
algorithms

Article

Feasibility Analysis and Application of
Reinforcement Learning Algorithm Based on
Dynamic Parameter Adjustment

Menglin Li , Xueqiang Gu *, Chengyi Zeng and Yuan Feng

College of Intelligence Science and Technology, National University of Defense Technology,
Changsha 410073, China; limenglin18@nudt.edu.cn (M.L.); zengchengyi08@nudt.edu.cn (C.Z.);
fengyuan18@nudt.edu.cn (Y.F.)
* Correspondence: xueqiang_gu@nudt.edu.cn

Received: 22 August 2020; Accepted: 16 September 2020; Published: 22 September 2020
����������
�������

Abstract: Reinforcement learning, as a branch of machine learning, has been gradually applied in the
control field. However, in the practical application of the algorithm, the hyperparametric approach to
network settings for deep reinforcement learning still follows the empirical attempts of traditional
machine learning (supervised learning and unsupervised learning). This method ignores part of
the information generated by agents exploring the environment contained in the updating of the
reinforcement learning value function, which will affect the performance of the convergence and
cumulative return of reinforcement learning. The reinforcement learning algorithm based on dynamic
parameter adjustment is a new method for setting learning rate parameters of deep reinforcement
learning. Based on the traditional method of setting parameters for reinforcement learning,
this method analyzes the advantages of different learning rates at different stages of reinforcement
learning and dynamically adjusts the learning rates in combination with the temporal-difference (TD)
error values to achieve the advantages of different learning rates in different stages to improve
the rationality of the algorithm in practical application. At the same time, by combining the
Robbins–Monro approximation algorithm and deep reinforcement learning algorithm, it is proved
that the algorithm of dynamic regulation learning rate can theoretically meet the convergence
requirements of the intelligent control algorithm. In the experiment, the effect of this method is
analyzed through the continuous control scenario in the standard experimental environment of
”Car-on-The-Hill” of reinforcement learning, and it is verified that the new method can achieve better
results than the traditional reinforcement learning in practical application. According to the model
characteristics of the deep reinforcement learning, a more suitable setting method for the learning
rate of the deep reinforcement learning network proposed. At the same time, the feasibility of the
method has been proved both in theory and in the application. Therefore, the method of setting the
learning rate parameter is worthy of further development and research.

Keywords: reinforcement learning; control system; parameter adjustment

1. Introduction

Reinforcement learning, as the main branch of machine learning, has been widely used in the field
of control. Due to its strong real-time performance and adaptability, it can reach or even surpass the
capability of traditional control algorithms in many fields [1]. Compared with designing the controller
by the traditional learning method, reinforcement learning learns the optimal strategy step by step
through the simulation experiment. Its model setting is usually defined as dynamic programming,
so it is more suitable for the real-time and dynamic control system. Especially in the face of complex

Algorithms 2020, 13, 239; doi:10.3390/a13090239 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-3307-5490
http://www.mdpi.com/1999-4893/13/9/239?type=check_update&version=1
http://dx.doi.org/10.3390/a13090239
http://www.mdpi.com/journal/algorithms


Algorithms 2020, 13, 239 2 of 16

nonlinear real-time systems, such as air traffic control and automatic manufacturing systems, it is
difficult for researchers to work out an appropriate control system, which requires the use of a system
with online learning ability [1,2] for processing.

Reinforcement learning interacts with the environment through agents (control objects),
sampling the currently defined environment states and actions in different states. For existing
states and state-action pairs, the algorithm evaluates by defining value functions. In other words,
the reinforcement learning is a process in which agents interact with the environment to generate
actual returns and the state function and action function are iterated continuously to obtain the optimal
strategy and maximize the cumulative reward [1]. Since this process relies on the reinforcer and is
similar to the learning process of animals [3], it is called reinforcement learning.

It has become a mainstream method of reinforcement learning to use a deep neural network [4,5]
as a value function fitter. With the continuous maturity of network frameworks such as Tensorflow [6]
and Pytorch [7], network construction has become a fixed process. Network setup and hyperparameter
selection have also become process based on experience. The network structure and application of
deep reinforcement learning have their particularity. However, the mode of parameter regulation is
still the empirical and attempted regulation in the neural network. At present, the parameter setting of
an intelligent controller based on reinforcement learning is mostly regulated by empirical setting and
result feedback. In this paper, the effect of the learning rate on the performance of deep reinforcement
learning algorithm is discussed. In the models of supervised learning and unsupervised learning,
we can judge and adjust the learning rate according to the fitting degree of the final objective function.
However, in reinforcement learning, the target function is dynamic. Because agents also need to rely
on algorithms to explore strategies and further optimize their targets to update network parameters.
Therefore, the error of the network update also contains the information of the agent to explore the new
strategy. However, at present, we still use similar models of supervised learning and unsupervised
learning in the setting of learning rate in the model of realizing deep reinforcement learning, which can
be seen in Figure 1. It will result in the loss of the agent’s information in the search for the optimal
strategy and ultimately affect the cumulative return effect of the algorithm. We believe that if we
can effectively use this part of the information hidden in the deep reinforcement learning model,
then we can optimize the existing model. Because reinforcement learning has dynamic programming
characteristics, we think it is unreasonable to use the method similar to supervised learning directly [8].
More importantly, the network structure of deep reinforcement learning also relies on the learning rate
parameter to adjust the stability and exploration ability [9] of the algorithm. Therefore, we believe that
using the same learning rate in different stages is not reasonable for reinforcement learning.

Figure 1. Traditional ways of strengthening learning and adjusting the learning rate.

