positive control errors. Figure 10 depicts the first 1000 samples of the control
errors for constant values of the coefficients ψp,1, ψp,2 = 0.1, 1, 10 and for the tuned ones.
The obtained trends confirm the observations made on the basis of the histograms, i.e., our
tuning method gives the best control quality.

Table 1. The values of the considered control quality indices for different constant parameters ψp,1, ψp,2, as well as for the
tuned one (for all 600,000 samples).

Parameters SSE1 SSE2 σ1 σ2 H1 H2

ψp,1 = ψp,2 = 0.1 3.91× 106 2.69× 106 1.36 1.0489 6.58× 101 5.80× 101

ψp,1 = ψp,2 = 1 2.21× 106 1.73× 106 1.02 8.23× 10−1 4.94× 101 4.63× 101

ψp,1 = ψp,2 = 10 1.52× 106 1.39× 106 8.48× 10−1 7.32× 10−1 4.08× 101 4.14× 101

ψp,1 = ψp,2 = 100 1.31× 106 1.27× 106 7.87× 10−1 6.92× 10−1 3.85× 101 3.95× 101

ψp,1 = ψp,2 = 1000 1.28× 106 1.25× 106 7.79× 10−1 6.85× 10−1 3.83× 101 3.94× 101

ψp,1 = ψp,2 = 10, 000 1.28× 106 1.25× 106 7.78× 10−1 6.85× 10−1 3.82× 101 3.92× 101

ψp,1, ψp,2 tuned 9.62× 105 1.23× 106 6.74× 10−1 6.99× 10−1 3.32× 101 3.91× 101



Algorithms 2021, 14, 10 11 of 15

-60 -40 -20 0 20 40 60
10

1

10
2

10
3

10
4

10
5

10
6

-60 -40 -20 0 20 40 60
10

1

10
2

10
3

10
4

10
5

10
6

Figure 9. The histograms of the control errors for constant values of the coefficients ψp,1, ψp,2 = 0.1, 1, 10 and
for the tuned ones (for all 600,000 samples).
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Figure 10. The first 1000 samples of the control errors for constant values of the coefficients ψp,1,
ψp,2 = 0.1, 1, 10 and for the tuned ones.

In the second part of the simulations, we use the obtained set of tuning coefficients,
but all gains of all input-output process channels are increased by 20%. Such a case is partic-
ularly interesting since the model used in MPC is (practically) never perfect. Table 2 shows
the values of all six performance criteria. Additionally, we consider six cases in which all
coefficients are constant and have the values 0.1, 1, 10, 100, 1000 and 10,000, respectively. For
almost all considered indices (the only exception is σ2, but the difference is not significant),
the discussed method gives the best results. For constant weights ψp,1 = ψp,2 greater than
10,000, the results do not change.

The histograms of the control errors are given in Figure 11, and Figure 12 depicts the
first 1000 samples of the control errors. Similar to the perfect model case (Figures 9 and 10),
our tuning method gives the best results.

Table 2. The values of the considered control quality indices for different constant parameters ψp,1, ψp,2, as well as for the tuned one
(the imprecise model case, for all 600,000 samples).

Parameters SSE1 SSE2 σ1 σ2 H1 H2

ψp,1 = ψp,2 = 0.1 2.73× 106 1.88× 106 1.14 8.77× 10−1 5.55× 101 4.84× 101

ψp,1 = ψp,2 = 1 2.21× 106 1.73× 106 1.02 8.23× 10−1 4.94× 101 4.63× 101

ψp,1 = ψp,2 = 10 1.06× 106 9.67× 105 7.07× 10−1 6.10× 10−1 3.43× 101 3.48× 101

ψp,1 = ψp,2 = 100 9.12× 105 8.85× 105 6.56× 10−1 5.77× 10−1 3.25× 101 3.35× 101

ψp,1 = ψp,2 = 1000 8.94× 105 8.73× 105 6.50× 10−1 5.71× 10−1 3.23× 101 3.34× 101

ψp,1 = ψp,2 = 10, 000 8.92× 105 8.72× 105 6.49× 10−1 5.71× 10−1 3.19× 101 3.27× 101