At the same time, the setting of the learning rate is closely related to the stability of the
algorithm performance in both supervised learning and unsupervised learning and deep reinforcement
learning. Especially in deep reinforcement learning, the adjustment method used now only considers
the accumulated rewards, as the feedback signal of parameter adjustment is unreasonable [10].
Although some learning rates cannot be compared with the current “optimal” learning rate, they have
advantages in other performances, such as the learning speed of the algorithm’s early income strategy.



Algorithms 2020, 13, 239 3 of 16

Therefore, we consider that if the advantages of different learning rates can be combined, the algorithm
may be able to achieve better results than the traditional learning rate method to some extent.

This paper puts forward a parameter setting method of dynamically adjusting the
learning rate based on temporal-difference (TD) learning by analyzing the model theory of
reinforcement learning. This method has a more setting basis than the traditional setting process of
“guessing-adjustment-contrast-adjustment” [8,9]. At the same time, this method can use reinforcement
learning to explore the potential information in a better strategy and dynamically adjust the learning
rate. It can be seen in Figure 2. Theoretically, we provide the basis for the convergence of the proposed
algorithm by combining the Robbins–Monro approximation algorithm [11]. Then, experiments show
that the controller “rationality” of the algorithm is improved. At the same time, we also prove that
the results obtained by the proposed algorithm are significantly improved in terms of rationality
and convergence. This not only provides a paradigm for setting parameters, but also improves the
performance of the algorithm.

Figure 2. A new dynamic learning rate adjustment framework is more suitable for deep
reinforcement learning.

Different from traditional reinforcement learning setting parameters, this paper puts forward the
vector, dynamically adjusting the train of thought and theoretical basis for the reinforcement learning
controller design, and provides a new idea and the basis for a dynamic state vector evaluation that
also deserves further research.

The arrangement of this paper is as follows: In Section 2, we will explain the train of thought
and theoretical basis for adjusting the setting of the learning rate. In Section 3 we will show the
results of dynamically adjusting the learning rate. In Section 4, the process of dynamic adjustment is
summarized and the prospect of this method is explored.

2. Temporal-Difference Learning

Different from the turn-based games [12], the control objects of controllers in practical applications
are mostly continuous control rather than turn-based control. Therefore, compared with iterative
updating based on the turn-based system, temporal-difference iteration has more advantages [13].
At the same time, the process of sequential difference iteration is more similar to the dynamic
programming process in which people dynamically process and adjust the planning to achieve the
task under the limitation of the given goal.



Algorithms 2020, 13, 239 4 of 16

A more intuitive example: Suppose the guest is going to be at home at a certain time, and you
need to prepare for it. You have to go to the supermarket, the butcher, and the winery. Based on
experience, you know the estimated driving time between all destinations. You think you can complete
the shopping in the last two stores in ten minutes. Because of the congestion, you assume it takes
60 min to get to the supermarket. Therefore, you and the guest make an appointment to meet at home
at noon. Let us say you get to the supermarket, it takes you 10 min to finish your shopping, and you
get home in 20 min. However, on the way from the butcher to the winery, you find the traffic is heavy,
so it takes you 30 min to get home. You end up arriving home 10 min later than you had predicted.
This example illustrates the dynamic adjustment capability of the TD Learning. After you get the value
update between the two steps, you can dynamically adjust the “home time”. This means that existing
estimates can be adjusted each time based on existing observations. There is no need to update after
the end of the turn along with the actions taken and the value gained.

In theory, TD learning is a bootstrapping method of estimation [14,15]. This method has great
advantages in dynamic programming. Its model naturally forms beggar’s online, incremental learning.
This makes this approach useful not only for turn-based games but also for actual non-turn-based
control objects. At the same time, this method does not need to scan the whole state space, but only
needs to update the traversed path incrementally.

Q learning [16,17] is a typical sequential difference learning algorithm, and it can also seem like a
paradigm [18,19]. The core of the algorithm is to minimize the gap between the estimated value and
the actual value. It can be expressed as a normal Equation (1):

Vt (s) = Vt (s) + α
(
r + γVt

(
s′
)
−Vt (s)

)
(1)

where V is a state-valued function. t is the mark of time. s represents the observed state s of the agent
at time t. s′stands for the state the agent is likely to move to at the next moment. ris the timely reward
agent recieved when the state s is transferred to s′. The same symbols in the following text have the
same meaning.

In fact, most algorithms in TD Learning can be represented by such a normal form. It is just
that there is a difference at the core of the algorithm. α is the learning rate, and its size determines
the learning effect. However, most of the current algorithms cannot provide the setting rules of each
parameter of the algorithm. At present, most experiments and environments use empirical methods
to test the learning rate of the algorithm. This makes it difficult to ensure that the hyperparameters
used in the algorithm can achieve the desired effect or optimal performance. Meanwhile, the learning
rate of the algorithm is now only related to the final goal of the controlled object. In other words,
the algorithm uses constructional parameters that only guarantee that the computation will accrue
more returns.

Indeed, the cumulant of the reward value is a significant factor in evaluating the rationality of the
algorithm. However, this way of designing parameters ignores the “convergence” of the algorithm.
In our experiment, it is found that different parameters in different stages of training also have a
great influence on the convergence of the algorithm. It can be considered that the learning rate of the
algorithm affects the cumulative return and convergence performance of the algorithm at the same
time. Therefore, we need a reasonable way to decouple their effects and optimize them simultaneously.

Therefore, this paper presents a dynamic adjustment algorithm using a learning rate method.
By using a mapping method, the TD loss in reinforcement learning is used as an evaluation index,
and the learning rate used by the algorithm is dynamically adjusted during online learning.