ψp,1, ψp,2 tuned 6.68× 105 8.59× 105 5.62× 10−1 5.83× 10−1 2.75× 101 3.27× 101
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Figure 11. The histograms of the control errors for constant values of the coefficients ψp,1, ψp,2 = 0.1, 1, 10
and for the tuned ones (the imprecise model case, for all 600,000 samples).
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Figure 12. The first 1000 samples of the control errors for constant values of the coefficients ψp,1,
ψp,2 = 0.1, 1, 10 and for the tuned ones (the imprecise model case).

5. Conclusions

For MIMO processes, the classical optimisation approaches to finding the tuning pa-
rameters of MPC algorithms require very long vectors of decision variables. The resulting
parameter optimisation task may be solved in simulations using some heuristic optimisa-
tion algorithms [12,32,33], but the huge computational complexity of such an approach
in practice is an issue (the number of decision variables is large). This work presents a
computationally simple approach to tuning of MPC parameters. The coefficients are not
optimised directly, but they are parameterised. Moreover, the parameters are not calculated
at the same time, but always, only one parameter is optimised. Multicriteria control qual-
ity assessment is possible. In this work, the following three indices are used: the sum of
squared errors, the Huber standard deviation and the rational entropy. Unlike fully-fledged
optimisation-based tuning methods, in our simulation-based approach, we simply assess
how the consecutive parameters influence the value of the performance indices, and we
choose the parameters for which the best results are possible. No numerical optimisation
is used. The resulting tuning procedure is suboptimal, but our procedure is deliberately
rather uncomplicated and is recommended to be used in industrial applications in which
all tuning parameters are usually constant.

The efficiency of the discussed tuning method is demonstrated for a simulated MIMO
distillation column. The classical process control task is considered, which is the compen-
sation of the influence of the disturbances. It is shown that the discussed tuning method
makes it possible to find the parameters that result in very good control quality, better than
in the case of classical equal and large parameters. It is also shown that the determined set
of parameters yields good control also in the imperfect model case.
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Finally, let us stress the fact that our tuning method may be used to find parameters of
numerous types of MPC algorithms. Classical MPC schemes based on linear models [6],
as well as nonlinear ones [41] may be taken into account. Additionally, the constraints of
different kinds may be included in the MPC optimisation problem.
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Nomenclature

an the spread of the Gauss function
en the control error of the nth process output
J(k) the MPC cost function
Kn the parameter that defines the maximum value of the

functions (5) and (6)
MIMO Multiple-Input Multiple-Output
mn the parameter that defines for which sampling instant p

the Functions (5) and (6) have the value of Kn
N the prediction horizon
Nu the control horizon
nu the number of process inputs
ny the number of process outputs
SISO Single-Input Single-Output
umin, umax the vectors that define the minimal and maximal values

of the process inputs
ŷn(k + p|k), ŷ(k + p|k) the predicted value for the nth process output and the

predicted vector for the sampling instant k + p calculated
at the current sampling instant k

ysp
n (k + p|k), ysp(k + p|k) the set point value for the nth process output and the

set-point vector for the sampling instant k + p known at
the current sampling instant k

ymin, ymax the vectors that define the minimal and maximal pre-
dicted values of the process outputs

4un(k + p|k),4u(k + p|k) the increment of the nth process input and the increment
of the input vector for the sampling instant k + p calcu-
lated at the current sampling instant k

4u(k) decision variable vector of the MPC algorithm
4umin,4umax the vectors that define the minimal and maximal changes

of the process inputs
Λp the weighting matrix related to the change of the signal

4u(k + p|k)
λp,n the weighting coefficient related to the change of the sig-

nal4un(k + p|k)
Ψp the weighting matrix related to the predicted control error

ysp(k + p|k)− ŷ(k + p|k)
ψp,n the weighting coefficient related to the predicted control

error ysp
n (k + p|k)− ŷn(k + p|k)
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