3. The Method of Dynamic Adjustment Learning Rate and Convergence Proof

The basic framework of a reinforcement learning is modeled on the Markov Decision Process
(MDP) [20]. This is the basis for our analysis. Quaternions 〈S, A, P, R〉 are commonly used to describe
the MDP. S is a finite set of states for all the actions contained by the Agent; A is the limited space



Algorithms 2020, 13, 239 5 of 16

of the Agent’s action; actions are used to control state transitions in the system. P is defined as
S× A× S→ [0, 1], R is defined as the reward function R : S× A× S→ R. Pa

ss′ : S× A× S′ → [0, 1] is
the probability that the Agent will turn from S to S′ after performing the action A.Ra

ss′ : S× A× S→ R.
Ra

ss′ : S × A × S → R represents the rewards that the system gives to the agent after the agent
executes action a and the system changes from state s to state s′. The policy defines the behavior
of agents in a given state and determines the actions of agents. π : S × A → [0, 1], π (s, a) is the
probability of executing action a in state s. In the MDP, it also defines two kinds of value functions
(value function): State PI value function Vπ (s) (state value function) and state-action value function
Qπ (s, a) (state-action value function). Vπ (s) represents the expected rewards of the agent according
to the strategy starting from state s: Vπ (s) = Eπ

[
∑∞

k=0 γkRt+k+1 |st = s
]
. Meanwhile, Qπ (s, a) =

Eπ

[
∑∞

k=0 γkRt+k+1 |st = s , at = a
]
. The value function determines the expected total return in terms

of π from a single state.
Two key performance indexes of a reinforcement learning algorithm are rationality [21] and

convergence [22]. At the moment, the measure of rationality in most smart systems is still “instant
rewards”. The simplest and most widely used optimization criterion for instant reward is optimization
E [rt], and the convergence is to provide the theoretical support of algorithm convergence through a
mathematical method. At the same time, the convergence performance of the algorithm is observed in
a real controlled object. In this section, we provide theoretical support for our proposed new parameter
setting rules mainly through mathematical methods.

3.1. Dynamic Regulation Method Based on Temporal-Difference

We believe that in the process of dynamic programming and approximation using reinforcement
learning, the error of the neural network in different stages is distributed with a certain probability.
Therefore, the sensitivity of the algorithm can be improved intuitively by dynamically adjusting the
learning rate at different stages. According to this intuition, we add a mapping from TD error to the
learning rate in the algorithm to dynamically adjust the learning rate to improve the performance of
the learning algorithm. At the same time, due to the different advantages of different learning rates at
different stages, this method can inherit the advantages of different learning rates at different stages
and finally improve the performance of the algorithm. The TD reinforcement learning value function
updating formula of the dynamically adjusting learning rate can be seen in Formula (2)

δ = r−Q (ai)

Qi (ai) = Qi (ai) + mapping (δ) · δ
(2)

The subscript i represents an agent’s name, where ai represents the action performed by the agent i.
The label Qi represents the value function it maintains, where the output of mapping(δ) is the learning
rate in reinforcement learning. This mapping dynamically adjusts different learning rates through
TD Loss at different stages. It can be seen from the Hysteretic Q-Learning (HQL) [23] algorithm
that the performance of the algorithm can be optimized by reasonably adjusting the learning rate
during the training process. The idea of this kind of regulation comes from fuzzy control theory [24].
Through mapping similarly to the membership function [25,26], TD Loss is used to dynamically adjust
the learning rate.

Because the neural network is used to fit the Q function, the stability of network training needs to
be considered. To maintain the stability of the neural network, the setting of the learning rate should
not fluctuate too much. So this mapping is usually defined as a piecewise function. In the following
we will prove the convergence of the dynamic learning rate algorithm. Then the setting process is
given through experiments.



Algorithms 2020, 13, 239 6 of 16

3.2. Mathematics Model and Convergence of Temporal-Difference

The temporal-difference algorithm is one of the most important algorithms in reinforcement
learning. This algorithm works well in both model-based and non-model-based environments.
The algorithm needs to sample the trajectory [27] generated by the policy π:

S0, A0, R1, S1, ..., ST−1, AT−1, RT , ST

This sequence is also called eligibility traces [28]. Compared with the Monte Carlo method [28],
which requires a complete eligibility trace, the temporal-difference method only needs to select a
section of qualification trace between the existing state and a certain state to update the strategy.
This provides the conditions for the online learning of algorithms.

Let us take the Q (σ) algorithm for example. The parameter σ represents the percentage of
sampling during the operation of the algorithm. Because one-step iteration is widely used in online
learning, we take one-step iteration as an example.

G(1)
t = rt+1 + γ

[
σQt (st+1, at+1) + (1− σ) Qt+1

]
(3)

When σ = 0, it means no sampling, iterate with the existing Q value, where Qt+1 =

∑a′ π (st+1, a′) Qt (st, a′). When σ = 1, it means that the update is done iteratively through sampling.
Thus, σ can be thought of as the ratio of sampling to updating.

Qt+1 (st, at) = Q (st, at) + α
[

G(1)
t −Qt (st, at)

]
= Q (st, at) + αδσ

t

(4)

From the derivation above, it is not difficult to find that δσ
t = rt+1 +

γ
[
σQt (st+1, at+1) + (1− σ) Qt+1

]
−Qt (st, at).

Theorem 1. In the MDP, for any initialized Q (s, a) , ∀γ ∈ (0, 1). ∀ (s, a) ∈ S′ × A. The update mode of Q
can be expressed as: Q̂(n+1)

k+1 (s, a) = rt+1 + γ ∑a π (st+1, a) Q̂(n)
k (st+1, a), where Q̂ represents the estimate of

Q, and k represents the update frequency of Q.

Proof. If ∆n = E
[

Q̂(1)
k+1 (s, a)

]
− Qπ (s, a), you get ‖∆n+1‖ < γ‖∆n‖ is the maximum norm

compression sequence, that is, ∆n converges to 0 probabilistically [29].

For n = 1 :

max
(s,a)

∣∣∣E [Q̂(1)
k+1 (s, a)

]
−Qπ (s, a)

∣∣∣ =∣∣∣∣∣∣Ra
s + γ ∑

(s′ ,a′)
pa

ss′π
(
s′, a′

)
Q̂(1)

k+1

(
s′, a′

)
− Ra

s−γ ∑
(s′ ,a′)

Pa
ss′π

(
s′, a′

)
Qπ
(
s′, a′

)∣∣∣∣∣∣
<= γmax

(s,a)

∣∣∣Q̂(1)
k+1

(
s′, a′

)
−Qπ

(
s′, a′

)∣∣∣
(5)

Suppose it is also true for n:

max
(s,a)

∣∣∣E [Q̂(n+1)
k+1 (s, a)

]
−Qπ (s, a)

∣∣∣ <= γmax
(s,a)

∣∣∣Q̂(n)
k+1

(
s′, a′

)
−Qπ

(
s′, a′

)∣∣∣ (6)

The following proof of Q̂(n+1)
k+1 (s, a) also set up:



Algorithms 2020, 13, 239 7 of 16

Q̂ (s, a) = Rt+1 + γ ∑
a′∈A

π
(
st+1, a′

) (
Q̂k
(
st+1, a′

))
·
(
1− I

(
a′, at+1

)
+ I

(
a′, at+1

)
Q̂n

k
(
st+1, a′

)) (7)

where I (a′, at+1) is an indicator function [27]:

I
(
a′, at+1

)
=

{
1 i f a′ = at+1

0 else
(8)

max
(s,a)

∣∣∣E [Q̂(n+1)
k+1 (s, a)

]
−Qπ (s, a)

∣∣∣ = max
(s,a)

∣∣∣∣∣∣∣
Ra

s + γ ∑s′ pa
ss′ ∑a′ π (s′, a′) ·

{
E

[(
1

−I (a′, at+1)

)
· Q̂(n)

k (s′, a′)

]}
+I (a′, at+1) Q̂(n)

k (s′, a′)− Ra
s − γ ∑s′ pa

ss′ ∑a′ π (s′, a′) Qπ (s′, a′)

∣∣∣∣∣∣∣
= γmax

(s,a)

∣∣∣∣∣∣∣∣
∑s′ pa

ss′ ∑a′ π (s′, a′)

{
E

[
(1− I (a′, at+1)) ·

(
Q̂(n)

k (s′, a′)
−Qπ (s′, a′)

)]}
+I (a′, at+1) ·

(
Q̂(n)

k (s′, a′)−Qπ (s′, a′)
)

∣∣∣∣∣∣∣∣
<= γmax

(s,a)

∣∣∣Q̂(n)
k (s, a)−Qπ (s, a)

∣∣∣

(9)

Theorem 2. Under the MDP structure, for any initial Q (s, a) , ∀γ ∈ (0, 1), ∀ (s, a) ∈ s× a. Q is updated
according to Equation (3). So Q̂(n)

t (s, a) converges to Q̂π (s, a) with probability.
In fact, if pi (st+1 in Theorem 1, a′) satisfies Formula (10):

π
(
st+1, a′

)
=

{
1 a′ = at+1;

0 else.
(10)

This is the special case of the algorithm in Theorem 1, and the convergence of the algorithm can be proved
by the convergence of Theorem 1.

Theorem 3. If Q (σ)meets the conditions:

(1) Finite state space;
(2) ∑∞

i=1 αi = ∞, ∑∞
i=1 α2 < +∞.

Then the Qt (s, a)generated by the above iteration converges probabilistically to Qπ (s, a).

Proof. Q (σ) is a convex combination of Theorem 1 and Theorem 2 algorithms. It can be obtained that
Q (σ)generated Qt (s, a) converges probabilistically Qπ (s, a).

3.3. Convergence Relation between Approximation Method and Dynamic Regulation Learning Rate

In the process of algorithm updating, the incremental method instead of the Monte Carlo
method [30,31] is more in line with the requirements of dynamic programming. It is also more
applicable to the controlled objects in the experimental environment.

The process of the algorithm is described as follows: The interaction samples observed in c − 1
are: g1, g2, ..., gc−1. Then it is easy to understand that the value function before c − 1 is: ḡc−1 =

1
c−1 ∑c−1

i=1 gi. So we can get the value function at c observations is ḡc =
1
c ∑c

i=1 gi. It can be proved in
Equation (11):

ḡc = ḡc−1 +
1
c
(gc − ḡc−1) (11)



Algorithms 2020, 13, 239 8 of 16

which is the theoretical basis of Equation (3). At the same time, it is proved that the algorithm can
converge to the value of the objective function. At this point, we may try another way to understand
Equation (4). In practical reinforcement learning applications we usually do not record the number
of sample interactions c, but instead use a smaller value α (α ∈ (0, 1))instead of 1/c. This is because
the default algorithm samples c→ ∞. At this point, 1

c → ∞. It can be seen that the learning rate α in
reinforcement learning is an approximation in the theoretical basis. This provides a possibility for us
to dynamically adjust the value of learning rate.

To prove that dynamically adjusting learning rate α can guarantee the convergence of the
algorithm, we introduce the important Robbins–Monro algorithm in the approximation algorithm.
The algorithm reckons that: we need to pass a number of observations of some bounded random
variable G g1, g2..., gc−1 to estimate the expected value of the random variable q = E [G], the iterative
formula can be used in Formula (12):

qk ← qk−1 + αk (gk − qk−1) k = 1, 2, ... (12)

to estimate the value of q. Where the q0 initialization is random because it takes multiple iterations
to approximate the exact value. Usually we set it to 0. The αk here is similar to the learning rate in
the reinforcement learning update iteration. If the learning rate sequence satisfies {αk : k = 1, 2...} to
ensure the convergence of the Robbins–Monro approximation algorithm, the following three conditions
should be met:

(1) αk >= 0, k = 1, 2, 3, ...;
(2) The condition under which an arbitrary point of convergence can be reached without any initial

restriction: ∑∞
k=1 α2

k < ∞;
(3) Finally, the convergence point can be reached without noise restriction.

If the above three requirements are met, k → ∞,qk → q. The temporal-difference of the
reinforcement learning algorithm is equivalent to αk =

1
k (k = 1, 2, ...), such a learning rate sequence

also meets all the conditions of the Robbins–Monro algorithm convergence, then the Robbins–Monro
algorithm is used as the convergence basis of the sequential difference algorithm. When the
reinforcement learning algorithm is used in a variety of vectors αk = 1

k (k = 1, 2, ...) (as long as
these learning rates meet condition 3), the convergence of the sequential difference algorithm [27] can
be guaranteed during the iterative update. Therefore, we can adopt different learning rates to adjust
the algorithm based on the different advantages of learning rates at different stages.

4. Experiment

In this section, we will use the classic control environment of reinforcement learning
“Car-on-The-Hill ” [13,29] to illustrate the influence that our new hyperparameter setting idea can have
on the algorithm. This environment has become a benchmark [32] for the comparison of standards for
reinforcement learning.

This environment describes the process: a small car, which can be regarded as a particle, must be
driven by a horizontal force to obtain the flag on the right hillside [33]. There is no friction on the
hillside path. At the same time, a single directional force would not allow the car to mount completely
on the left or right side of the hill. The car must store enough potential energy to convert it into kinetic
energy by sliding from side to side of the hill, and then climb to the top of the hill to the right to get
the flag.

The state-space of this environment can be expressed as follows: the car’s Position∈ [−1.2, 0.6],
the car’s speed Velocity ∈ [−0.07, 0.07]. The car’s action space is 2, which can force to the left or the
right. To the left is negative, to the right is positive.



Algorithms 2020, 13, 239 9 of 16

The payback for this problem is +100 when the car gets the flag. A negative return when a car is
sliding can be considered a penalty. The challenge with this problem is that if the car does not get to
the flag position for too long, it tends not to drive, because there is no negative penalty for staying put.

This environment can be solved using a linear approximation approach. Paper [27] is often used
as a benchmark for validating algorithms in reinforcement learning because of its small action and
state space and its ease of representation. In this section, we will use this environment to compare
the effects of different learning rates on algorithm convergence and agent rationality. Through the
analysis of the baseline environment, this paper summarizes a learning rate-setting method with
strong generalization performance, which provides a standard design process for the learning rate of
the dynamic regulation algorithm.

In the experiment, we used the traditional deep Q-network (DQN) algorithm. The update formula
of the algorithm’s Q value can be seen in Equation (13):

Q′ (s, a) = Q (s, a) + α

(
r + γmax

a′
Q
(
s′, a′

)
−Q (s, a)

)
(13)

where, the error used to update the network is set as the mean square error. It can be defined as
Equation (14):

L (θ) = E
[
(TargetQ−Q (s, a; θ))2

]
(14)

The objective function is defined as Equation (15):

TargetQ = r + γmax
a′

Q
(
s′, a′; θ

)
(15)

The specific network structure can be seen in Figure 3, where the linear layer has three layers and
the nonlinear layer has two layers, and the Relu function is adopted.

Where we use Pytorch to build the network model, the Adam optimizer is used. The specific
hyperparameters settings can be seen in Table 1.

Table 1. Hyperparameters settings in the network.

Hyperparameters Value

Replay Buffer Size 20,000
Batch Size 32

discount factor γ 0.99
learning rate Static or dynamic

4.1. Learning Rate Order of Magnitude Initial Determination

In the experiment in this paper, a Deep Q-Network (DQN) algorithm is implemented by using a
neural network and compared from this baseline. In fact, we can generalize to other TD algorithms by
using this as a baseline.

From our analysis of the mathematical model in the first two sections, we can see that when
k → ∞, there is qk → Q. However, in practice, such a setting is unreasonable. First, when k → ∞,
the learning rate goes to 0. Such a setting cannot make the neural network update and converge.
Secondly, the convergence of the neural network also depends on the learning rate to a great extent in
the actual use. Taking the ideal convex optimization as an example [27], the convergence process of
the reasonable gradient optimization should continuously descend along the direction of the gradient.
However, when the learning rate is too small, it will theoretically lead to too slow convergence of
neural network parameters, which will affect the convergence rate of the neural network. At the same
time, too much setting of the learning rate leads to deviation of gradient descent direction and even
makes it difficult to converge eventually. Therefore, in the deep reinforcement learning, we should set



Algorithms 2020, 13, 239 10 of 16

a uniform learning rate test interval, to select a more appropriate learning rate parameter in the case of
fewer test training times.

Figure 3. The network structure we used in the experiment.

The method used in this article is called cross-magnitude initializations. That is, we set a test
parameter at each order of magnitude after the decimal point. In order to ensure the premise that the
learning rate tends to 0, we locate the test learning rate of each order of magnitude test interval at 1.
For example: 0.1, 0.01, 0.001...The optimal learning rate is selected through the test, and the optimal
interval is selected through the final accumulative income and convergence effect. In the experiment,
we set a time of 1000 turns for interacting with the environment, and a maximum of 200 steps are
performed in each turn. We record the average return per 100 episodes. Take the highest average
return as a measure of agent rationality [29]. We have counted the results of ten experiments with
different learning rates, and the results are shown in Table 2.



Algorithms 2020, 13, 239 11 of 16

Table 2. Comparison of optimal return values obtained by different learning rates.

Learning Rate 1 2 3 4 5 6 7 8 9 10 Average

lr = 0.1 −198.52 −197.91 −200 −199.64 −200 −200 −200 −2005 −200 −200 −199.607
lr = 0.01 −170.57 −153.68 −168.26 −168.82 −159.43 −169.99 −172.21 −183.17 −166.16 −182.69 −169.498
lr = 0.001 −118.23 −116.03 −114.3 −120.0 −124.69 −123.25 −120.29 −126.11 −110.97 −130.76 −120.463

lr = 0.0001 −119.94 −123.38 −125.16 −130.38 −126.16 −129.12 −110.19 −122.44 −117.18 −118.78 −122.273
lr = 0.00001 −200 −200 −200 −200 −179.53 −114.09 −200 −200 −200 −200 −189.362

From our experiments, it can be seen that the order of magnitude of the appropriate learning rate
should be between three decimal places and the last four places. We call this the “appropriate learning
interval”. Accordingly, we selected the selected range of the appropriate learning rate preliminarily.

4.2. Convergence and Rationality Are Combined to Determine the Learning Rate

In this section, we further select the appropriate learning rate interval. Different from the
traditional simple setting, we not only consider the accumulated income of the algorithm as the
negative feedback to form a closed loop. We also consider adding convergence as another condition
for the negative feedback loop.

In machine learning and deep neural network training, the error value is usually used to determine
whether the algorithm converges or not [34,35]. Although unlike traditional supervised learning,
reinforcement learning does not have a deterministic target value (supervised learning), the purpose of
the algorithm is to approximate the optimal value function. Therefore, in the TD algorithm, the TD error
can be similar to the error used in the network parameter update in supervised learning. Therefore, it
can be used as a measure of convergence performance of the algorithm [23].

By comparing the typical values of controller returns and convergence results of learning rate
training of different orders, it can be seen that even when the return values are close, the convergence
performance of the algorithm is still quite different. As can be seen from Figure 4, when the learning
rate is 0.001, the algorithm can quickly obtain better results, but in the later stage of interaction with
the environment, the performance stability of the algorithm is poor. This may be because the learning
rate is more sensitive to the gradient in the later stage of the algorithm. The mean square error when
the learning rate is 0.0001 and the convergence effect is good can be seen in Figure 5.

Figure 4. General performance of the mean square error convergence with a learning rate of 0.001.

At the same time, when the learning rate is 0.0001, the convergence speed of the algorithm is slow.
However, it can be seen that once the algorithm converges, the error was better in a large number of
experiments. However, in most cases in our experiment, when the learning rate is 0.0001, the typical
variation value of the mean square error is shown in Figure 6.



Algorithms 2020, 13, 239 12 of 16

Figure 5. Mean square error when the learning rate is 0.0001 and the convergence effect is good.

Figure 6. General performance of the mean square error convergence with a learning rate of 0.0001.

It can be seen that when the learning rate is at the magnitude of 0.0001, although the algorithm
can have a better return value, it is difficult for the algorithm to converge in the later stage of training.
It makes it hard to stabilize the result. At the same time, we also conducted a test in this order of the
learning rate. Comparatively speaking, the learning rate at 0.0002 can appear to have more stable
convergence training results. Therefore, when we dynamically adjust the learning rate, we add 0.0002
to maintain the stability of the learning rate at this order.

Our ultimate goal is that the algorithm can approach the optimal result quickly in the early stage
and maintain stable convergence results in the later stage. A large number of experimental results
show that this performance is difficult to obtain by the static learning rate. Therefore, we want to
break through the effect of the original static learning rate algorithm by dynamically adjusting the
learning rate of the algorithm and combining the different advantages of various learning rates at
different stages.

During the interaction between agents and the environment, to increase the exploration of actions
in the early stage and stability in the later stage, we adopted the method of epsilon-greedy in the
selection of action strategies. At the same time, dynamically adjusting the learning rate makes the error
as close to the theoretical value as possible and presents a trend of gradual decline. Finally, a more
stable training model (controller) is obtained to adapt to the final controlled system. It can be seen
from the variation trend of the training mean square error, when comparing the learning rate of 0.001
and 0.0001, that in the early stage of training, a large learning rate can enable the algorithm to converge
quickly to the target result. However, in the later stage, the difference error of timing sequence is small,
and too much learning rate will lead to the instability of the algorithm. Therefore, in the later stage



Algorithms 2020, 13, 239 13 of 16

of training, a small learning rate can ensure the convergence of the algorithm. Paper [23] combined
with the idea of the Hysteretic Q-Learning (HQL) algorithm, the learning rate of the algorithm is fixed
when the TD error is positive. When the TD error is negative, the method is dynamically adjusted.
In theory, we can get a better result called the former static learning rate method. After analyzing the
timing error distribution, we set the algorithm’s dynamic learning rate as shown in Table 3.

Table 3. Comparison of optimal return values obtained by different learning rates.

TD Error lr

TD >= 0 0.0001
−0.005 <= TD < 0 0.0001

−0.05 <= TD < −0.005 0.0002
TD < −0.05 0.001

4.3. Experimental Results and Analysis

In this part, we show the difference in rationality and convergence between static learning rate
and dynamic learning rate algorithms.

In order to avoid interaction with the environment, agents appear as extreme phenomena. We have
conducted a large number of experiments on the results of static learning rates 0.001, 0.0001, 0.0002,
respectively. The results can be seen in Figure 7.

Figure 7. The rewards and stability of different learning rates.

To show the results without loss of generality, the distribution of the results with different learning
rates and 75 percent confidence intervals and mean values of the algorithm are shown in the figure.
It can be seen that the learning rate algorithm of dynamic regulation is the optimal one. In terms of
the overall stability of the algorithm training, the performance difference of the dynamically adjusted
learning rate algorithm is small. Although the optimal result is in the static learning rate of 0.0001,
its distribution is discrete and can be considered as noise points and ignored. Therefore, it can be
considered that the optimization of the dynamic regulation algorithm to the traditional static learning
rate algorithm is significant. At the same time, we can compare the stability of the algorithm in the
network update by means of the mean square error. The general variation of the mean square error of
the improved algorithm can be seen in Figure 8.

To sum up, it can be seen that the algorithm that dynamically adjusts the learning rate can
combine the advantages in different stages in the training process. Under the condition of ensuring
the performance of the basic learning algorithm, the profitability and convergence results of the
algorithm can be improved. The convergence results can be obtained from the stability of the final
results obtained by the algorithm and the neural network error. This also proves that the method of
dynamically adjusting the learning rate can improve the effect of the algorithm to a certain extent.



Algorithms 2020, 13, 239 14 of 16

Figure 8. Variation of the mean square error in dynamic learning rate.

5. Conclusions

This paper proves the feasibility of dynamic adjustment learning rate in a reinforcement learning
algorithm. At the same time, it solves the problem of setting learning rate parameters of reinforcement
learning to a certain extent. By combining the advantages of different learning rates in different
intervals, the algorithm can break through the original optimal effect. We prove that the learning rate
of dynamic adjustment can ensure the convergence of the algorithm in theory. In the experiment,
we have verified the effect of this method on adjusting the learning rate. The results show that the
method of dynamically adjusting the learning rate can break through the original static learning rate
algorithm and achieve a stable income effect. This algorithm has a considerable improvement in both
the convergence performance of the network and the return results of the algorithm convergence
in practice.

To date, it is still difficult to find a suitable rule for the deep neural network and the parameter
adjustment method using a neural network. The method of dynamically adjusting the learning rate
proposed by us is an algorithm that can adapt to the reinforcement learning model. It combines the
unique characteristics of reinforcement learning and a dynamic programming model and adopts a
static hyperparameter setting method different from the traditional neural network (supervised [36]
and unsupervised learning [37]). Comparing with the static learning rate, the method of dynamic
adjustment of learning rate can combine the advantages of different learning rates. In this paper,
the dynamic regulation is based on the dynamic matching of the TD error, and the effect of the
algorithm is verified in the experiment. It can be seen from a large number of experimental results that
the algorithm without loss of generality, which dynamically adjusts the learning rate, is superior to the
reinforcement learning algorithm with traditional static learning rate in terms of the performance of
mean value and distribution. At the same time, it can also be seen from the mean square error loss
that the dynamic adjustment algorithm optimizes the cumulative rewards and stability of the original
algorithm. The results show that the algorithm of dynamically adjusting learning rate is a kind of
hyperparameters setting rule that is more suitable for deep reinforcement learning. The defect of this
paper is that there is no quantitative explanation of the relationship between specific learning rate and
agent rationality and convergence. To some extent, the method we studied can solve the problem of a
large network error scale in the later stage, but it cannot completely avoid the fluctuation of a network
error. In other words, this method can achieve “stable” results within a certain error tolerance range
and shows that the basis for dynamically adjusting the learning rate is not only a temporal-difference
error. This is instructive to the traditional reinforcement learning parameter regulation, and it also
means that our method is worthy of further study. In future work, we will further study the coupling
relationship between the convergence of deep reinforcement learning and the algorithm’s cumulative



Algorithms 2020, 13, 239 15 of 16

return. Given the defect that this paper does not propose the relationship between quantitative analysis
of cumulative return and update error, we will do further research.

Author Contributions: Conceptualization, Software, and Writing—original draft, M.L.; Supervision, X.G.;
Writing—review and editing, C.Z. and Y.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the National Natural Science Foundation (NNSF) of China under Grant
Nos. 61603406.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.; Veness, J.; Bellemare, M.; Graves, A.; Riedmiller, M.;
Fidjeland, A.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015,
518, 529–533. [CrossRef]

2. Chen, X.; Yang, Y. A review of reinforcement learning research. Appl. Res. Comput. 2010, 27, 2834–2838.
3. Wang, J.X.; Kurth-Nelson, Z.; Kumaran, D.; Tirumala, D.; Soyer, H.; Leibo, J.Z.; Hassabis, D.; Botvinick, M.

Prefrontal cortex as a meta-reinforcement learning system. Nat. Neuroence 2018, 21, 860–868. [CrossRef]
[PubMed]

4. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
5. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M.A. Playing

Atari with Deep Reinforcement Learning. arXiv 2013, arXiv:1312.5602.
6. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;

Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv
2016, arXiv:1603.04467.

7. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;
Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In the Proceedings
of Advances in Neural Information Processing Systems 32 (NIPS 2019), Vancouver, BC, Canada, 8–14
December 2019; pp. 8026–8037.

8. Jia, W.; Senpeng, C.; Xiuyun, C.; Rui, Z. Model Selection and Hyper-parameter Optimization based on
Reinforcement learning. J. Univ. Electron. Sci. Technol. China 2020, 49, 255–261.

9. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012,
13, 281–305.

10. Jomaa, H.S.; Grabocka, J.; Schmidt-Thieme, L. Hyp-RL: Hyperparameter Optimization by Reinforcement
Learning. arXiv 2019, arXiv:1906.11527.

11. Bernstein, A.; Chen, Y.; Colombino, M.; Dall’Anese, E.; Mehta, P.; Meyn, S.P. Optimal Rate of Convergence
for Quasi-Stochastic Approximation. arXiv 2019, arXiv:1903.07228.

12. Pohlen, T.; Piot, B.; Hester, T.; Azar, M.G.; Horgan, D.; Budden, D.; Barth-Maron, G.; van Hasselt, H.; Quan, J.;
Vecerík, M.; et al. Observe and Look Further: Achieving Consistent Performance on Atari. arXiv 2018,
arXiv:1805.11593.

13. Marco, W.; Otterlo, V. Reinforcement Learning: State of the Art; Springer: Berlin/Heidelberg, German, 2012;
pp. 206–217. [CrossRef]

14. Leslie, K. Learning in Embedded Systems; MIT Press: Cambridge, MA, USA, 1993. [CrossRef]
15. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement Learning: A Survey. J. Artif. Intell. Res. 1996,

4, 237–285. [CrossRef]
16. Watkins, C. Learning From Delayed Rewards. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 1989.
17. Peng, J.; Williams, R.J. Incremental multi-step Q-learning. Mach. Learn. Proc. 1994 1996, 22, 226–232.

[CrossRef]
18. Yingzi, W.; Mingyang, Z. Design of Heuristic Return Function in Reinforcement Learning Algorithm and Its

Convergence Analysis. Comput. Sci. 2005, 32, 190–192.
19. Liu, S.; Grzelak, L.; Oosterlee, C. The Seven-League Scheme: Deep learning for large time step Monte Carlo

simulations of stochastic differential equations. arXiv 2020, arXiv:2009.03202.

http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/s41593-018-0147-8
http://www.ncbi.nlm.nih.gov/pubmed/29760527
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1007/978-3-642-27645-3
http://dx.doi.org/10.7551/mitpress/4168.001.0001
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1007/BF00114731


Algorithms 2020, 13, 239 16 of 16

20. Baxter, L.A. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Technometrics 1995,
37, 353–353. [CrossRef]

21. Sunehag, P.; Hutter, M. Rationality, optimism and guarantees in general reinforcement learning. J. Mach.
Learn. Res. 2015. 16, 1345–1390.

22. Beggs, A.W. On the convergence of reinforcement learning. J. Econ. Theory 2002, 122, 1–36. [CrossRef]
23. Matignon, L.; Laurent, G.J.; Fort-Piat, N.L. Hysteretic q-learning: An algorithm for decentralized

reinforcement learning in cooperative multi-agent teams. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007.

24. Zadeh, L.A. A Rationale for Fuzzy Control. J. Dyn. Syst. Meas. Control 1972, 94, 3–4. [CrossRef]
25. Yingshi, Z. Research and development of parameter self-adjusting method for fuzzy controller. Harbin Railw.

Sci. Technol. 2006, 1, 13–15.
26. Sathyan, A.; Cohen, K.; Ma, O. Comparison Between Genetic Fuzzy Methodology and Q-Learning for

Collaborative Control Design. Int. J. Artif. Intell. Appl. 2019, 10, 1–15. [CrossRef]
27. Rui, Y. Convergence analysis of multi steps reinforcement learning algorithm. Comput. Digit. Eng. 2019,

47, 1582–1585.
28. Sutton, R.; Barto, A. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998.
29. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym.

arXiv 2016, arXiv:1606.01540.
30. Lagoudakis, M.G.; Parr, R. Least-Squares Policy Iteration. J. Mach. Learn. Res. 2003, 4, 1107–1149.
31. Michail, L.; Ronald, P. Reinforcement Learning as Classification: Leveraging Modern Classifiers. Available

online: https://www.aaai.org/Papers/ICML/2003/ICML03-057.pdf (accessed on 21 September 2020).
[CrossRef]

32. Xiliang, C.; Lei, C.; Chenxi, L.; Zhixiong, X.; Ming, H. Deep reinforcement learning method based on
resampling optimization cache experience playback mechanism. Control Decis. 2018, 33, 600–606.

33. Moore, A.W.; Atkeson, C.G. The Parti game Algorithm for Variable Resolution Reinforcement Learning in
Multidimensional State spaces. Mach. Learn. 1995, 21, 199–233. [CrossRef]

34. Darzentas, R.B.J. Problem Complexity and Method Efficiency in Optimizationby (AS Nemirovsky and
DB Yudin). J. Oper. Res. Soc. 1984, 35, 455. [CrossRef]

35. Zhang, T. Solving Large Scale Linear Prediction Problems Using Stochastic 2004. In Proceedings of the
Twenty-First International Conference on MACHINE Learning, Banff, AB, Canada, 4–8 July 2004; pp. 2–3.

36. Kolesnikov, A.; Zhai, X.; Beyer, L. Revisiting Self-Supervised Visual Representation Learning. In Proceedings
of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, 16–20 June 2019; pp. 1920–1929.

37. Lu, Y. Unsupervised Learning on Neural Network Outputs. arXiv 2015, arXiv:1506.00990.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00401706.1995.10484354
http://dx.doi.org/10.1016/j.jet.2004.03.008
http://dx.doi.org/10.1115/1.3426540
http://dx.doi.org/10.5121/ijaia.2019.10201
https://www.aaai.org/Papers/ICML/2003/ICML03-057.pdf
http://dx.doi.org/10.5555/3041838.3041892.
http://dx.doi.org/10.1007/BF00993591
http://dx.doi.org/10.1057/jors.1984.92
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Temporal-Difference Learning
	The Method of Dynamic Adjustment Learning Rate and Convergence Proof
	Dynamic Regulation Method Based on Temporal-Difference
	Mathematics Model and Convergence of Temporal-Difference
	Convergence Relation between Approximation Method and Dynamic Regulation Learning Rate

	Experiment
	Learning Rate Order of Magnitude Initial Determination
	Convergence and Rationality Are Combined to Determine the Learning Rate
	Experimental Results and Analysis

	Conclusions
	References

